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Abstract: Gut microbiota and its metabolites such as short chain fatty acids (SCFA),
lipopolysaccharides (LPS), and trimethylamine-N-oxide (TMAO) impact cardiovascular health.
In this review, we discuss how gut microbiota and gut metabolites can affect hypertension and
atherosclerosis. Hypertensive patients were shown to have lower alpha diversity, lower abundance
of SCFA-producing microbiota, and higher abundance of gram-negative bacteria, which are a source
of LPS. Animal studies point towards a direct role for SCFAs in blood pressure regulation and
show that LPS has pro-inflammatory effects. Translocation of LPS into the systemic circulation is a
consequence of increased gut permeability. Atherosclerosis, a multifactorial disease, is influenced by
the gut microbiota through multiple pathways. Many studies have focused on the pro-atherogenic
role of TMAO, however, it is not clear if this is a causal factor. In addition, gut microbiota play
a key role in bile acid metabolism and some interventions targeting bile acid receptors tend to
decrease atherosclerosis. Concluding, gut microbiota affect hypertension and atherosclerosis through
many pathways, providing a wide range of potential therapeutic targets. Challenges ahead include
translation of findings and mechanisms to humans and development of therapeutic interventions
that target cardiovascular risk by modulation of gut microbes and metabolites.
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1. Introduction

Cardiovascular diseases, including atherosclerosis and hypertension, are public health care
priorities of the World Health Organization (WHO) [1]. Cardiovascular disease is the leading cause of
mortality, representing a third of global deaths, and disproportionally affects low- and middle-income
countries [2]. Despite current preventive and therapeutic strategies, mortality due to cardiovascular
disease is expected to further increase over the next decade [2]. Accumulating evidence describes
the role of gut microbiota in cardiovascular disease, potentially providing novel therapeutic targets.
The gut microbiome consists of more than 100 trillion micro-organisms, predominantly bacteria and
viruses [3]. Due to the development of 16S rRNA gene amplicon sequencing and shotgun metagenomic
sequencing, the understanding of the role of the gut microbiota in health and disease has increased
tremendously over the past decade [4]. Gut microbiota composition is largely determined by exposure
to dietary factors, but conversely, gut microbiota are needed for digestion of macronutrients and
production of a wide range of metabolites [5]. Alterations in gut microbiota composition have been
observed in a variety of health conditions, including type 2 diabetes, inflammatory bowel disease,
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asthma, psychiatric disorders, but also in cardiovascular disease [6–10]. In addition, several gut
metabolites have been shown to interact with metabolism and the nervous system, affecting insulin
sensitivity, energy balance, and appetite regulation [11–13].

Low-grade chronic inflammation contributes to the development of both atherosclerosis and
hypertension [14–17]. Gut microbiota can induce systemic inflammation, as has been shown in patients
with type 2 diabetes [18]. In addition, gut microbiota could affect cardiovascular risk indirectly, through
metabolites such as short chain fatty acids (SCFA) and trimethylamine N-oxide (TMAO). The relation
between gut microbiota and its key metabolites in hypertension and atherosclerosis could improve
our understanding of differences in susceptibility for cardiovascular disease and provide potential
therapeutic targets. In this narrative review, we will focus on the role of gut microbiota in hypertension
and atherosclerosis. After summarizing the current evidence, we will discuss future perspectives in
this field.

2. Gut Microbiota in Hypertension

2.1. Gut Microbiota Composition in Hypertension

Hypertension is the most important modifiable risk factor for cardiovascular disease [19]. Although
hypertension is thought to be driven by a combination of genetic and lifestyle factors, genome-wide
association studies showed that only a small (<5%) proportion of the incidence of hypertension can be
explained by genetics [20]. In contrast, lifestyle tends to have a much larger influence, with separate
lifestyle factors such as body mass index (BMI) and salt intake affecting blood pressure levels with
5 mmHg [21]. Several dietary interventions, including diets such as the Mediterranean diet and the
DASH (Dietary Approaches to Stop Hypertension) diet have illustrated that higher intake of fruits,
vegetables, and fibers are associated with lower blood pressure [22,23]. The Mediterranean diet has
been shown to induce a rise in SCFAs, key metabolites produced by the gut microbiome [24].

Several animal studies have reported compositional differences in the gut microbiota of animal
models for hypertension, including Dahl-sensitive rats, spontaneous hypertensive rats, angiotensin-II
induced hypertensive rats, and deoxycorticosterone acetate (DOCA)-salt mice, when compared to
wild-type animals [25–28]. These differences include a lower abundance of SCFA-producing bacteria,
higher abundance of lactate-producing bacteria [27], lower abundance of Bacteroidetes, and higher
abundance of Proteobacteria and Cyanobacteria [28] compared to control animals. Intervention studies
in animals showed that blood pressure levels in these animal models for hypertension can be modified
by fecal microbiota transplants and antibiotic treatment [27].

In humans, several cross-sectional studies have assessed associations between gut microbiota
composition and blood pressure or hypertension (Table 1) [27,29–37]. Despite differences in sequencing
methods and downstream analyses, some results regarding microbial alpha diversity and microbiota
composition are consistent across studies. Higher blood pressure was associated with lower gut
microbiota alpha diversity in almost all studies [27,30,32,34–37]. Low alpha diversity is considered
an adverse but nonspecific characteristic, since a decrease in diversity has also been observed in
obesity, hyperinsulinemia, and dyslipidemia. In addition, higher abundances of Gram-negative
microbiota including Klebsiella, Parabacteroides, Desulfovibrio, and Prevotella were associated with higher
blood pressure. Gram-negative bacteria are a source of lipopolysaccharides (LPS), also known as
endotoxins, that are pro-inflammatory. In contrast, SCFA-producing bacteria, including Ruminococcaceae,
Roseburia, and Faecalibacterium spp. were less abundant in hypertensive compared to normotensive
patients [29,31,34,35,37]. Of note, the majority of these studies did not adjust for important confounders
such as age, BMI, or dietary factors in their analyses.
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Table 1. Cross-sectional studies on gut microbiota composition in hypertension in humans.

Author Population Hypertension
Definition

Sequencing
Method

Higher Abundance
in HT or Higher BP

Lower Abundance in
HT or Higher BP

Alpha Diversity in
HT or Higher BP

Covariates in
Analyses Ref.

Dan et al. 2019 67 HT, 62 controls SBP ≥ 140 or
DBP ≥ 90 mmHg 16S

Acetobacteroides,
Alistipes, Bacteroides,

Christensenella,
Clostridium sensu

stricto, Desulfovibrio,
Parabacteroides *

Acetobacteroides,
Clostridium, Coprobacter,

Enterococcus,
Enterorhabdus,
Lachnospiracea,

Lactobacillus,
Paraprevotella,

Prevotella, Romboutsia,
Ruminococcus,

Veillonella *

No difference Unadjusted [29]

De la
Cuesta-Zuluaga

et al. 2019
441 subjects No hypertension

groups 16S NR NR Lower Unadjusted [30]

Huart et al. 2019 38 HT, 7 pre-HT,
9 controls

Antihypertensive
medication use,
mean 24 h BP
SBP ≥ 130 or

DBP ≥ 80 mmHg

16S Clostridum
sensu stricto

Ruminococcaceae,
Clostridiales NR Unadjusted [31]

Jackson et al. 2019 756 HT,
1790 controls

Self-report or
antihypertensive
medication use

16S Lactobacillaceae,
Streptococcaceae

Dehalobacteriaceae,
Christensenellaceae,
Oxalobacteraceae,

Mollicutes, Rikenellaceae,
Clostridia,

Anaeroplasmataceae,
Peptococcaceae

Lower Age [32]

Kim et al. 2018 22 HT, 18 controls SBP ≥ 140 mmHg Shotgun

Parabacteroides
johnsonii,

Eubacterium siraeum,
Alistipes finegoldii

Bacteroides
thetaiotaomicron NR Unadjusted [33]

Li et al. 2017 99 HT, 56 pre-HT,
41 controls

SBP ≥ 140 or
DBP ≥ 90 mmHg Shotgun Prevotella, Klebsiella,

Desulfovibrio

Faecalibacterium,
Oscillibacter, Roseburia,

Bifidobacterium,
Coprococcus,
Butyrivibrio

Lower Unadjusted [34]
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Table 1. Cont.

Author Population Hypertension
Definition

Sequencing
Method

Higher Abundance
in HT or Higher BP

Lower Abundance in
HT or Higher BP

Alpha Diversity in
HT or Higher BP

Covariates in
Analyses

Sun et al. 2019 529 subjects
(183 HT)

Antihypertensive
medication use or
elevated office BP:

SBP ≥ 140 or
DBP ≥ 90 mmHg

16S

Anaerovorax,
Butyricicoccus,
Cellulosibacter,
Clostridium IV,

Methanobrevibacter,
Mogibacterium,

Oscillibacter,
Oxalobacter,
Papillobacter,
Sporobacter,

Vampirovibrio

Anaeroglobus,
Atopobium,

Lactobacillus,
Megaspheara,

Pseudocitrobacter,
Rothia,

Lower

Age, ethnicity, sex,
study center,

sequencing run,
education, smoking,

physical activity,
diet quality score

[35]

Verhaar et al. 2020 4672 subjects No hypertension
groups Streptococcus

Roseburia, Clostridium
sensu stricto, Roseburia
hominis, Romboutsia,

Ruminococcaceae,
Enterorhabdus

Lower

Age, sex, BMI,
smoking status,

antihypertensive
medication,

diabetes

[36]

Yan et al. 2017 60 HT, 60 controls SBP ≥ 140 or
DBP ≥ 90 mmHg Shotgun

Klebsiella,
Streptococcus,

Parabacteroides

Roseburia,
Faecalibacterium

prausnitzii
Lower

Not adjusted,
but age, sex−,

and BMI-matched
[37]

Yang et al. 2015 7 HT, 10 controls SBP ≥ 125 mmHg 16S NR NR Lower Unadjusted [27]

BP = blood pressure, DBP = diastolic blood pressure, SBP = systolic blood pressure, HT = hypertensive, NR = not reported, * = selection of the microbiota listed by this paper.
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Dietary salt intake affects both the incidence of hypertension as well as gut microbiota composition.
Higher salt intake has been associated with a shift in microbiota composition in several animal
models, including an increase in Lachnospiraceae, Ruminococcus, and Parasutterella spp. and decrease in
Lactobacillus and Oscillibacter [38–40]. Lactobacillus abundance has been associated with salt sensitivity
in hypertension, since supplementation of Lactobacillus spp. in a mice model has been shown to
attenuate salt-sensitive hypertension, presumably by modulation of Th17-cells [40]. The blood pressure
lowering effect of Lactobacillus was confirmed by several other animal models [41–44]. In humans,
however, a decrease of Lactobacillus spp. was only reported by one of the cross-sectional studies in
hypertensive subjects in Table 1 [29]. A meta-analysis including nine randomized-controlled trials,
predominantly with healthy controls, found a blood pressure lowering effect of probiotics with several
Lactobacillus spp. [43]. The blood pressure lowering effect tended to be stronger in the only included
placebo-controlled intervention study with hypertensive subjects (17/13), although this study did not
assess changes in gut microbiota composition [45].

In summary, animal studies suggest a causal link between gut microbiota composition and blood
pressure regulation. Cross-sectional studies in human subjects show specific differences in microbiota
composition between hypertensive subjects and controls, including lower SCFA-producing bacteria
and higher Gram-negative species. These differences point to a role for SCFAs and LPS in hypertension,
although the direction of this association is unclear.

2.2. Short Chain Fatty Acids

SCFAs, including acetate, propionate, and butyrate, are produced by specific gut microbes
by fermentation of otherwise indigestible dietary fibers [46]. Fecal and plasma levels of SCFA are
associated with the abundance of SCFA-producing microbiota in the gut and the intake of dietary
fibers [36,47,48]. Butyrate-producing microbiota include bacteria from the families Ruminococcaceae
and Lachnospiraceae, but also bacteria such as Anaerobutyricum hallii and Anaerostipes spp. Acetate
and propionate are mainly produced by Bifidobacterium spp. and mucin-degrading bacteria such as
Akkermansia muciniphila [49]. Most of the produced acetate and propionate is absorbed by the gut,
while butyrate is used as a primary energy source by colonocytes and only absorbed in very small
proportions [50,51]. As a result, plasma concentrations of acetate and propionate are much higher than
circulating butyrate levels.

Human studies on the role of SCFAs in blood pressure regulation are rather scarce. Intriguingly,
fecal SCFA concentrations in humans have been associated with higher blood pressure [30],
while SCFA-producing microbiota are often associated with lower blood pressure [31,35,37]. Perhaps,
increased SCFA availability in the intestines results in upregulation of absorption mechanisms,
which could lead to relatively lower fecal concentrations and higher plasma availability, as was
supported by a murine model [52]. There are no results from human intervention studies with SCFAs
to target blood pressure. However, butyrate tended to lower blood pressure in intervention trials in
subjects with metabolic syndrome [53,54]. Moreover, the Mediterranean diet, which induces a rise in
SCFA levels, has been reported to have a blood pressure lowering effect [24].

In animal models, SCFAs were associated with both higher and lower blood pressure, which might
be explained by the differential effects of SCFA receptors [55]. Several SCFA receptors have been
identified, including fatty acid receptor (FFAR)-2 and FFAR3 (formerly known as GPR43 and GPR41) [56].
Animal studies have shown that SCFAs can have differential effects on blood pressure depending on
the receptors involved. FFAR2 is expressed in a variety of tissues, including renal arteries, and causes
vasodilation in response to SCFAs. In contrast, a blood pressure elevating effect is mediated by Olfr78
in mice through renin release from granules in the renal juxtaglomerular apparatus [57,58]. The potency
of SCFAs is much lower for Olfr78 and the human analogue, OR51E2, than for FFAR2, and therefore,
it was suggested that Olfr78 serves as a negative feedback loop for the blood pressure lowering effects
of FFAR2 [59].
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In addition, SCFAs, in particular butyrate, have anti-inflammatory effects that are presumed to be
mediated by inhibition of histone deacetylase (HDAC) [60,61]. Butyrate suppresses the production
of pro-inflammatory cytokines, such as tumor-necrosis factor-α (TNF-α), interleukin-12 (IL-12),
and interferon-γ (IF-γ), and upregulates the production of anti-inflammatory interleukin-10 (IL-10) by
monocytes in vitro [62]. In addition, SCFAs have anti-inflammatory effects on epithelial cells that are
partly mediated through HDAC [63]. In spontaneously hypertensive rats, HDAC activation has been
associated with hypertension [64]. Conversely, butyrate administration to mice resulted in decreased
blood pressure levels and reduced renal inflammation by HDAC inhibition [65].

SCFAs have also been suggested to be implicated in gut–brain communication. Vagal afferents
express receptors that can sense SCFAs, which provides another pathway for the blood pressure
modulating effects of SCFAs [66]. Animal studies showed that higher colonic levels of acetate could
result in blood pressure lowering through parasympathetic activation. In addition, the blood pressure
lowering effects of butyrate in rats were shown to be significantly reduced by vagotomy [67]. Another
study with spontaneous hypertensive rats described a reduced central responsiveness to butyrate,
as a result from reduced expression of butyrate receptors in the hypothalamus [52]. Thus, SCFAs could
affect blood pressure through direct vascular and renal receptors, through HDAC inhibition, but also
through colonic nerve signaling.

2.3. Gut Permeability and Lipopolysaccharides

Gut microbiota can also affect gut permeability and therefore influence the extent to which
metabolites and endotoxins are absorbed (Figure 1). The barrier of the intestinal epithelium consists
primarily of enterocyte brush borders and is more permeable for hydrophobic than for water soluble
compounds. However, intercellular junctions on the enterocyte’s lateral margins provide an alternative
paracellular absorption route [68]. These intercellular junctions are dynamic structures that regulate
paracellular permeability, and consist of tight junctions on the luminal side and adherens junctions on
the laminal side. The level of permeability can be influenced by dietary factors, but also by the zonulin
pathway. Zonulin is secreted by the basal lamina of the intestinal epithelium and binds enterocytes to
initiate a complex intracellular signaling pathway that eventually phosphorylates the tight junction,
resulting in permeability of the paracellular route [69]. Gut microbiota such as Vibrio cholerae appear to
exploit this physiological pathway by excreting zona occludens toxin, a zonulin homologue that has
similar effects [70].

Animal models suggest that gut permeability is higher in the hypertensive state. Hypertensive
rats had lower levels of mRNA of gap junction proteins, indicating higher gut permeability, which was
restored after fecal microbiota transplantation from controls [71]. In a similar model, an increase in
blood pressure in spontaneous hypertensive rats was associated with more permeability and lower
levels of tight junction proteins [72].

A consequence of higher gut permeability is increased translocation of certain metabolites and
endotoxins in the portal and systemic circulation, which could cause further amplification of gut
permeability [73]. Lipopolysaccharides (LPS), also known as endotoxins, can be found in the outer
membrane of Gram-negative bacteria, the most abundant bacteria in the gut microbiome [74]. The lipid
A component of LPS is the main pathogen-associated molecular pattern (PAMP) that can interact with
Toll-like receptor 4 (TLR4) [75,76]. When translocated from the gut into the circulation, LPS forms a
complex with LPS-binding protein (LBP) which can bind to CD14 on mononuclear cells [77]. This could
lead to production of pro-inflammatory cytokines, such as TNF-α, interleukin-1 (IL-1), and interleukin-6
(IL-6), mediated by the MD2/TLR4 receptor complex [76,78]. Butyrate was shown to attenuate the
pro-inflammatory effects of LPS-stimulation [79].

LPS is known to induce systemic inflammation and has been shown to have both metabolic
and cardiovascular effects. In mice, infusion of LPS to 2- to 3-fold higher plasma levels resulted in
higher glucose and insulin levels and weight gain comparable to mice on a 4-week high-fat diet [73].
LPS-administration to rats increased heart rate and norepinephrine levels, decreased baroreflex
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sensitivity, and increased neuroinflammation, as indicated by increased TLR and TNF-alfa expression
in the paraventricular nucleus (PVN) that plays a key role in blood pressure regulation [80]. The same
effects were observed in a small (n = 8) group of human subjects that showed a significant decrease in
systolic and diastolic blood pressure after administration of LPS. Moreover, in this study, LPS increased
brain microglial activation on positron emission tomography (PET)-scans [81]. Summarizing, there is a
limited number of studies suggesting that systemic LPS could have pro-inflammatory, sympathetic
activating, and neuroinflammatory effects, all of which are relevant in hypertension pathogenesis.
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Figure 1. Gut microbiota, gut permeability and lipopolysaccharides (LPS) absorption. Paracellular
permeability of the intestinal epithelium is affected by zonulin production of the basal lamina, dietary
factors and gut microbiota that produce zone occludens toxin. Increased permeability leads to more
LPS translocation to the systemic circulation, which has a pro-inflammatory effect and further increases
gut permeability.

2.4. Gut-Brain Interactions and Sympathetic Activation

Increased sympathetic activation is considered one of the causal factors in the development of
hypertension, and can already be observed in early stages [82]. The sympathetic nervous system
modulates blood pressure levels through vasoconstriction in peripheral blood vessels, renal regulation
of water and sodium balance, and release of renin by juxtaglomerular cells [83]. Regions in the
central nervous system that are involved in sympathetic activation include the PVN, the nucleus
of the solitary tract (NTS), and the rostral ventrolateral medulla (RVLM) [84]. Hypertension is
associated with neuroinflammation in these regions, which might be mediated by the renin-angiotensin
aldosterone system, since prorenin was shown to cause microglial activation in mice and spontaneously
hypertensive rats (SHR) [85,86].

Gut–brain communication could stimulate sympathetic activation and therefore play a role in
the hypertension pathogenesis. The gut is innervated by the autonomic nervous system that signals
physiological conditions such as acidity, osmolarity, and pain [87]. Intrinsically, the enteric nervous
system (ENS), consisting of the myenteric plexus and the submucosal plexus, controls intestinal
motor and sensory functions [88]. The ENS is a complex system that is sometimes referred to as
the ‘second brain’, because of the structural and functional similarities [89]. It communicates with
the brain via the vagal nerve, which projects to the NTS, that is involved in sympathetic regulation.
Gut microbiota interfere in ENS–brain interactions by stimulating enterochromaffin cells to produce
serotonin, a neurotransmitter that affects gut secretion, motility, and local nerve reflexes [90]. Conversely,
central sympathetic activation can, through a cascade of events, lead to increased gut permeability and
increased translocation of metabolites into the systemic circulation [91].
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Elevated sympathetic drive shifts bone marrow hemopoietic stem cells to a pro-inflammatory
state, and the release of these immune cells contributes to further hypertension development [92,93].
An animal study with SHR showed that microbiota affect inflammation in brain regions crucial to
sympathetic outflow. Microbiota composition in these rats was associated with reactive oxygen
species (ROS) and proinflammatory cytokines in the PVN [71]. In addition, fecal transplantation in
rat models from Wistar Kyoto (WKY) rats to SHR led to higher sympathetic activity, independent
of renin levels [71,72]. Taken together, this suggests that gut microbiota can stimulate sympathetic
drive, possibly by direct ENS–brain interactions or by promoting neuroinflammation. This increased
sympathetic activity can contribute to hypertension development directly or indirectly, by stimulating
low-grade systemic inflammation.

3. Gut Microbiota in Atherosclerosis

3.1. Atherosclerosis and Gut Microbiota

Atherosclerosis is a multifactorial process, with lipid metabolism, inflammation, vascular ageing,
and blood pressure as key players. Atherosclerosis is closely related to arterial stiffness, which is caused
by a loss of elastic fibers and thickening of arteriole walls. Arterial stiffness tends to increase with age
and results in a less compliant arterial system and higher pulse wave velocity. The resulting increased
shear stress has an aggravating effect on the formation of subsequent atherosclerotic plaques [94,95].
In this process, cholesterol accumulation in vessel walls leads to transformation of macrophages to foam
cells after phagocytic uptake of lipid particles. Oxidation of lipids results in cholesterol crystallization,
inflammasome activation, and production of proinflammatory cytokines such as TNF-alpha and IL-1B.
Statins have been proven effective in preventing atherosclerotic events, not only by lowering low-density
lipoprotein (LDL) cholesterol, but also through anti-inflammatory effects [96]. The Canakinumab
Anti-Inflammatory Thrombosis Outcomes Study (CANTOS)-trial underlined the role of inflammation
in atherosclerosis by demonstrating that treatment with canakinumab, a monoclonal inhibitor of IL-1B,
lowers the incidence of cardiovascular events [97].

An atherosclerotic plaque was shown to be a microbial environment on itself, containing microbes
such as Streptococcus, Pseudomonas, Klebsiella, Veillonella spp., and Chlamydia pneumoniae [98–100].
Most studies could not relate plaque microbiota composition to outcomes such as plaque vulnerability,
rupture, or cardiovascular events [101,102]. It was suggested that pathogenic bacteria originating from
oral or gut microbiomes make vessel walls more prone to plaque formation, either by direct infection
of the vessel wall or by distant infections eliciting an auto-immune inflammatory reaction through
molecular mimicry [103,104]. Interventions with antibiotic treatment as secondary prevention, targeted
at eliminating plaque microbiota, did not result in lower incidence of cardiovascular events [105,106].
Therefore, these studies did not provide evidence for direct vessel wall infection as a causal factor,
although some argue that not all microbes were targeted by the antibiotics used and that interventions
were too short [104,107].

In humans, cross-sectional studies showed that higher abundance of the Collinsella genus,
Enterobacteriaceae, Streptococcaceae, and Klebsiella spp., and lower abundance of SCFA-producing
bacteria Eubacterium, Roseburia, and Ruminococcaceae spp. in the gut microbiota of patients with
symptomatic atherosclerosis compared to healthy controls [108–110]. Pulse wave velocity, a marker of
arterial stiffness, was associated with a lower alpha diversity and lower number of SCFA-producing
bacteria such as Ruminococcaceae spp. in middle aged women in the TwinUK cohort [111]. Hence,
the compositional differences in atherosclerosis overlap with findings in hypertensive patients, which is
not surprising considering the shared risk factors and pathogenesis. Causal evidence of gut microbiota
composition in atherosclerosis is based on fecal microbiota transplantation (FMT) in animal studies.
For example, mice transplanted with a more pro-inflammatory gut microbiota composition from
Caspase1-/- mice had 29% larger plaque sizes than controls [112]. Alternatively, gut microbiota could
have indirect proatherogenic effects, by production of pro-atherogenic metabolites. These metabolites
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could also very well include the metabolites that are described for hypertension, including SCFAs.
For the scope of this review, we chose to focus on the role of trimethylaminoxide (TMAO) and bile
acids in atherosclerosis.

3.2. Trimethylamine-N-Oxide

The role of trimethylamine (TMA) and TMAO in the development of atherosclerosis is an
extensively researched topic. The role of gut microbiota in TMAO production is illustrated by
Figure 2. TMA is produced by gut microbes, primarily those from the families Clostridia and
Enterobacteriaceae, in the degradation of nutrients such as carnitine, choline, and lecithin, that can be
found in dietary products including meat and eggs [113]. After absorption, TMA is oxidized into
trimethylamine-N-oxide (TMAO) by the hepatic enzyme flavin mono-oxygenase (FMO)-3 [114]. Plasma
levels of TMAO have both a high within-individual and inter-individual variability, which hampers
comparison of studies [115]. In addition, TMAO levels are higher in women, presumably due to
different expression of the converting enzyme FMO3 and higher excretion rates in men [114]. TMAO is
primarily excreted by the kidneys through both glomerular filtration and tubular secretion, which is a
reason for increasing TMAO levels with decreasing renal function [116].Nutrients 2020, 12, x FOR PEER REVIEW 10 of 23 
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Figure 2. Production of trimethylamine-N-oxide (TMAO). Gut microbiota enzymes, including
trimethylamine (TMA) lyase, convert dietary L-carnitine, choline, and lecithin into TMA. The hepatic
enzyme flavin mono-oxygenase 3 (FMO3) converts TMA into TMAO, and TMAO is primarily excreted
by the kidneys.

Several mechanisms for the role of TMAO in atherosclerosis have been proposed, including the
effects TMAO has on inflammation, cholesterol metabolism, and thrombosis. TMAO was shown to
increase the production of pro-inflammatory cytokines such as TNF-alpha and IL-1B, and decrease
anti-inflammatory cytokines such as IL-10 [117]. In addition, the hepatic enzyme FMO3 appeared
to have a regulating function in lipid metabolism. FMO3 knockdown in mice on a high cholesterol
diet lowered intestinal lipid absorption and hepatic cholesterol production and stimulated reverse
cholesterol transport, thereby restoring cholesterol balance [118]. Lastly, TMAO was reported to
induce platelet hyperreactivity, which can facilitate thrombosis, thus causing atherosclerotic thrombotic
events [119].
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Administration of TMAO indeed promoted atherosclerosis in several mouse models [120,121].
However, there are also several animal studies that could not confirm this association, or even found
a protective effect of TMAO [122–125]. In humans, higher levels of TMAO have been associated
with cardiovascular disease incidence in several prospective studies [123,126,127]. Two meta-analyses
concluded that elevated TMAO levels were associated with a higher risk of cardiovascular events and
a higher all-cause mortality with relative risks ranging between 55% and 62% [122,128].

Nevertheless, a causal effect of TMAO on atherosclerosis has not yet been proven. An elegant
way to assess causality is Mendelian randomization, using genetic variants known to modify the
exposure to examine the effect on disease [129]. In this case, the prevalence of cardiovascular disease
in individuals with single nucleotide polymorphisms (SNPs) known to cause higher levels of TMAO
was compared to individuals without these SNPs [130]. Interestingly, in this study, atherosclerotic
cardiovascular disease was not more prevalent in the group with genetically predicted higher TMAO
levels. Another way to prove causality is to lower TMAO levels with interventions, such as with TMA
lyases that lower TMAO by degrading TMA before oxidization [131]. However, results of human
intervention studies have not yet been published.

3.3. Bile Acids

Bile acid metabolism is dependent on microbial modifications in the gut (Figure 3) and this
interaction was previously shown to affect inflammatory bowel disease and hyperinsulinemia [132,133].
Primary bile acids are synthesized by the liver, which converts hydrophobic cholesterol to hydrophilic
primary bile acids [134]. These bile acids are excreted by the gall bladder and reabsorbed in the terminal
ileum by sodium-dependent bile acid transporters [135]. Bile acids affect gut microbiota composition
and inhibit microbial growth in the small intestines [136]. A small proportion of bile acids reaches the
colon, where microbiota convert primary bile acids to secondary bile acids by several modifications,
including deconjugation, 7α-dehydroxylation, and 7α-hydrogenation [137]. Secondary bile acids are
hydrophobic and therefore easily absorbed by colonocytes and taken up into the systemic circulation.
Only an estimated proportion of 5% of bile acids escape the enterohepatic cycle and are excreted [138].
Bile acids also affect diverse metabolic pathways through Takeda G-protein coupled receptor 5 (TGR5)
and the nuclear farnesoid X receptor (FXR), both of which have a preference for secondary bile acids.
The composition of the microbiota and the microbial community’s enzymatic repertoire determine the
secondary bile acid profile [139]. The impact of gut microbiota on the bile acid pool was illustrated by
a study showing that germ-free mice had a 71% decreased bile acid pool compared to controls [140].
Interestingly, the bile acid metabolism interacts with the TMAO pathway, as FXR has been shown to
regulate FMO3, the hepatic enzyme that converts TMA in TMAO [114].

TGR5 is expressed in a variety of tissues, including liver, gall bladder, intestines, kidneys, pancreas,
muscle, and adipose tissue, but can also be found on leukocytes, macrophages, and endothelial
cells [141]. A TGR5 agonist (INT-777) was shown to have immunosuppressive effects, including
reduced pro-inflammatory cytokine production by macrophages and attenuation of atherosclerotic
plaque formation in LDL−/− mice [142,143]. Translation of findings from animal studies on TGR5
to humans in other contexts has not always been successful. Despite beneficial metabolic effects
of TGR5 agonists in mice, including lower glucose levels and improved lipid profiles, the TGR5
agonist SB-756050 increased fasting glucose levels compared to placebo in human subjects with type 2
diabetes [144]. TGR5 agonists had limited adverse effects in this trial, which is surprising considering
the number of tissues that express this receptor. In animal models, TGR5 agonists have been associated
with increased gastrointestinal motility, a potential higher incidence of biliary stones, lower vascular
tone and blood pressure, and itching [145].

Atherogenic mice models with FXR knock-out showed conflicting findings, with both increased
and decreased atherosclerosis [146–148]. However, administration of synthetic FXR agonists to
atherogenic mice prevented plaque formation in three studies, presumably by lipid-lowering and
anti-inflammatory effects [149–151]. Although the FXR agonist obeticholic acid (OCA) lowered
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hepatic fat in human subjects with non-alcoholic steatohepatitis (NASH), it had paradoxical effects on
cholesterol levels, increasing LDL and decreasing high-density lipoprotein (HDL) cholesterol [152].

Dual agents that target both TGR5 and FXR might have more therapeutic potential. Animal studies
on the effect of dual agonists reported beneficial effects on metabolic syndrome, NASH, cholangiopathy,
progression of diabetic nephropathy, and atherosclerosis [153–157]. In a mouse model for atherosclerosis,
dual targeting with INT-767 seemed to be more effective in attenuating atherosclerosis than separate
effects on TGR5 and FXR [153]. All in all, although findings in animal studies are promising, it remains
to be seen whether these results can be translated to humans, especially considering the substantial
differences in atherosclerosis pathogenesis and bile acid metabolism between men and mice.
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Figure 3. Enterohepatic cycle of bile acids. Hepatic conversion of cholesterol results in primary
bile acids, that are excreted postprandially by the gallbladder. Active reuptake takes place in the
terminal ileum. In the colon, primary bile acids are converted to secondary bile acids by gut microbiota,
and passively reabsorbed. Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5)
have a preference for secondary bile acids.

4. Therapeutic Strategies

The changes in gut microbiota composition and gut metabolites discussed in this review could all
be potential therapeutic targets in the treatment of atherosclerosis and hypertension. The most direct
ways of altering gut microbiota composition are oral supplementation of specific microbial strains and
fecal microbiota transplantation (FMT).

Probiotics containing SCFA-producing microbes including Bifidobacterium, Enterococcus,
and Lactobacillus were suggested to have a variety of health benefits including anti-inflammatory and
beneficial metabolic effects [158]. In addition, oral treatment with specific Bifidobacterium, Lactobacillus,
and SCFA-producing Anaerobutyricum soehngenii species had modest blood pressure lowering effects in
humans [43,159]. However, our understanding of mechanisms is based on animal research. Evidence
in humans is limited and inconclusive due to heterogeneity in investigational products and study
designs [160]. Therefore, the effect of specific strains is often unclear, which is one of the reasons that
probiotics are marketed as nutritional supplements rather than medication [160].
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Probiotic efficacy is both disease-specific and strain-specific [161], underlining the need for
well-designed trials that survey gut microbiota composition before and after the intervention. Preferably,
this should be measured with metagenomic sequencing (as opposed to 16S rRNA sequencing) in order
to provide species-level resolution to compositional data. Another advantage of this technique
is the potential to assess differences in gut microbiota functionality, as differences in microbiota
composition do not always match differences in function. In addition, the gut microbiome has a spatial
dimension, with composition gradients along the different parts of the intestinal tract, yet due to
sampling difficulties, fecal samples are used as a proxy for the entire extent of the intestinal tract lumen.
Localized sampling would aid in deciphering the actual biology in the intestine.

Alternatively, FMT could be used to optimize microbiota composition in individuals at risk for
cardiovascular disease. FMT has been shown to be efficacious with limited adverse effects [162].
However, optimal FMT approaches, including donor selection, screening and preparation, have yet to
be defined [163,164]. In addition, the long-term effects of FMT are not clear, since the follow-up in
most studies is less than a year. As our understanding of the gut microbiome progresses, so does our
knowledge of potential risks of FMT. To illustrate, bacteriophages—long understudied yet now known
to play an important role in the microbiome—were shown to be transferred from donor to host by
FMT, with uncertain implications [165].

To date, only one FMT trial targeted cardiovascular risk by transplantation from lean vegan
donors to meat-consuming subjects with metabolic syndrome in order to lower TMAO levels [166].
Despite alterations in gut microbiota composition, TMAO levels did not change upon this intervention.
Other FMT trials in obesity and metabolic syndrome also showed that effects on microbiota composition
and glucose metabolism are small and transient, underlining the importance of pre-screening in order
to select recipients most likely to respond [167,168]. To that end, a better understanding of the structural
and functional aspects of the microbiota that affect hypertension and atherosclerosis incidence is needed.

Prebiotics and dietary interventions target gut microbiota composition indirectly. Prebiotics
selectively stimulate specific microbes in the colon. Prebiotics are often fibers, although not all
fibers are prebiotics [169]. Prebiotics were shown to stimulate growth of SCFA-producing microbes
such as Bifidobacterium and Lactobacillus. Diet also has a substantial influence on gut microbiota
composition. Dietary interventions such as the DASH and the Mediterranean diet were shown to
lower cardiovascular risk [170,171]. However, since dietary interventions are multifaceted, it is difficult
to point out what mechanisms explain the beneficial effects.

In summary, multiple interventions could target gut microbiota composition and its associated
metabolites, ranging from targeted approaches to more accessible but non-specific interventions.
However, translation of findings from animal studies to humans is needed, preferably by prospective
cohort studies using metagenomic sequencing that can also assess microbiome functionality. In addition,
adjusting for confounders when assessing associations between microbiota and cardiovascular disease
is vital, since microbiota composition is shaped by a combination of lifestyle factors, health conditions,
and medication use.

5. Conclusions

The pathways by which gut microbiota affect hypertension and atherosclerosis are diverse and
often interact, as shown in Figure 4. Gut microbiota produce or convert metabolites, produce substrates
needed for production of metabolites elsewhere, and are involved in regulating local intestinal
homeostasis, resulting in a wide range of potential therapeutic targets. However, our understanding
of mechanisms is mainly based on animal research and translation to humans remains challenging,
as illustrated by developments in bile acid receptors research. Longitudinal studies in human subjects
are needed to identify beneficial or adverse characteristics of gut microbiota structure and functionality,
in order to better target potential therapeutic strategies.
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Figure 4. Summary of hypothesized pathways for the effects of gut microbiota on hypertension and
atherosclerosis. Gut microbiota could affect hypertension through inflammatory factors, influenced by
short chain fatty acids (SCFAs) and lipopolysaccharides (LPS), and through sympathetic activation
by gut–brain interactions. The effects on inflammation and dyslipidemia in atherosclerosis could
be mediated by bile acid receptors Takeda G-protein-coupled receptor 5 (TGR5) and farnesoid
X receptor (FXR), trimethylamine-N-oxide (TMAO) and trimethylamine (TMA), and direct vessel
infiltration of microbiota. The grey arrows indicate interactions between pathways: FXR regulates the
TMAO-converting enzyme flavin mono-oxygenase 3 (FMO3), sympathetic activation increases gut
permeability, and short chain fatty acids can attenuate the inflammatory effects of LPS.
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