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Abstract

The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same
time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the
rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is
matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the
variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has
recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This
distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A
key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce
quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few
Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network
model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing
synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay,
thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis
suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed
of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

Citation: Krishnamurthy P, Silberberg G, Lansner A (2012) A Cortical Attractor Network with Martinotti Cells Driven by Facilitating Synapses. PLoS ONE 7(4):
e30752. doi:10.1371/journal.pone.0030752

Editor: Thomas Wennekers, The University of Plymouth, United Kingdom

Received September 5, 2011; Accepted December 21, 2011; Published April 16, 2012

Copyright: � 2012 Krishnamurthy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partly supported by grants from the Swedish Science Council (VR-621-2004-3807), VINNOVA (Swedish Government Agency for
Innovation Systems), the Swedish Foundation for Strategic Research (through the Stockholm Brain Institute), and from the European Union (FACETS project, FP6-
2004-IST-FETPI-015879). No additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ala@csc.kth.se

Introduction

The population of inhibitory interneurons comprises only 15–

20% of neocortical neurons. Despite being a minority, interneu-

rons are believed to play an important role in shaping network

activity patterns by directly controlling the input/output of

principal cells. Recent advances in single-cell recording techniques

and molecular biology have led to an explosion of data and

knowledge about these inhibitory cells - their morphology,

synaptic connections, short-term plasticity and molecular charac-

teristics [1–3]. Much less is known about the specific functional

roles in network function played by the diverse inhibitory

interneuron subtypes. Apart from the differences in morphology

and synaptic targeting on pyramidal cells (PC), interneuron

synapses also exhibit different synaptic short-term plasticity

properties, from strongly depressing to strongly facilitating.

Synaptic depression of glutamatergic synapses between pyramidal

cells has a dominant effect in controlling firing rate [4]. Only very

few cortical models of various phenomena like gamma oscillations,

working memory, slow-wave sleep (SWS) oscillations etc take into

account this dynamical nature of the synapses [5]. Most of them

add details to the cell morphology keeping synapses, by contrast,

static [6–10].

We have previously developed and characterized a network

model of neocortical layers 2/3. This cortical network model has a

modular hypercolumnar structure in which each hypercolumn

comprises a set of minicolumns. Such a module operates like a soft

winner-take-all network typically allowing just one active mini-

column at a time. It operates as an attractor type associative

memory and displays bistable irregular low-frequency firing and

various phenomena like, e.g. pattern retrieval, completion and

rivalry as well as spontaneous wandering of network between

stored states [11–13]. Mounting experimental evidence shows that

ongoing activity in cortex can exhibit complex spatiotemporal

patters [14–16]. These patterns seem to wander among a set of

intrinsic cortical states that reflects the overall cortical architecture.

Also, using voltage sensitive dye imaging Kenet et al. revealed that

in primary visual cortex these cortical states matched the

functional map of orientation columns [17]. We here demonstrate

how adding one type of inhibitory interneuron, the Martinotti cell

(MC), to our previous network model affects the attractor network

dynamics during spontaneous reactivation.
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A computational study undertaken by Melamed et al. (2008)

[18] showed that slow oscillations emerge from the interplay of

excitatory and inhibitory populations. Like MCs, their inhibitory

population received facilitating synapses from the excitatory

population and it was demonstrated that such inhibition underlies

the switching between up and down states. This study was based on

a rate-based model with non-adapting excitatory cells connected

by static synapses and utilized only one type of interneuron. A

recent experimental study on cortical slices has also suggested that

interneurons receiving facilitating synapses in neocortex might

play a key role in the termination of up states [19].

The objective of the present study is to study the impact of

inclusion of a late-onset interneuron, that is MC, in our

attractor network model by investigating how it affects activity

levels and attractor dwell time during spontaneous activity.

Although an earlier study has shown the effects of late-firing

MC in a firing rate model, ours is the first study that uses

spiking units with PC-MC characteristics matched to in vitro

data. Here we use single-compartmental Hodgkin-Huxley (HH)

type neuron models [20] of two different types of interneurons

embedded in a population of pyramidal cells with the ratio of

pyramidal to interneuron being 90:10. We have included

dynamic synapses throughout the network, enabling us to show

how pyramidal cells differentially excite interneurons via

depressing and facilitating synapses. We commenced with

reproducing in our model the PC-MC sub-circuit, as previously

described by Silberberg & Markram (2007) and Silberberg

(2008) [21,22], and reproduced (a) frequency dependent

disynaptic inhibition of pyramid cells, and (b) frequency

dependent recruitment of MCs. Thereafter, we integrated this

microcircuit in our cortical attractor network model [11–13] to

study the dynamic effects on a more global scale. We addressed

the effect of MCs on the attractor dwell time when the network

operated without external input, thus freely ‘‘hopping’’ between

the stored states. We show that basket cells (BC) that receive

depressing excitatory synapses have a high firing rate at the

beginning of the attractor state which then tapers off. On the

other hand, MCs that receive facilitating synapses display a late

onset of activation and tend to terminate an ongoing attractor

state. We have further shown how the dwell time and peak

firing of PCs varies with PC- MC connection density. An earlier

computational study [12], in agreement with others

[9,23,24,25,26,27] had demonstrated spike-frequency adaptation

and synaptic depression contributing to termination of attractor

states. We here show how the MC activation could have an

even stronger contribution to the termination of the attractor

states relative to spike-frequency adaptation and synaptic

depression between PCs.

Methods

Model Neurons
The cells included are layer 2/3 pyramidal cells (PC) and two

different types of inhibitory interneurons. They are soma targeting

horizontally projecting basket cells (BC) [28] and dendrite

targeting, vertically projecting Martinotti cells (MC) that establish

a disynaptic inhibitory feedback pathway between the pyramidal

cells [22,29].

PCs are of regular firing type. In the previous simulations,

adaptation was modeled by calcium entering via voltage gated Ca-

channels and activation of KCa channels. Here adaptation is

modeled using the M-current, a slow non-inactivating potassium

current described by Yamada et al. [30]. BCs are modeled as non-

adapting, relatively fast-spiking cells. MCs have the same

properties as BCs except that they are somewhat more adapting

[22]. The multi-compartmental cells used in the previous work

have here been replaced by single-compartment cells with size of

each cell type’s soma, steady-state current and voltage equations,

and conductance values taken from Pospischill et al. 2008 [31]

(Table 1).

All models described here were single-compartment neurons

(cylinder of diameter d and length L) described by the following

membrane equation:

Cm
dV

dt
~{gleak(V{Eleak){INa{IK{IM{IL

V = membrane potential, Cm = specific capacitance of the

membrane, gleak = specific resting (leak) membrane conductance,

Eleak = resting membrane reversal potential.

The kinetic parameters of the voltage-dependent Na current is

given by

INa~gNam3h(V{ENa)

dm

dt
~am(V )(1{m){bm(V )m

dh

dt
~ah(V )(1{h){bh(V )h

am~
{0:32(V{VT{13)

exp½{(V{VT{13)=4�{1

bm~
0:28(V{VT{40)

exp½(V{VT{40)=5�{1

ah~0:128 exp½{(V{VT{17)=18�

bh~
4

1z exp½{(V{VT{40)=5�

where gNa and ENa of different cortical cells are given in Table 1.

The kinetic parameters of the voltage-dependent K (delayed

rectifier) current is given by

Table 1. Neuron parameters.

Parameter Pyramidal Basket Martinotti Unit

Eleak 270 270 270 mV

ENa 50 50 50 mV

EK 2100 2100 2100 mV

gleak 0.0001 0.00015 0.00015 S/cm2

gNa 0.05 0.05 0.05 S/cm2

gK 0.005 0.01 0.01 S/cm2

gM 7e25 0.000098 0.0001 S/cm2

Soma diameter 96 67 67 mm

cm 1 1 1 mF/cm2

Single-compartment Hodgkin-Huxley model parameters for different classes of
cortical neurons taken from Pospischill et al. (2008).
doi:10.1371/journal.pone.0030752.t001
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IKd~gKd n4(V{EK )

dn

dt
~an(V )(1{n){bn(V )n

an~
{0:032(V{VT{15)

exp½{(V{VT{15)=5�{1

bn~0:5 exp½{(V{VT{10)=40�

where gKd and EKd of different cortical cells are given in Table 1.

The kinetic parameters of the voltage-dependent M current is

given by

IM~gMp(V{EK )

dp

dt
~(p?(V ){p)=tp(V )

p?(V )~
1

1z exp½{(Vz35)=10�

tp(V )~
tmax

3:3 exp½(Vz35)=20�z exp½{(Vz35)=20�

where gM and tmax of different cortical cells are given in Table 1.

We have used a point-conductance model of synaptic noise to

account for the stochastic variation of conductance due to synaptic

background activity on all cell models [32]. Table 2 gives

parameters for mean conductance (ge0 and gi0) and standard

deviation (se and si). The level of this background noise is

adjusted to a low firing rate on all cells (0.25 – 0.5 Hz).

Model Synapses
Glutamatergic synapses work on two broad categories of

receptors: kainate/AMPA and NMDA. A mix of both provides

the PC-PC glutamatergic transmission, but the PC-BC glutama-

tergic transmission is purely kainate/AMPA [33]. It is inconclusive

from experiments whether PC-MC glutamatergic tranmission is

plainly kainate/AMPA or a mix. For simulations presented in this

paper, it is entirely kainate/AMPA. The GABA-ergic transmission

in our model is exerted solely by GABAA [33] (See Table 3).

AMPA and GABAA currents are given by [34,35]:

Isyn~Gsyns(Esyn{V )

where the gating variable s (the fraction of open channels) is

described by first-order kinetics via two equations:

dx

dt
~ax

X

j

d(t{tj){
x

tx

ð1Þ

ds

dt
~asx(1{s){

s

tx

ð2Þ

The NMDA current is given by:

Isyn~Gsyns(Esyn{V )=(1z½Mg2z� exp ({0:062Vm)=3:57)

The gating variable s obeys the same types of equations (1,2). We

have taken tx = 0.05 ms and ts = 6 ms for AMPA and GABAA,

tx = 5 ms and ts = 150 ms for NMDA, ax = 1 (dimensionless)

and as = 1 (ms21) for AMPA, NMDA and GABAA [5,35].

Short-term depression and facilitation were incorporated for

all glutamatergic and GABAergic synapses [36,37]. Every

presynaptic spike, occurring at time tsp, causes a fraction U of

the available pool to be utilized, the rate of return of resources

given by trec, is multiplied by a quantity R (the fraction of

available vesicles). R obeys the dynamical equation [38]:

dR

dt
~

(1{R)

trec

{URd(t{tsp) ð3Þ

The short-term depression is introduced into the synapse model

by multiplying ax in (1), which mimics the transmitter release per

spike, by R in (3) which is the fraction of available vesicles.

In modeling a facilitating synapse, U becomes a dynamic

variable increasing at each presynaptic spike and decaying to the

baseline level in the absence of spikes.

dU

dt
~{

U

tfacil

zU1(1{U)d(t{tsp)

where U1 is a constant that determines the step increase in U and

tfacil is the decay time constant of facilitation.

At most three parameters completely define each connection

type; U, trec and tfacil (depressing) or U1, trec and tfacil (facilitating).

On one hand, there is no consensus on how precise these values

should be. On the other hand, experiments do conform on a range

of values [1]. The traces and parameters fitted to the model

provided by Gilad Silberberg from his own experimental studies

were very useful in setting these values. Particularly useful were the

short-term dynamics between PC - MC and MC - PC

connections. A connection with a high ‘U’ factor means the

synapse has a strong ‘postsynaptic punch’ for initial spikes followed

by a rapid depression. A low ‘U’ factor means lower initial release

probability and thereby low initial impact on the postsynaptic side

saving the transmitters for future presynaptic spikes. A synapse’s

effect can be strongly depressing (trec.. tfacil) or strongly

facilitating (trec ,, tfacil) or intermediate displaying combined

depressing-facilitating behaviour. The values assigned for each

connection can be seen in Table 4.

We used Thomson et al. (2002), Silberberg and Markram (2007)

and Douglas and Martin (2004) data for assigning PC - PC (local

and global), PC - interneuron and interneuron - PC connection

strengths and their respective postsynaptic potential (PSP)

amplitudes (See Fig.1) [22,28,39].

Table 2. Synaptic noise parameters for each cell type from
Destexhe et al. (2001).

PC BC MC Unit

ge0 0.0000121 0.000011 0.000011 mmho

gi0 0.00021 0.00002 0.00002 mmho

se 0.0018 0.0009 0.0009 mmho

si 0.0007 0.0003 0.0003 mmho

doi:10.1371/journal.pone.0030752.t002
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Simulation
The computation model was run using the NEURON simulator

[40]. Simulations were typically performed on 128 nodes of the

Blue Gene/L computer at the Center for Parallel Computers at

KTH. It took 70 seconds to simulate one second of network

activity.

Architecture of the Network Model
A detailed description of our full-scale conceptual model can be

found in Djurfeldt et al. (2006) and Lundqvist et al. (2006) and the

latest developments are found in Lundqvist et al. (2010)

[12,13,41]. The sub-sampled neocortical model used here

represents a 363 mm patch of cortex arranged on a square

topology of 666 hypercolumns each separated by 500 mm, in

agreement with hypercolumn diameter data from cat, i.e., 300–

600 mm [42]. Each hypercolumn further constitutes several

minicolumns – various estimates suggest that there are about

one hundred minicolumns bundled into a hypercolumn [43]. In

the current sub-sampled network model we have 5 minicolumns.

The arrangement of cells in the local microcircuit together with

connection probabilities and strengths (PSP amplitudes) are shown

in Fig. 2. Each minicolumn (red disc) consists of 30 PCs densely

connected to other PCs in the same minicolumn (25%) [44,45,46]

and two regular spiking non-pyramidal (RSNP) interneurons

(possibly double-bouquet cells) (not shown). Each hypercolumn has

8 BCs (circular blue disc). Each PC in a minicolumn targets 70%

of its neighboring BCs and each BC targets 70% of the

neighboring PCs. In the recent versions of the model, we have

also introduced synaptic connections between BCs (40%) in the

same hypercolumn. Even though electrical coupling between BCs

have been observed, we have not included those in our model

[47,48]. The long-range minicolumn - minicolumn inhibition

through RSNP cells, used in the previous study [12], is turned off

here, since the dwell time of the attractor, which we measure here

is not affected by its presence. Our new addition to this model is

the MC pool (3 per hypercolumn, oval blue disc). The PC -. MC

and MC -. PC connections show high convergence and

divergence [49]. In our model, each MC receives input from

40% of the PCs in the hypercolumn and contacts 80% of the PCs

in the hypercolumn [22,49]. The extent of BC and MC inhibition

is limited to the home hypercolumn. The minicolumns in a

hypercolumn altogether sweep a width of approximately 100 mm

and hence we have made two assumptions. (a) The extent of

inhibition of horizontally projecting BCs and vertically projecting

MCs may vary in the real cortex, but in this subsampled network,

all the minicolumns lie within the reach of the BC and MC pool.

(b) The PCs in each minicolumn target 8 neighboring BCs and 3

neighboring MCs. Since each hypercolumn has closely spaced

adjacent minicolumns, all minicolumns share the same BC and

MC pool. If we had not clustered minicolumns like it is done here,

we could not have assumed just one pool.

The cartoon in Fig. 2 shows how the minicolumns in different

hypercolumns, denoted by dashed lines, are connected. Thus, a set

of minicolumns distributed over different hypercolumns represents

a stored pattern or memory or an attractor of the network

dynamics. In each hypercolumn, via lateral inhibition of BCs, the

activity in an attractor state engages only one minicolumn

(orthogonal patterns). In this network, consequently, we store as

many patterns as the number of minicolumns in a hypercolumn.

But by allowing overlapping memory patterns the number of

patterns stored can be increased significantly [50].

Results

PC - MC Microcircuitry
We set out to reproduce how discharge of an individual PC at

different rates induces differential delays in the discharge of MCs

and how this influences a second PC. Fig. 1a shows the connection

setup of this disynaptic inhibitory pathway involving two

neighboring PCs and three intermediate MCs. High frequency

activation of PCs is shown to exert inhibition in a significantly

larger number of PCs by a supralinear increase in the recruitment

of MCs [29]. To this end, we included synaptic background

activity to show frequency dependent recruitment of MCs.

Connections from PCs to MCs are facilitating (U1 = 0.05,

trec = 20 ms, tfacil = 1000 ms) [18]. Presenting an AP train in a

presynaptic PC1 thus evokes a discharge in a post-synaptic MC

with a delay and a delayed inhibition of PC2, which is

postsynaptic to the MC. The latency of this discharge onset

depends upon presynaptic stimulation frequency, as shown in

Table 3. Synapse parameters.

Pre-Post Type EPSP/IPSP amplitude (mV) Rise time (s) Delay time (s) Erev (mV)

PC-PC (local) Kainate/AMPA 1.2 0.05 0.006 0

PC-PC(local) NMDA 0.6 0.005 0.150 0

PC-PC(global) Kainate/AMPA 0.2 0.05 0.006 0

PC-PC(global) NMDA 0.2 0.005 0.150 0

PC-BC Kainate/AMPA 1.8 0.05 0.006 0

PC-MC Kainate/AMPA 0.2 0.05 0.006 0

BC-PC GABAa 0.9 0.05 0.006 275

MC-PC GABAa 0.5 0.05 0.006 275

doi:10.1371/journal.pone.0030752.t003

Table 4. Short-term plasticity parameters inferred from Gupta
et al. (2000) and traces provided by Silberberg G.

Pre-Post Type U U1 trec tfacil

PC-PC Depressing 0.4 2 600 0

PC-BC Depressing 0.5 2 600 0

PC-MC Facilitating 2 0.05 20 1000

BC-PC Depressing 0.25 2 500 50

MC-PC Depressing 0.25 2 500 50

doi:10.1371/journal.pone.0030752.t004
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slices [22]. Since the PC - MC connections are facilitating, they

are endowed with low initial release probability, long facilitation

time constants, short depression time constants (see Table 4), and

small unitary EPSPs (0.3 mV on average). The voltage traces of

all 3 MCs to 40, 50 and 70 Hz are overlaid in Fig 1b. When PC

firing is 40 Hz, only one MC discharged in ninety percent of the

trials; 2 MCs responded during 50 Hz in most of the trials and

all 3 discharged readily during 70 Hz in every trial. Thus a jitter

introduced in the membrane voltage overtly demonstrated a

presynaptic frequency based recruitment of MCs (see Fig. 1d).

Connections from MCs to PCs displayed synaptic depression

(U = 0.3, trec = 500 ms, tfacil = 5 ms) [1]. Monosynaptic IPSPs of

these connections, as reported, have a small amplitude (–0.6 mV).

Disynaptic responses on PC2 for different frequencies (40, 50 and

70 Hz) are shown in Fig. 1c. It demonstrates how the disynaptic

responses of the model neuron increased in amplitude and

decreased in latency as a function of presynaptic AP train

frequency in accordance with Silberberg & Markram (2007) [22].

The change in amplitude of the disynaptic response from a 40 Hz

presynaptic AP train to a 70 Hz AP train was reported nearly

twice as high and intermediate for a 50 Hz AP train. In our model,

we were able to fit this relationship quantitatively, in the presence

of a jitter, when we assumed three MCs.

MCs in a Network
We were then interested to investigate the effect of including

MCs in our earlier attractor network model [12]. Previous studies

showed how this network is capable of performing basic attractor

network operations like pattern completion and pattern rivalry.

Our focus now is to investigate the dynamic effects of MCs on the

network activity, in the absence of any sensory-like external input.

Initially, we performed simulations omitting MCs. When the

network was subjected to a low level of background noise, it started

visiting various stored states randomly (Fig. 3a, top). The raster

plot clearly shows how the PCs in different hypercolumns that

form a pattern were (nearly) synchronously active. The rate of

switching is about three states per second. The neurons that are

active when the network engages in an attractor state receive

stronger synaptic input, raised average membrane potential and

an increase in spike rate, in agreement with the previous studies

[12]. These concurrently active cells through local recurrent

connections and global long-range connections maintain the

persistent activity. Mean firing rate is a good measure to ascertain

if the network has indeed entered an attractor state, and inquire

into time evolution of PC and BC firing rates (Fig. 3a, bottom). It is

calculated by setting a time window of 25 ms and counting the

number of spikes that occurred in this time window, dividing this

by the length of the time window and the number of active PCs.

PCs fire (blue curve) briskly at the beginning of the attractor visit

and the firing rate decreases owing to spike-frequency adaptation

and synaptic depression (see below). Termination of an active

attractor gives way to the activation of silent attractors, this cycle

repeats ad infinitum. BCs fire at every attractor cycle since they are

connected to all the minicolumns. Also, the BCs adjust their firing

(red curve) in synchrony with PCs showing how excitation and

Figure 1. Frequency-dependent discharge of Martinotti cells (MCs). (A) Microcircuitry modeled as described in Silberberg & Markram (2007)
showing the disynaptic pathway between pyramidal cells (PCs) (black) mediated by 3 MCs (red, blue and green). The PC1 to MC excitatory synapses
are facilitating. (B) The presynaptic PC1 was stimulated by a train of APs at different frequencies (40, 50 and 70 Hz), shown for a 40 Hz input. The
overlaid voltage traces of 3 post-synaptic MCs are shown. Firstly, higher frequency evoked post-synaptic APs with higher probability and shorter
onset latency. Secondly, higher frequency recruited more intermediate MCs, in accordance with experiments (Silberberg & Markram, 2007). Rarely do
all 3 MCs discharge for 40 Hz input, 2 MCs discharge in ninety percent of the trials during 50 Hz and all 3 MCs discharge in ninety percent of the trials
during 70 Hz. The MC membrane potential jitter is due to the presence of background activity. (C) The increase in amplitude and decrease in latency
of disynaptic response on PC2 membrane potential as a function of presynaptic AP train frequency. The monosynaptic excitation between pyramidal
cells is turned off to present how the disynaptic response of MCs in experiment and model coincide. (D) Individual traces of MCs receiving synaptic
input from PCs demonstrating membrane depolarization following different presynaptic discharge frequencies.
doi:10.1371/journal.pone.0030752.g001
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inhibition during cortical activity is always in a state of dynamic

balance [51].

MCs were introduced using the following connection paradigm:

Each MC receiving input from 40% of PCs in a minicolumn and

projecting back to 80% of PCs in a minicolumn. Below we discuss

different connection paradigms. With the inclusion of MCs, the

attractor state experiences early termination (Fig. 3b, top) resulting

in an increased frequency in state transitions (from 2 Hz to 5 Hz).

This early termination is due to delayed inhibition provided by

MCs. The raster plot is similar to above, with spikes from MCs

(green dots) included. The late firing of MCs is not conspicuous in

the raster plot, so we instead calculated average discharge rates

(Fig. 3b, bottom). The BCs that receive depressing synapses and

high unitary EPSPs are the first to respond and provide inhibition

throughout the attractor state (red curve) just like above. The MCs

that receive low unitary EPSPs, characteristic of facilitating

synapses, starts to engage with a delay after the onset of attractor

activity (green curve), and thereby sweeping away the activity [52].

This is due to high divergence of MCs on its neighboring PCs, also

shown in slices [22,49]. Similar to BCs, MCs also fire at every

attractor cycle since they are shared by all minicolumns in a

hypercolumn.

Different PC to MC Connection Strategies
MCs can be integrated into our network model in different ways

compatible with experimental data. Here we investigated three

different connection paradigms between PCs and MCs. We kept

the MC R PC connections, which shows high divergence (80%),

constant varying only the PC R MC connections. The different

connection paradigms are (Con/Div): (15/80, 40/80, 80/80),

where Con stands for convergence, and Div stands for divergence.

For instance, if we assume the 40/80 paradigm, each MC receives

converging input from 40% of presynaptic PCs in a minicolumn

and diverges onto 80% of postsynaptic PCs in a minicolumn. If a

PC exerts inhibition on another PC via 1 MC, 2 MCs and 3 MCs,

we call it Type 1, Type 2 and Type 3 respectively. Going back to

the microcircuit in Fig. 1, we find Type 1, Type 2 and Type 3

when the input frequency is 40, 50 and 70 Hz respectively. Table 5

contains the average number of Type 1, Type 2 and Type 3

connections in each connection paradigm.

Increasing the PC - PC synaptic strength decreased the attractor

duration, owing to increase in firing and faster adaptation and

depletion of vesicles (Fig. 4a). The response in that ‘‘15/80’’

paradigm was similar to the network without MCs since 15%

convergence of PCs on MCs did not lead to much MC discharge.

However, ‘‘40/80’’ and ‘‘80/80’’ paradigms had distinguishable

Figure 2. Schematic of the network arrangement and all the excitatory and inhibitory pathways between different cell types and
their connection densities in the model. (A) Cartoon of a network of 9 hypercolumns with 5 minicolumns each. The model used had 36
hypercolumns. Each hypercolumn has 5 circularly arranged minicolumns. A minicolumn, represented by red discs, contains 30 densely connected
(25%) PCs denoting local re-entry. The minicolumns in a hypercolumn receive inhibition from the cell population represented by blue discs, the
excitatory (red) and inhibitory synapses (blue) are also shown. Dashed lines show minicolumns that are connected and distributed in different
hypercolumns, which forms a pattern. (B) A small segment of the network blown-up to show the particulars, only here we see each blue disc houses 2
inhibitory cell types.
doi:10.1371/journal.pone.0030752.g002
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effect due to higher convergence (Fig. 4a). Increasing the PC - MC

connection strength showed a similar effect (Fig. 4c), for obvious

reasons. When PCs enter the attractor state, their firing rate will be

on the increase for about 100 ms, until nonlinearities like synaptic

depression and spike-frequency adaptation kicks in bringing the

firing rate down. If the discharge of MCs supersedes the above

nonlinearities, the peak firing rate will be lowered, otherwise it

remains unaffected as shown in Fig. 4c, d. The values that were

held constant are shown on the top of each sub-figure.

Regulation of Attractor Dwell Time
The attractor state termination could be due to intrinsic neuron

properties like adaptation and synaptic depression or due to the

presence of MCs inhibition in the network. At this juncture, we

were interested to investigate which factors dominate in control-

ling the attractor state dwell time. To address the effect of synaptic

depression, we varied the strength of depression between PC - PC

synapses by lowering trec that would speed up the rate of recovery

of vesicles and by lowering U that would decrease the vesicle

release probability resulting in lower depression [36]. We

controlled the effect of spike-frequency adaptation by down-

Figure 3. The activity of cells in the network. The output of different cell types are colour-coded for the sake of clarity; PCs (blue),
BCs (red) and MCs (green). (A,C) Rastergram and average discharge rate of PCs and BCs versus time when inhibition from MCs is turned off. (A)
When the network is subjected to a low background noise (0.25 – 0.5 Hz), it started hopping through the stored attractor states. PCs that form a
pattern and are active (near) synchronously in different hypercolumns are grouped for visual aid. The x axis represents time, while the y axis
represents neuron label. A dot in the rastergram means a spike of a neuron y at time x. (C) The time varying firing rate of all the cells is not evident in
the rastergram. Average discharge rate versus time, bin size of 25 ms, makes it clearer. BCs fire at every attractor cycle since they receive excitation
from all minicolumns in a hypercolumn. PCs from different patterns, represented by various blue line-strokes, took turns getting active. BCs, keeping
step with PCs, had a high firing rate at the beginning of the attractor and tapered off maintaining the excitation - inhibition balance. (B, D) Same as
above after the inclusion of MCs inhibition. (D) The late activity of MCs is apparent in the average firing rate. BCs with their characteristic depressing
synapses are the first to respond (red). MCs receiving facilitating synapses discharge with a delay (green), and similar to BCs, as mentioned above, are
active at every attractor cycle. MCs due to their strong projection to the neighbouring PCs within 100 mm radius (Silberberg & Markram, 2007), shut
the activity thereby shifting the excitation - inhibition balance. Thus, presence of MCs inhibition controls the dwell time of the attractor.
doi:10.1371/journal.pone.0030752.g003

Table 5. Different connectivity paradigms between PCs and
MCs.

Con/Div Type 1 Type 2 Type 3

15/80 97% 2% 1%

40/80 7% 87% 6%

70/80 2% 18% 80%

Type 1 if a PC exerts inhibition on another PC via one MC, Type 2 and Type 3 if it
is via two and three MC respectively.
doi:10.1371/journal.pone.0030752.t005
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regulating the conductance of the M-current (gM). Figure 5 shows

the attractor duration calculated for various conditions in the

presence and absence of MC inhibition. In the absence of MC

inhibition (blue curve), at lower values of trec and U, PCs discharge

more due to lesser depression, leading to an increase in attractor

duration in comparison with the control condition. At higher

values of trec and U, the attractor duration attains constancy. In

the same vein, lowering gM of PCs prolongs the attractor state

conforming to previous studies [12,41].

In the presence of MC inhibition (Fig. 5, red curve), the

attractor duration is reduced as shown in the control condition ‘C’.

However, the lower values of trec and U causing lesser depression

did not prolong the attractor state as it did when the MC

inhibition was turned off. Furthermore, the variation in the dwell

time at low trec and U, shown by the height of the error bar, in the

presence of MCs is low in comparison to when MCs inhibition was

absent. As expected, lowering gM of PCs in the presence of MCs

did not change the attractor duration significantly. Comparing the

red curve and green curve in Figure 5 demonstrates that the

network shows similar response for a change in tfacil. But large

changes in PC-MC or MC-PC connection density affected the

attractor duration (not shown here). Thus, in this network model

the MC inhibition is the dominating factor in regulating the

attractor dwell time and it brings more stability at lower values of

depression and spike-frequency adaptation. The latter aspect

becomes important in the light of heterogeneity in short-term

synaptic parameters.

Figure 4. Attractor duration and peak firing rate of PCs during different connection paradigms when connection strengths are
varied. See the text for a description of these connection paradigms. The value at the bottom of each subfigure is the varying quantity and on the
top is the quantity that is held constant. (A,C) PCs attractor duration showed a linear response to increase in PC -. PC (0.8, 1.2, 1.5 mV) and PC -. MC
(0.2, 0.4, 0.6 mV) epsp size. (A) The attractor duration decreased as PC -. PC strength increased. The response to ‘‘without MC’’ paradigm was similar
to ‘‘15/80’’, but ‘‘50/80’’ and ‘‘80/80’’ paradigms showed marked reduction in the attractor duration. (C) Increase in PC -. MC connection strength also
showed a similar trend. (B,D) It takes about 80 ms after PCs enter an attractor state before spike-frequency adaptation and synaptic depression take
effect causing a reduction in average firing rate. (B) If the MCs become active before the above factors take effect, the peak-firing rate will be affected
as in the case of ‘‘80/80’’ paradigm when the PC -. PC Epsp size is 1.5 mV. Apart from this single exception, the peak firing rate showed a linear
response. (D) The onset of MC firing was quicker when PC -. MC connection strength was doubled and tripled.
doi:10.1371/journal.pone.0030752.g004
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Initially, the network had 8 BCs in every hypercolumn. Then

we introduced 3 inhibitory neurons with different synaptic

dynamics, MCs, in every hypercolumn. Is the attractor dwell time

rigidity to various parameter changes, as shown in Fig. 5, really

due to the presence of MCs? In order to address this, we compared

the sensitivity of the attractor dwell time when 1) each

hypercolumn had 8 BCs ‘‘BC (8)’’ 2) each hypercolumn had 8

BCs and 3 MCs ‘‘BC (8) + MC (3)’’ 3) each hypercolumn had 11

BCs ‘‘BC (11)’’ (Fig. 6). Having BCs alone in the hypercolumn

(blue and green) makes the dwell time amenable to changes in

short-term synaptic and cell intrinsic parameters. It is only due to

the presence of MCs (red) that the dwell time is insensitive to these

changes.

Discussion

In this work, we commenced by modeling the PC-MC

microcircuit, as previously shown by Silberberg et al. [22], and

reproduced (a) frequency dependent disynaptic inhibition of PCs

(b) frequency dependent recruitment of MCs. The model

microcircuit contained 3 MCs mediating disynaptic inhibition

between 2 PCs. The PC – MC synapses were facilitating and

MC – PC synapses were depressing. We stimulated the

presynaptic PC with trains of AP at different frequencies and

demonstrated increase in amplitude and decrease in latency of

disynaptic response of the post-synaptic PC (Fig. 1). Real neurons

in the brain, excitatory and inhibitory alike, are constantly

bombarded with synaptic inputs causing the membrane potential

to fluctuate. In the absence of any jitter, the number of MCs

responding to firing of presynaptic PC at different frequencies

would remain constant. When a Poisson source was added to all

MCs, we observed trial-to-trial variability in the response of

MCs. Only one MC fired in most of the trials when the input

frequency was 40 Hz, about 2 MCs fired in 90 percent of trials

for 50 Hz and all MCs discharged reliably when the input

frequency was 70 Hz (Fig. 1). Our model MCs displayed

frequency dependent recruitment much similar to slice data

and we managed to fit disynaptic response quantitatively using 3

MCs [22,29].

Figure 5. Teasing out the parameters that cause attractor termination. Every point on the figure is an average of the attractor duration of all
stored patterns calculated for each trial. The error bar gives their variation in each trial. Interspersed between the three conditions ((A), (B), (C)) are the
control conditions (Ct) to show the sensitivity of attractor duration in the absence of MCs (blue) and presence of MCs with different facilitation time
constants (red and green). Throughout this analysis, we have used the ‘‘40/80’’ paradigm for the connections between PCs and MCs. The short-term
plasticity values at various synapses during ‘Ct’ are given in Table 3. The numbers just above the error bar are the values assumed by the varying
quantity during (A), (B) and (C); the values at (C) are the percentage difference from ‘Ct’. In the absence of MCs, the attractor duration is sensitive to
the lower values of depression between PC-PC synapses, brought about by lowering ‘U’ (A) or lowering trec (B), and changes in gM of PCs (C),
inasmuch as these factors results in increase in PCs firing. The height of the errorbar at the lower values of depression ((A), (B)) is also high implying a
large variation in the attractor duration of all stored patterns in every trial. When MCs inhibition is included (red), sensitivity to change in STD and
adaptation are minimal, there are no strong peaks apart from trial-to-trial variation of attractor duration. Besides, the presence of MCs inhibition also
prevents the scatter of data from its mean value in every trial (note the steady values of green and red errorbars). Decreasing the tfacil of PC-MC
synapses (green) shows a similar response.
doi:10.1371/journal.pone.0030752.g005
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We then integrated this PC-MC microcircuit in our cortical

attractor network model (Fig. 2) [11–13]. Amidst the array of

phenomena that our network model can exhibit, we focused on

the effect of MCs when the network is spontaneously hopping

between the attractor (memory) states in the absence of any

external input. Such attractor states have been observed in

neocortical slices with their active state duration ranging typically

from 50 ms to 5 s [16]. In our model, as described below, this

dwell time can be controlled by various parameters. Raster plots

and average firing rates were used to demonstrate the temporal

variation in the firing of BCs and MCs. We showed that BCs that

receive depressing synapses has a high firing rate at the beginning

of the attractor state which then tapers off. On the other hand,

MCs that receive facilitating synapses display a late onset of

activation and promote termination of the attractor states owing to

their high divergence onto the PCs (Fig. 3). In our model the

excitation-inhibition dynamic balance during the attractor state is

maintained by the PC – BC pathway until the discharge of MCs

tips this balance by elevating inhibition.

Our earlier computational study [12], in agreement with others

[9,53], had demonstrated spike-frequency adaptation and synaptic

depression contributing to termination of attractor states. A

computational model in the context of relaxation oscillations has

recently addressed whether cellular adaptation or synaptic

depression affects episode inititation/termination the most [27].

Our attractor dwell time also relies upon those factors in the

absence of MCs, but the presence of MCs makes the dwell time

impervious to those changes (Fig. 5). Our network model overtly

demonstrates that the late onset of MC discharge due to

facilitating synapses has a stronger contribution in setting the

attractor dwell time and rate of switching between the attractor

states compared to spike-frequency adaptation and synaptic

depression between PCs.

Introducing three synaptically different interneurons (MC) in

our hypercolumn increased the robustness of our network as

described above. In order to assay if it is the presence of MCs that

lead to increase in robustness, we replaced the three MCs with

three BCs in each hypercolumn and performed the sensitivity

analysis varying the same set of parameters (Fig. 6). Clearly, the

‘‘w/o MC’’ and ‘‘BC(11)’’ exhibited the same behaviour for

changes in synaptic and adaptation parameters. Thus the presence

of temporally different interneurons, early-onset BC and late-onset

MC, did make the network more robust.

We find gamma oscillations when the network is in the attractor

state. We haven’t shown the synthetic LFP spectrograms here but

this result could be extended from the analysis made in the

previous work [13]. These gamma oscillations in every attractor

state are caused by the PC- BC reciprocal circuitry in conformity

with the well-established idea that entrainment of PCs by BCs

causes gamma oscillations [54,55]. The dwell time of our attractor

states with MC inhibition is about 200 ms, which results in a (5 –

6) Hz state transition frequency. We propose that it is the

Figure 6. Each hypercolumn contains 8 BC and 3 MC. Here we investigated the sensitivity of the network during different conditions, similar to
the ones in Fig. 5, when each hypercolumn has a) 8 BC b) 8 BC + 3 MC and c) 8 BC + 3 BC in total 11 BC. Again, we have used the ‘‘40/80’’ paradigm for
the connections between PCs and MCs like in Fig. 5. The response of the network to 8 BC (blue) and 8BC + 3 MC (red) are taken from Fig. 5 (see the
blue and red curve there). Conflating the BCs and MCs population, 11 BC, in all hypercolumns doesn’t make the network insensitive to changes in
synaptic and cell parameters (green). We observe strong peaks during the lower values of short-term depression and adaptation.
doi:10.1371/journal.pone.0030752.g006
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combined action of BC and MC inhibition that causes this theta/

gamma oscillation. With BC inhibition alone attractor switching

remains but gets slower (Fig. 5, 6). When we replace all the BCs

with MCs, the attractor dynamics were largely disrupted (data not

shown). There was a period of no inhibition on all the PCs due to

the late onset of MC discharge during which all the patterns were

active and this also affected the theta/gamma phenomenon.

When quiescent neocortical slices are bathed in artificial

cerebrospinal fluid (ACSF), it induces spontaneous fluctuations

between two quasi-stable states knows as UP- and DOWN- states

[53]. The stability and repeatability in the patterns of firing during

UP states have suggested that they could correspond to attractor

states of the network [16]. By using new optogenetic techniques

[56–58] it should be possible to selectively depolarize or

hyperpolarize the different types of inhibitory cells that participate

in this activity and investigate the roles of each type. Our model

proposes that light-activation of MCs would terminate UP-states

while hyperpolarization would extend them. Selective light-

induced depression of BCs would likely lead to more vigorous

and less distinct oscillatory network activity.

As mentioned in the introduction, a model proposed by

Melamed et al. [18] attributes the interaction of excitatory

neurons with recurrent excitation and interneurons receiving

facilitating synapses as the basis for the generation of slow

oscillations in the neocortex. They showed the dependence of

network oscillations on the strength of PC-MC synapses

corroborating with our study (Fig. 4). However, our study showed

no change in the attractor rate switching for any change in the

facilitation time constant (Fig. 5), which is not in agreement with

their study. The main differences between the two models are the

type of neuron model and the division of labour between

interneurons. Our spiking model based on the Hodgkin-Huxley

formalism utilized two interneurons with temporally disparate

workings, whereas their rate-based model only represented the

MC interneuron population. Despite these differences, both

models pinpoint the decrease in excitation and elevation of

inhibition as the most plausible causes of attractor termination.

Some recent experimental studies had addressed the receptive

field properties of excitatory and inhibitory cells in layer 2/3 and 4

of mouse visual cortex [59,60]. The orientation tuning and

direction selectivity of pyramidal cells were highly tuned as

opposed to basket cells that were largely unselective to any

particular orientation concurring well with our modeling study.

Interestingly, MCs were also direction selective yet not as highly

tuned as PCs and provided delayed inhibition. In the small-scale

version of our network presented here, the extent of BC and MC

inhibition is the same since each hypercolumn has only 5

minicolumns. But in our full-scale model the number of

minicolumns receiving BC inhibition will be more than those

receiving MC inhibition since BC inhibition is more laterally

spread than MC inhibition in the real cortex. Thus in our full-scale

conceptual model, the orientation tuning of MCs would be

intermediate between PCs that are highly selective and BCs that

are largely unselective, concurring well with the experimental

study.

The short-term plasticity parameters used in this model are

taken from silent slice data [1,22], but the cortex is permanently

active during awake and sleep states. Thus the presence of ongoing

cortical activity might have an impact on short-term plasticity.

Some experiments show this to be the case. Synaptic potentials

showed a stronger depression in silent slices than in the active

cortical network in vivo and in vitro [61,62]. From our sensitivity

analysis, it is clear how attractor dwell times change in relation to

short-term depression parameters. Future in vivo experiments

describing synaptic pathways of excitatory and inhibitory neurons

need to take this difference into consideration.
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