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Abstract: Hypocrealean fungi have proved to be prolific bioactive metabolite producers; they have
caught the attention of mycologists throughout the world. However, only a few studies on the
insect and spider parasitic genus Akanthomyces have so far been carried out. In this study, we report
the isolation, structural elucidation and biological activities of four unprecedented glycosylated
α-pyrone derivatives, akanthopyrones A–D (1–4), from a culture of Akanthomyces novoguineensis
collected in Thailand. The chemical structures of the akanthopyrones were determined by extensive
1D- and 2D-NMR, and HRMS spectroscopic analysis. Their absolute configurations were determined.
Akanthopyrone A (1) exhibited weak antimicrobial activity against Bacillus subtilis DSM10 and
cytotoxicity against the HeLa cell line KB-3-1, while akanthopyrone D (4) showed weak activity
against Candida tenuis MUCL 29892.

Keywords: cordycipitaceae; hypocreales; invertebrate-associated fungi; α-pyrones; 4-O-methyl-
β-D-glucopyranose

1. Introduction

Fungi are well-known as prolific producers of biologically active secondary metabolites [1].
In particular, the pathogenic fungi associated with invertebrates have been proved to be an untapped
source of structurally diverse novel substances with various biological activities [2,3]. These fungi
can degrade the insect’s cuticle containing high densities of chitin by enzyme secretion and utilize
the host as their nutrient source [4]. Invertebrate pathogenic fungi can also produce various kinds of
secondary metabolites in order to overcome the host’s defense as well as to defeat other competing
microorganisms [2]. One of these interesting invertebrate-associated fungal genera is Akanthomyces,
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which was established for A. aculeatus Lebert, infecting moths found in Europe [5] and is presently
classified in the Cordycipitaceae. To date, more than 10 species of Akanthomyces associated with insects
or spiders have been described and accepted worldwide [5–9]. Remarkably, only a few studies on
Akanthomyces have been carried out so far in order to investigate and explore its novel secondary
metabolites that may be useful in agricultural and medicinal applications [10–13].

In the course of a study on invertebrate-pathogenic fungi collected from the tropical rainforest in
Thailand, a collection of spider-associated fungal specimens was encountered in order to generate their
HPLC profiles. Compounds possessing a 4-methylglucose moiety have rarely been found in natural
sources, except for some insect pathogenic fungi [14–20]. In the current study, we report the isolation,
structure elucidation, absolute configuration and biological activity of four new α-pyrone derivatives
bearing a 4-O-methyl-β-D-glucopyranose, for which we propose the trivial names, akanthopyrones
A–D (1–4; Figure 1), from the spider-associated fungus A. novoguineensis. The current study is the
second publication on the secondary metabolites of this species. In a concurrent paper, the distribution
pattern of secondary metabolites in the genus has been compared, five other new metabolites of the
fungus were reported, and akanthopyrones were produced as main compounds and proved to be
species-specific secondary metabolites [21].
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2. Results and Discussion

The main compound of this family, Compound 1, was obtained as a pale brown gum. HRMS of
1 afforded the molecular ion cluster at m/z 503.2851 [M + H]+ indicating the molecular formula of
C25H42O10 (calcd. 503.2851) with 5 degrees of unsaturation. The planar structure of 1 was assigned by
the analysis of its NMR data (Table 1) as follows. A series of COSY correlations from the oxygenated
methine 7-H to 8-H2, 8-H2 to 9-H2 and between the methylenes 15-H2, 16-H2, and 17-H3 together with
resonances of 10 protons to 5 methylene carbons in the HSQC spectrum of 1 allowed the construction
of undecane alkyl chain (C-7/C-17). Furthermore, HMBC correlations from the olefinic proton 5-H to
C-3/C-6, from the oxygenated methylene H2-18 to C-2/C-3/C-4 and from the methoxy group H3-19 to
C-4 established a 3-hydroxymethyl-4-methoxy-2H-pyranone substructure. The undecane chain was
connected to C-6 of the α-pyrone ring by HMBC correlations from 7-H to C-6/C-5 and from 5-H to C-7
(Figure 2). The remaining seven C-atoms were assigned to a methylated glucose unit. Starting from a
characteristic anomeric proton 1’-H at δH 4.29 and δC 100.6, a series of 1H-1H-COSY and 1H-13C-HMBC
correlations assigned the sugar unit as 4-O-methyl-glucopyranose. The position of the methoxy group
(δH 3.57) on the sugar moiety was evident from HMBC correlation to C-4′. Finally, the mutual 1H
and 13C correlation through the glycoside bond between the anomeric methine and the oxymethine
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group C-7 allowed the determination of the attachment of the glycosyl residue at 7-O (Figure 2).
Consequently, compound 1 was determined as the first member of a group of α-pyrone derivatives
bearing 4-O-methyl-β-D-glucopyranose, for which we propose the trivial name akanthopyrone A (1).

The relative configuration of akanthopyrone A (1) was provided by NOESY data and coupling
constant analysis. Starting from a typical 1′-H signal of a β-glycoside at δH 4.29 with J1′ ,2′ = 7.6 Hz
(a signal at δH ~5.2 with coupling constant of 3.6 Hz is expected in the case of α-glycoside) [22]. Its
β-glycoside connection was evident by a 1JC,H coupling of 160 Hz for the anomeric methine. A chain
of vicinal trans couplings of J2′ ,3′ = 9.2 Hz, J3′ ,4′ = 8.8 Hz and J4′ ,5′ = 9.5 Hz indicated that the methine
protons H-1′ to H-5′ all occupy axial positions. The chair conformation completely agrees with the
restrictions set by the NOEs between 1′-H and 3′-H/5′-H. The D-configuration of the sugar was
established by comparing the specific rotation of the aqueous layer of its acid hydrolysate ([α]25

D +45,
c 0.05, MeOH) with that of 4-O-methyl-D-glucopyranose ([α]25

D +80, c 1.3, MeOH) [23]. The organic
layer of the acid hydrolysis of 1 contains the aglycone which is identical to our previously reported
dalsymbiopyrone (5) [24]. Nevertheless, the opposite specific rotations (−33◦ for 1 and +150◦ for 5)
indicate the configuration of C-7 in 1 to be (S). In addition, the specific rotation of 1 was similar to that
for dothiodeopyrone (6) [25], a related pyrone with S-configuration at C-7 ([α]25

D−77, c 0.22, CHCl3).
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Figure 2. Selected COSY (bold bonds) and HMBC (blue arrows) correlations for akanthopyrone A (1).

The absolute configuration was further confirmed by applying the rule reported by Seo et al. [26].
Compared to dalsymbiopyrone (5), the signal of C-7 was shifted by 5.2 ppm downfield, the typical
glycosidation shift of an α-carbon. Additionally, the glycosidation induces distinct β-shifts in the
aglycone. Since the β-shifts mainly reflect the chirality of the aglycone, this provides a valuable tool for
assignment of the absolute configuration of the glycosylated carbons [26]. According to Seo et al. [26],
the absolute value of ∆δC = δglycoside − δaglycone for the β-carbon anti to the pyranose-ring oxygen is
always larger than that for the β-carbon syn to the oxygen. In the case of akanthopyrone A (1), a shift of
−2.5 ppm for C-6 and −1.5 ppm for C-8 together with a strong NOE between H-7 and H-1′ indicated
that C-6 is anti to the pyranose oxygen (Figure 3). Thus, the absolute configuration of akanthopyrone
A (1) must be 7S, 1′S, 2′R, 3′R, 4′S, 5′R, as shown in a model calculated for akanthopyrone (1) using
HyperChem (Ver. 8.0.10); pm3 calculation method showing the minimized energy 3D structure of 1 is
shown in Figure 4.

Molecules 2017, 22, 1202 3 of 10 

 

(Figure 2). Consequently, compound 1 was determined as the first member of a group of α-pyrone 
derivatives bearing 4-O-methyl-β-D-glucopyranose, for which we propose the trivial name 
akanthopyrone A (1). 

The relative configuration of akanthopyrone A (1) was provided by NOESY data and coupling 
constant analysis. Starting from a typical 1′-H signal of a β-glycoside at δH 4.29 with J1′,2′ = 7.6 Hz (a 
signal at δH ~ 5.2 with coupling constant of 3.6 Hz is expected in the case of α-glycoside) [22]. Its β-
glycoside connection was evident by a 1JC,H coupling of 160 Hz for the anomeric methine. A chain of 
vicinal trans couplings of J2′,3′ = 9.2 Hz, J3′,4′ = 8.8 Hz and J4′,5′ = 9.5 Hz indicated that the methine protons 
H-1′ to H-5′ all occupy axial positions. The chair conformation completely agrees with the restrictions 
set by the NOEs between 1′-H and 3′-H/5′-H. The D-configuration of the sugar was established by 
comparing the specific rotation of the aqueous layer of its acid hydrolysate (α25

D+45, c 0.05, MeOH) 
with that of 4-O-methyl-D-glucopyranose (α25

D+80, c 1.3, MeOH) [23]. The organic layer of the acid 
hydrolysis of 1 contains the aglycone which is identical to our previously reported dalsymbiopyrone 
(5) [24]. Nevertheless, the opposite specific rotations (−33° for 1 and +150° for 5) indicate the 
configuration of C-7 in 1 to be (S). In addition, the specific rotation of 1 was similar to that for 
dothiodeopyrone (6) [25], a related pyrone with S-configuration at C-7 (α25

D−77, c 0.22, CHCl3). 

 

Figure 2. Selected COSY (bold bonds) and HMBC (blue arrows) correlations for akanthopyrone A (1). 

The absolute configuration was further confirmed by applying the rule reported by Seo et al. [26]. 
Compared to dalsymbiopyrone (5), the signal of C-7 was shifted by 5.2 ppm downfield, the typical 
glycosidation shift of an α-carbon. Additionally, the glycosidation induces distinct β-shifts in the 
aglycone. Since the β-shifts mainly reflect the chirality of the aglycone, this provides a valuable tool for 
assignment of the absolute configuration of the glycosylated carbons [26]. According to Seo et al. [26], 
the absolute value of ∆δC = δglycoside − δaglycone for the β-carbon anti to the pyranose-ring oxygen is always 
larger than that for the β-carbon syn to the oxygen. In the case of akanthopyrone A (1), a shift of −2.5 
ppm for C-6 and −1.5 ppm for C-8 together with a strong NOE between H-7 and H-1′ indicated that 
C-6 is anti to the pyranose oxygen (Figure 3). Thus, the absolute configuration of akanthopyrone A 
(1) must be 7S, 1′S, 2′R, 3′R, 4′S, 5′R, as shown in a model calculated for akanthopyrone (1) using 
HyperChem (Ver. 8.0.10); pm3 calculation method showing the minimized energy 3D structure of 1 
is shown in Figure 4. 

 
Figure 3. Partial view showing the absolute configuration of 1. 

 

 

H

O

H

O

H
C-6

H

H

HO
O

H

OH

OH
7.6 Hz

8.8 Hz

coupling constant

NOE

71´

4´
C-8

9.2 Hz

Figure 3. Partial view showing the absolute configuration of 1.



Molecules 2017, 22, 1202 4 of 10Molecules 2017, 22, 1202 4 of 10 

 

 

Figure 4. Energy minimized conformation of akanthopyrone A (1) using HyperChem, pm3 
calculation method. 

Akanthopyrone B (2) was obtained as a brown gum. Its molecular formula was determined by 
HRMS as C25H42O11. Compared to 1, the molecular formula of 2 includes an additional oxygen atom. 
1H- and 13C-NMR data of akanthopyrone A (1) were largely preserved in 2, the new derivative was 
assigned as the alcohol derivative of akanthopyrone A (1) based on the comparison of its NMR data 
with those of 1. COSY and HMBC correlations furnished the additional hydroxy group at C-17 of the 
undecane chain of 2. NOESY data and coupling constant values for the sugar moiety in 2 were 
identical to those of 1 (Table 1), indicating the same relative configuration for 2. The co-occurrence 
suggests that 2 possess the same absolute configuration as 1 (7S, 1′S, 2′R, 3′R, 4′S, 5′R). 

Akanthopyrone C (3) was isolated as a brown gum as well. HRMS data revealed the molecular 
formula of C25H42O10 (calcd 503.2851) calculated from the ion peak at m/z 503.2852 [M + H]+. 
Compound 3 shared the same molecular formula with 1; nevertheless, its 1H- and 13C-NMR data 
(Table 1) were more consistent with those of 2. Comprehensive analysis of the NMR data revealed 
that 3 comprise the same hydroxyl undecane chain as 2. Nevertheless, the oxymethylene signals in 2 
(C-18) were replaced by signals for the singlet methyl group at δH 1.87 and δC 8.6. HMBC correlations 
from 18-H3 to C-2/C-3/C-4 indicated the attachment of a methyl group to the sp2 quaternary carbon 
C-3 of the pyrone ring instead of the oxygenated methylene in the case of 1 and 2. Therefore, 
akanthopyrone C (3) was determined as a new member of the akanthopyrones family, which shared 
the relative configuration with 1 and 2 based on NOESY data, coupling constant values. The co-
occurrence suggests that 3 possesses the same absolute configuration as 1 (7S, 1′S, 2′R, 3′R, 4′S, 5′R). 

Akanthopyrone D (4) was isolated as a brown gum; it possesses the molecular formula C23H38O10 
(calcd 457.2432) calculated from the ion peak at m/z 457.2439 [M + H − H2O]+. The molecular formula 
of 4 lacks a C2H4 fragment compared to 1 which suggested a shorter alkyl chain in 4. The NMR data 
of the sugar moiety and the α-pyrone substructure of 1 were largely preserved in 4. The NMR data 
of 4 revealed the presence of 9 carbon alkyl chain (nonane chain) assigned from the COSY and HMBC 
correlations. Thus, akanthopyrone D (4)—a new member of the akanthopyrones—shared the relative 
and the absolute configuration with the other akanthopyrones. 

Natural products bearing an α-pyrone moiety are widespread and occur in microbes, fungi 
plants and invertebrate animals [27]. The pyrone moiety is well-known to play an important role in 
various types of biological processes as a defense against other organisms and key biosynthetic 
intermediates as well as metabolites [27]. The α-pyrone is considered as a broad-spectrum and 
promising bioactive compound—even some of the simplest derivatives exhibit remarkable biological 
effects [28,29]. 

In the current study, akanthopyrones A–D (1–4) were screened for antimicrobial, cytotoxic, anti-
biofilm and nematicidal activities. Akanthopyrone A (1) exhibited weak antimicrobial activity against 
Bacillus subtilis DSM10 with an MIC value of 300 μg/mL and weak cytotoxicity against HeLa cell line 
KB-3-1 with an IC50 value of 25 μg/mL while akanthopyrone D (4) was active against only Candida 
tenuis MUCL 29892 at an MIC value of 150 μg/mL. However, none of them possessed anti-biofilm or 
nematicidal activities, even at the highest tested concentration of 33.33 and 100 μg/mL, respectively. 

Figure 4. Energy minimized conformation of akanthopyrone A (1) using HyperChem, pm3
calculation method.

Akanthopyrone B (2) was obtained as a brown gum. Its molecular formula was determined by
HRMS as C25H42O11. Compared to 1, the molecular formula of 2 includes an additional oxygen atom.
1H- and 13C-NMR data of akanthopyrone A (1) were largely preserved in 2, the new derivative was
assigned as the alcohol derivative of akanthopyrone A (1) based on the comparison of its NMR data
with those of 1. COSY and HMBC correlations furnished the additional hydroxy group at C-17 of
the undecane chain of 2. NOESY data and coupling constant values for the sugar moiety in 2 were
identical to those of 1 (Table 1), indicating the same relative configuration for 2. The co-occurrence
suggests that 2 possess the same absolute configuration as 1 (7S, 1′S, 2′R, 3′R, 4′S, 5′R).

Akanthopyrone C (3) was isolated as a brown gum as well. HRMS data revealed the molecular
formula of C25H42O10 (calcd 503.2851) calculated from the ion peak at m/z 503.2852 [M + H]+.
Compound 3 shared the same molecular formula with 1; nevertheless, its 1H- and 13C-NMR data
(Table 1) were more consistent with those of 2. Comprehensive analysis of the NMR data revealed that
3 comprise the same hydroxyl undecane chain as 2. Nevertheless, the oxymethylene signals in 2 (C-18)
were replaced by signals for the singlet methyl group at δH 1.87 and δC 8.6. HMBC correlations from
18-H3 to C-2/C-3/C-4 indicated the attachment of a methyl group to the sp2 quaternary carbon C-3 of
the pyrone ring instead of the oxygenated methylene in the case of 1 and 2. Therefore, akanthopyrone
C (3) was determined as a new member of the akanthopyrones family, which shared the relative
configuration with 1 and 2 based on NOESY data, coupling constant values. The co-occurrence
suggests that 3 possesses the same absolute configuration as 1 (7S, 1′S, 2′R, 3′R, 4′S, 5′R).

Akanthopyrone D (4) was isolated as a brown gum; it possesses the molecular formula C23H38O10

(calcd 457.2432) calculated from the ion peak at m/z 457.2439 [M + H − H2O]+. The molecular formula
of 4 lacks a C2H4 fragment compared to 1 which suggested a shorter alkyl chain in 4. The NMR data
of the sugar moiety and the α-pyrone substructure of 1 were largely preserved in 4. The NMR data of
4 revealed the presence of 9 carbon alkyl chain (nonane chain) assigned from the COSY and HMBC
correlations. Thus, akanthopyrone D (4)—a new member of the akanthopyrones—shared the relative
and the absolute configuration with the other akanthopyrones.

Natural products bearing an α-pyrone moiety are widespread and occur in microbes, fungi plants
and invertebrate animals [27]. The pyrone moiety is well-known to play an important role in various
types of biological processes as a defense against other organisms and key biosynthetic intermediates
as well as metabolites [27]. The α-pyrone is considered as a broad-spectrum and promising bioactive
compound—even some of the simplest derivatives exhibit remarkable biological effects [28,29].

In the current study, akanthopyrones A–D (1–4) were screened for antimicrobial, cytotoxic,
anti-biofilm and nematicidal activities. Akanthopyrone A (1) exhibited weak antimicrobial activity
against Bacillus subtilis DSM10 with an MIC value of 300 µg/mL and weak cytotoxicity against
HeLa cell line KB-3-1 with an IC50 value of 25 µg/mL while akanthopyrone D (4) was active
against only Candida tenuis MUCL 29892 at an MIC value of 150 µg/mL. However, none of them
possessed anti-biofilm or nematicidal activities, even at the highest tested concentration of 33.33
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and 100 µg/mL, respectively. These results are consistent with a report of Fairlamb et al. [28]
in which the antimicrobial and cytotoxic activities of diverse α-pyrone analogues were evaluated.
Most of them showed an inhibitory effect against B. subtilis while more than 50% of the tested
compounds displayed anti-C. albicans effect. Furthermore, they also pointed out that the activity
of α-pyrone derivatives in the alkyl class noticeably changed according to the length of the alkyl
chain. The longer the alkyl chain, the higher the potency of antimicrobial activity and vice versa
on the cytotoxic effect. Weak activity against B. subtilis ATCC 6633 at 100 µg/mL was previously
reported for the most related pyrone to akanthopyrone A (1), dalsymbiopyrone (5), and no activity
at all concentrations up to that concentration against Escherichia coli K12 and Pichia anomala was
observed for 5. It inhibited Colletotrichum gloeosporioides at 25 µg/mL [24]. Miaolienone, a closely
related compound to akanthopyrone A (which however, lacks the sugar moiety), was isolated from
the bacterium, Actinomadura miaoliensis and has been reported to be an effective TNF-α inhibitor [30].

Recently, A. novoguineensis was also found to be a producer of a well-known immunosuppressant
drug, mycophenolic acid [10]. This indicates that this species could be a promising source of further
novel biologically active secondary metabolites.

3. Materials and Methods

3.1. General

1D and 2D NMR spectra were recorded on a Bruker (Bremen, Germany) Avance III 700
spectrometer with a 5 mm TXI cryoprobe (1H 700 MHz, 13C 175 MHz) and a Bruker Avance III
500 (1H 500 MHz, 13C 125 MHz) spectrometer; optical rotations were measured on a Perkin-Elmer
241 polarimeter. All HPLC-MS analyses were performed on Agilent 1260 Infinity Systems (Santa Clara,
CA, USA) with a diode array detector and C18 Acquity UPLC BEH column (2.1 × 50 mm, 1.7 µm)
from Waters with the gradient described by Noumeur et al. [31] combined with ion trap MS (amazon
speed, Bruker, Bremen, Germany), and HR-ESIMS spectra on a time-of-flight (TOF) MS (Maxis, Bruker,
Germany). Chemicals and solvents were obtained from AppliChem GmbH (Darmstadt, Germany),
Avantor Performance Materials (Deventor, Netherlands), Carl Roth GmbH & Co. KG (Karlsruhe,
Germany), and Merck KGaA (Darmstadt, Germany) in analytical and HPLC grade.

3.2. Fungal Material

A spider-associated fungal specimen of A. novoguineensis was collected from Ton-Nga-Chang
Wildlife Sanctuary, Thailand and the culture was deposited at the Department of Microbiology,
Faculty of Science, Prince of Songkla University and BIOTEC Culture Collection (BCC), Pathum
Thani, Thailand as BCC47894. Its 5.8S/ITS nrDNA was sequenced following the protocol described
by Luangsa-ard et al. [32] and submitted to GenBank (accession number JX192691). The species
description is provided in the Supplementary Material.

3.3. Fermentation and Extraction

Twenty mycelial plugs (0.5 × 0.5 cm2) were cut from actively growing colonies maintained on
potato dextrose agar (PDA) and inoculated into a 30 × 500 mL Erlenmeyer flask containing 150 mL
of potato dextrose broth (PDB) supplemented with 0.1% of yeast extract. After incubation at room
temperature (RT) under static condition for ten weeks, the culture filtrate was recovered by vacuum
filtration and subsequently extracted according to the procedure described by Phainuphong et al. [33].
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Table 1. 1H- and 13C-NMR data for akanthopyrones A–D (1–4, Methanol-d4).

Pos
1 a 2 3 4

δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type

2 - 165.1, C - 167.1, C - 167.9, C - 167.8, C
3 - 104.4, C - 105.1, C - 102.1, C - 105.1, C
4 - 167.4, C - 170.8, C - 169.0, C - 170.8, C
5 6.76, s 94.9, CH 7.06, s 96.6, CH 7.00, s 96.8, CH 7.06, s 96.6, CH
6 - 165.3, C - 167.8, C - 164.9, C - 167.0, C
7 4.51, b dd (7.3, 4.7) 76.4, CH 4.67, dd (7.3, 4.6) 77.1, CH 4.65, dd (7.5, 4.9) 77.0, CH 4.66, dd (7.3, 4.7) 77.1, CH
8 1.74, m; 1.84, m 34.1, CH2 1.76, m; 1.86, m 35.4, CH2 1.76, m; 1.85, m 35.4, CH2 1.76, m; 1.86, m 35.4, CH2
9 1.38, m 24.9, CH2 1.44, m 25.9, CH2 1.43, m 25.9, CH2 1.43, m 25.9, CH2
10 1.29, b m 29.2, CH2 1.35, b m 30.6, CH2 1.35, b m 30.5, CH2 1.35, b m 30.5, CH2
11 1.27, b m 29.3,c CH2 1.32, b m 30.7, c CH2 1.32, b m 30.6,c CH2 1.32, b m 30.6, c CH2
12 1.25, b m 29.4,c CH2 1.30, b m 30.9, c CH2 1.30, b m 30.7,c CH2 1.30, b m 30.7, c CH2
13 1.25, b m 29.5,c CH2 1.30, b m 30.8, c CH2 1.30, b m 30.9,c CH2 1.30, b m 33.2, CH2
14 1.25, b m 29.6,c CH2 1.30, b m 30.7, c CH2 1.30, b m 30.8,c CH2 1.30, b m 23.9, CH2
15 1.25, b m 31.8, CH2 1.34, b m 27.1, CH2 1.35, b m 27.1, CH2 0.90, t (7.1) 14.6, CH3
16 1.29, b m 22.6, CH2 1.52, m 33.8, CH2 1.53, m 33.8, CH2 4.44, s 54.2, CH2
17 0.87, t (6.9) 14.1, CH3 3.54, t (6.7) 63.2, CH2 3.54, t (6.8) 63.2, CH2 3.99, s 58.0, CH3
18 4.51, b s 54.3, CH2 4.44, s 54.2, CH2 1.87, s 8.6, CH3 - -
19 3.93, s 56.9, CH3 3.99, s 58.1, CH3 3.96, s 57.7, CH3 - -

β-4-O-methyl-D-glucopyranose

1′ 4.29, d (7.6) 100.6, CH 4.26, d (7.9) 102.7, CH 4.25, d (7.9) 102.6, CH 4.25, d (7.9) 102.7, CH

2′ 3.43, dd (7.6, 9.2) 73.6, CH 3.29, dd (7.9, 9.2) 75.3, CH 3.28, dd (7.9, 9.2) 75.4, CH 3.28, dd (7.9, 9.2) 75.4, CH

3′ 3.54, dd (9.2, 8.8) 76.6, CH 3.43, dd (9.2, 8.8) 78.3, CH 3.43, dd (9.1, 9.1) 78.3, CH 3.43, dd (9.1, 9.1) 78.4, CH

4′ 3.21, dd (8.8, 9.5) 79.1, CH 3.09, dd (9.2, 9.5) 81.1, CH 3.09, dd (9.1, 9.5) 81.1, CH 3.09, dd (9.1, 9.5) 81.1, CH

5′ 3.26, m 75.4, CH 3.23, m 77.4, CH 3.22, m 77.4, CH 3.22, m 77.4, CH

6′ 3.74, dd (12.2, 4.3)
3.89, dd (12.2, 2.4) 61.8, CH2

3.68, dd (11.8, 5.3)
3.84, dd (11.8, 2.0) 62.5, CH2

3.68, dd (11.8, 5.4)
3.83, dd (11.8, 2.0) 62.5, CH2

3.68, dd (11.8, 5.4)
3.83, dd (11.8, 2.0) 62.5, CH2

OMe 3.57, s 60.8, CH3 3.56, s 60.9, CH3 3.55, s 60.9, CH3 3.55, s 61.0, CH3

1 and 2 were measured at 500 MHz (13C 125 MHz); 3 and 4 were measured at 700 MHz spectrometer (13C 175 MHz); a in CDCl3, b overlapping signals, c assignment may be interchanged.
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3.4. Isolation of Compounds 1–4

The fermented broth of the fungus BCC47894 was extracted with 4 L of ethyl acetate to give the oily
residue which was subsequently dissolved with methanol and fractionated using an Agilent 1100 series
HPLC system (Agilent Technologies, Wilmington, DE, USA). The reverse-phase C18 column (Kromasil
250 × 20 mm, 7 µm; MZ Analysentechnik, Mainz, Germany) was used as the stationary phase and the
mobile phase was composed of deionized water (Milli-Q, Millipore, Schwalbach, Germany, solvent A)
and acetonitrile (ACN, HPLC-grade, solvent B). The separation was carried out according to following
gradient: linear from 20% to 80% solvent B in 30 min; afterwards, linear gradient to 100% solvent B in
2 min; thereafter, isocratic conditions at 100% for 5 min, with a flow rate of 20 mL/min. UV detection
was carried out at 210, 280 and 354 nm and fractions were collected and combined according to the
observed peaks. Compound 1 (18.3 mg) was obtained at a retention time tR = 20–21 min, Compound
2 (4.5 mg) at tR = 10–11 min, Compound 3 (2 mg) at tR = 13–14 min and Compound 4 (2 mg) at
tR = 15–16 min.

Akanthopyrone A (1): brown gum; [α]25
D−52◦ (c 1.7, MeOH); 1H-NMR and 13C-NMR see Table 1;

LCMS m/z 485.20 [M + H − H2O]+ (73), 309 [M + H − (4-methylglucose)]+, 969 [2M + Na]+ (9),
547 [M − H + HCOOH]− (75), 1003 [2M − H]− (100); HRESIMS m/z 503.2851 [M + H]+ (calcd. for
C25H43O10

+, 503.2851).

Akanthopyrone B (2): brown gum; [α]25
D−54◦ (c 0.3, MeOH); 1H-NMR and 13C NMR see Table 1;

LCMS m/z 501 [M + H − H2O]+ (100), 325 [M + H − (4-methylglucose)]+, 1001 [2M + H − 2H2O]+

(35), 517 [M − H]− (10), 563 [M − H + HCOOH]− (100); HRESIMS m/z 519.2801 [M + H]+ (calcd. for
C25H43O11

+, 519.2800).

Akanthopyrone C (3): brown gum; [α]25
D−17◦ (c 0.1, MeOH); 1H-NMR and 13C-NMR see Table 1; LCMS

m/z 503 [M + H]+ (100), 525 [M + Na]+ (13), 327 [M + H − (4-methylglucose)]+, 501 [M − H]− (12), 547
[M − H + HCOOH]− (100); HRESIMS m/z 503.2852 [M + H]+ (calcd. for C25H43O10

+, 519.2851).

Akanthopyrone D (4): brown gum; [α]25
D−24◦ (c 0.16, MeOH); 1H-NMR and 13C-NMR see Table 1;

LCMS m/z 457 [M + H − H2O]+ (100), 281 [M + H − (4-methylglucose)]+, 497 [M + Na]+ (12),
473 [M − H]− (4), 519 [M − H + HCOOH]− (100); HRESIMS m/z 457.2434 [M + H − H2O]+ (calcd. for
C23H37O9

+, 457.2432).

3.5. Hydrolysis of Akanthopyrone A (1)

Compound 1 (1.5 mg) was hydrolyzed with 10% aqueous HCl (1 mL) at 90 ◦C for 12 h. The reaction
mixture was then diluted with H2O (2 mL) and extracted with EtOAc (2 × 3 mL). The aqueous layer
was concentrated under vacuum to yield 4-O-methyl-D-glycopyranose ([α]25

D +45, c 0.05, MeOH).
The organic layer was evaporated to dryness under reduced pressure to obtain the aglycone (0.8 mg)
([α]25

D−33, c 0.08, MeOH).

3.6. Biological Activities

3.6.1. Antimicrobial Activity Assay

The minimum inhibitory concentration (MIC) of Compound 1–4 was determined using the broth
microdilution method according to Richter et al. [34] against B. subtilis DSM10, E. coli DSM498, C. tenuis
MUCL29892 and Mucor plumbeus MUCL49355. Stock suspension of each bacterium and yeast (100 µL)
was transferred to 100 mL of EBS medium and yeast-malt-glucose (YMG) medium, respectively.
Suspensions of B. subtilis and C. tenuis were incubated on a rotary shaker at 30 ◦C for 18–24 h while
E. coli was grown at 37 ◦C for 24 h. After incubation, the suspension was adjusted to a concentration of
6.7 × 105 cells/mL using a hemacytometer. The spore suspension of M. plumbeus was prepared at a
concentration of 6.7× 105 conidia/mL using YMG medium. The determination of MIC was performed
in a 96-well microtiter plate. The compounds dissolved in methanol at a concentration of 4.5 mg/mL
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(20 µL) were transferred to the first row of the plate. Standard antibiotics including ciprofloxacin
(bacteria) and nystatin (yeast and fungus), and methanol were used as positive and negative controls,
respectively. Inoculum suspension (280 µL) was added to the first row containing compounds and
150 µL was added to the rest. The solutions were then serially 2-fold diluted to 8 concentrations
ranging from 2.34 to 300 µg/mL. Plates were incubated at 30 ◦C on a microplate-vibrating shaker for
24 h for bacteria and 48 h for yeast and filamentous fungus. After incubation, the lowest concentration
of each compound at which no visible growth was observed and recorded as the MIC.

3.6.2. Cytotoxicity Activity Assay

The isolated compounds were tested for cytotoxicity using the MTT (3-(4,5-dimethylthiayol-2-yl)-
2,5-diphenyltetrayolium bromide) method in 96-well microtiter plates following the procedure
previously described by Richter et al. [34] against the cervix carcinoma cell line KB-3-1 (a HeLa
derivative) and the established mouse fibroblast cell line L929.

3.6.3. Anti-biofilm Activity Assay

The ability of akanthopyrones to inhibit biofilm formation of Staphylococcus aureus DSM1104
(ATCC25923) and Pseudomonas aeruginosa PA14 [35] was evaluated using the microtiter dish biofilm
formation assay described by Helaly et al. [21].

3.6.4. Nematicidal Activity Assay

The determination of nematicidal activity of new compounds against Caenorhabditis elegans was
performed in a 24-microwell plate using a microwell plate assay slightly modified from the method
reported by Stadler et al. [36]. The free-living nematode, C. elegans, was monoxenically cultured on
nematodes agar (soy peptone 2 g, NaCl 1 g, Agar 20 g, 1000 mL of distilled water; after autoclaving,
the following ingredients were added: cholesterol (1 mg/mL EtOH) 0.5 mL, 1M CaCl2 1 mL, 1M
MgSO4 1 mL, 40 mM potassium phosphate buffer 12.5 mL, pH 6.8) with living E. coli DSM498, at 20 ◦C
in the dark for a week. After incubation, adult nematodes were suspended in sterile distilled water
and the nematode suspension was then adjusted to give a concentration of 500 nematodes/mL. Four
concentrations of 100, 50, 20 and 10 µg/mL of each compound were tested (total volume 1 mL/well).
Standard nematicide, ivermectin and 1% MeOH were used as the positive inhibitory control and
solvent control, respectively. The plate was incubated at 20 ◦C in the dark and nematicidal activity
was recorded after 18 h of incubation.

4. Conclusions

Akanthopyrones A–D (1–4)—four new α-pyrone derivatives, bearing a 4-O-methyl-β-D-
glucopyranose—were obtained from a spider-associated fungus A. novoguineensis. The major
compound akanthopyrone A (1) exhibited weak antimicrobial activity against B. subtilis DSM10
and cytotoxicity against HeLa cell line KB-3-1, while akanthopyrone D (4) showed weak activity
against C. tenuis MUCL 29892. This finding demonstrates that Akanthomyces constitutes a rich, hitherto
untapped source for novel metabolites.

Supplementary Materials: The species description of the producers, UV, HRESIMS and 1H, 13C, COSY, HSQC,
HMBC NMR spectra of Compounds 1–4 are available as Supplementary Material.
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