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The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of
Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure
providing ubiquitin ligase activity without abrogating cell and structure-specific function. In
this review, we mainly summarized the crucial roles of the Pellino family in pattern
recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling,
NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling.
We also summarized the current information of the Pellino family in tumorigenesis,
microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of
the Pellino family in immunity.
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INTRODUCTION

Immune responses aremainly divided into innate immunity and acquired immunity. Innate immunity
can respond rapidly to pathogens as the first line of defense mediated by macrophages, dendritic cells,
neutrophils, epithelial, and endothelial cells. It utilizes germ-line encoded pattern recognition receptors
(PRRs) to detect conserved microbial components known as pathogen-associated molecular patterns
(PAMPs) or endogenous ‘alarmins’ released during infection and inflammation. Toll-like receptors
(TLRs), nucleotide-binding oligomerizationdomain-like receptors (NLRs), retinoic acid-inducible gene
I-like receptors (RLRs), C-type lectin receptors (CLRs), DNA sensors, and melanoma 2-like receptors
are not part of the PRRs (AIM-2-like receptors).Mammalian TLRs recognize bacteria and nucleic acids
and sense inflammation caused by bacteria through binding to ligands on the cell surface and in the
nuclear body.NLRsandRLRs, on the otherhand, detect nucleic acids in the cytosol (1–3). PRRsmediate
their biological functions by activating transcription factors such as nuclear factor−kB (NF-kB),
activator protein-1 (AP-1), and interferon-regulatory factors (IRFs) to drive proinflammatory and
interferon (IFN) gene expression (1–4).

Ubiquitination, a posttranslational modification involving the conjugation of the 76 amino acid
proteins to the lysine residue of other proteins, is catalyzed by the sequential action of ubiquitin-
activating (E1), ubiquitin-conjugating (E2), and ubiquitin-ligating (E3) enzymes. Ubiquitin
contains seven lysine residues and one N-terminal methionine (M1) residue, each of which can
be attached to another ubiquitin moiety. The presence of these lysine residues and the M1 forms a
variety of ubiquitin chains (K6-, K11-, K27-, K29-, K33-, K48-, K63-, M1-linked ubiquitin chains
and mixed ubiquitin chains), which are recognized by substrate proteins with linkage-specific
ubiquitin-binding domains to trigger multiple biological functions such as K48- and K11-linked
org February 2022 | Volume 13 | Article 7287941
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chains for protein degradation, M1 or K63-linked chains for
signal transduction (5). The substrate specificity of
ubiquitination is mainly determined by E3s, which directly
catalyzes ubiquitin transfer from E2s to the substrates (6). In
particular, the Pellino family, a novel E3 ubiquitin ligase family
(7–9), has been implicated in the regulation pattern recognition
receptors (PRRs) signaling pathway of immunity.

Pellino (Drosophila Peli, Human PELI, Mouse Peli), first
discovered in Drosophila, is a novel and evolutionarily conserved
protein with 424 amino acid residues and an estimated molecular
weight of 47 kDa (10). The Pellino family-related sequences are
conserved in different species (11, 12). The identical sequence
shared between C. elegans and Drosophila is 47%, and between C.
elegans andHuman is 40% (12). Inmammals, the Pellino family has
three sequence-conserved members, Pellino1 (13), Pellino2 (14),
and Pellino3 (two splicing variants Pellino3a and Pellino3b) (15),
located on chromosomes 2, 14, and 11 (13) respectively, with an
amino acid length ranging from 418 to 479 (16). Mouse Pellino1
and Pellino2 possess 75% sequence similarity, whereas Pellino3
shares 84 and 85% similarity with Pellino1 and Pellino2,
respectively (13). Each member of the Pellino family shows a
highly similar primary structure with a C-terminal RING-like
domain mediating K11, K48, and K63 linked conjugation of
polyubiquitination (7) and a cryptic phosphothreonine-binding
N-terminal hidden split forkhead associated (FHA) domain
attached by a “wing” or appendage structure (16) (Figure 1). The
“wing” can interact with phosphothreonine residues of proteins
such as interleukin-1 receptor-associated kinase 1 (IRAK1) and
interleukin-1 receptor-associated kinase 4 (IRAK4), which in turn
phosphorylate Pellino1, Pellino2, and Pellino3 (9, 16, 24, 28–31).

The Pellino family was thought to be a kind of “scaffolding”
protein in the signaling process of Toll-like receptors and
interleukin-1 receptors (TLR/IL-1R) (15) by interacting with
multiple intermediates such as IRAK4, IRAK1, TGF-beta
activated kinase 1 (TAK1), TAK1 binding protein 1 (TBK1),
receptor-interacting protein kinase (RIPK or RIP) and TNF
receptor-associated factor 6 (TRAF6) (15, 32–38). Subsequent
research showed that the Pellino family acted as a novel
interesting new gene (RING) E3 ubiquitin ligases (7, 14, 39)
rather than scaffold proteins (15). Similar to classical C3HC4
RING structure, the carboxyl termini of the Pellino family
possesses two stable Cys-Gly-His motifs and two conserved Cys-
Pro-X-Cys motifs, which determine and characterize the feature of
the RING class of E3 ligase (12). The Pellino family exerts their E3
ubiquitin ligase activity through its phosphorylation form. Some
proteins can phosphorylate the Pellino family, such as IRAKs
(IRAK1 and IRAK4), TAK1, TBK1, and IkB kinase ϵ (IKKϵ) (15,
32–36). Upon stimulation by interleukin-1(IL-1), tumor necrosis
factor a(TNFa), lipopolysaccharide (LPS) or polyinosinic–
polycytidylic acid [poly (I:C)] (18, 35), Pellino1 can be fully
activated by phosphorylation at some different sites (Ser-76,
Thr-86, Thr-288, or Ser-293) or a combination of other sites
(Ser-78, Thr-80, and Ser-82) (18, 31). As a critical family of E3
ubiquitin ligases, the Pellino family can mediate K11, K48, and
K63 linked polyubiquitination (7). Pellino1 can combine with E2
conjugating complex ubiquitin-conjugating enzyme 13 (Ubc13)–
Frontiers in Immunology | www.frontiersin.org 2
ubiquitin E2 variant 1a (Uev1a) to catalyze the formation of
Lys63-linked polyubiquitin (K63-Ub) chain, with UbcH3 to
catalyze the formation of K48 polyubiquitination chain(K48-
Ub), and with UbcH4, UbcH5a or UbcH5b to catalyze the
formation of K11 and K48 polyubiquitin ubiquitination chains
(30). Inducing the formation of K63-Ub chains to ubiquitylate
IRAK1, IRAK4, myeloid differentiation factor88 (MyD88),
receptor-interacting protein kinase1 (RIP1), and receptor-
interacting protein kinase 2 (RIP2) (14, 22, 26, 30, 36, 37, 39,
40) demonstrate that Pellino family is a novel RING E3-ubiquitin
ligase (14, 39). In addition to interacting with IRAK4, IRAK1,
TAK1, TBK1, and TRAF6 (15, 32–36), each member has unique
binding partners. Pellino-1, but not Pellino2 or Pellino3, has been
reported to interact with MyD88 (20) and TBK1 (35). Similarly,
only Pellino3 was associated with NF-kB-inducing kinase (NIK)
(15, 39). Some other proteins can also interact with the Pellino
family, such as Smad6/7 (20, 21), BCL10 (23), and caspase-8 (26,
27) (Figure 1). Upon diverse stimulation, the key biological and
cellular function of the Pellino family has been identified in the
innate immune system (17, 31, 41–43), namely, initiating NF-kB
(44) and mitogen-activated protein kinase (MAPK) (22) to
regulate the production of inflammatory cytokine and
interferons (IFNs) (41), mediating cell death via receptor-
interacting serine/threonine kinases (RIPs), and other
phenotypic changes of cells and tissues (45–47).
THE ROLES OF THE PELLINO FAMILY
IN PATTERN RECOGNITION
RECEPTOR SIGNALING

IL-1R, TLRs, and NLRs were involved in innate immunity to
mediate the production of inflammatory cytokines (48, 49) and
interferons (50). Each member of the Pellino family is crucial to
PRR signaling pathways. We divided these pathways into five
categories: (i) MyD88-dependent TLR/IL-1R signaling, (ii)
TRIF-dependent interferons induction signaling, (iii) RIP-
dependent signaling, (iv) NLR-related signaling, and (v) B-cell
and T-cell signaling due to some key proteins, i.e., Myd88,
TRAF6, TAK1, Toll/IL-1 receptor domain-containing adaptor
inducing interferon-beta (TRIF), TBK1, RIPs, and NLRs in the
signaling conduction (51).

In the Drosophila genome, Pellino interacts with and
regulates plasma membrane MyD88-K48-Ub turnover to
balance Toll-mediated immune signaling positively or
negatively (52, 53). An ancestral Pellino protein from helminth
species binding and poly-ubiquitinating human IRAK1 displays
its E3 ligase activity and conservative function (54). In mammals,
the production of proinflammatory interleukin-1 b (IL-1b), IL-6,
C-X-C motif chemokine ligand 8 (CXCL8), and IFNs regulated
by Pellino1, Pellino2, and Pellino3 demonstrate the key roles of
the Pellino family in TLR/IL-1R signaling (25, 55–57). All of the
TRIF, RIP1, RIP3, NLRs, and the Pellino family participate in the
activation of NF-kB and MAPK/ERK kinase kinases (MEKKs)
signaling to regulate cell survival, apoptosis, and necroptosis (4,
25, 37, 38, 57).
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Pellino Family in MyD88-Dependent TLR/
IL-1R Ssignaling
TLR/IL-1R family possesses an intracellular conserved Toll/IL-
1R (TIR) domain which can allow the recruitment of the adapter
MyD88 for the transduction of signals (58). In this section, we
mainly focus on the function of the Pellino family in MyD88-
dependent TLR/IL-1R signaling.
Pellino Family in MyD88-Dependent
IL-1R Signaling
IL-1 is an important endogenous pyrogen and proinflammatory
cytokine that can regulate hematopoiesis, recruit and activate
neutrophils, macrophages, T and B-lymphocytes, and mediate
Frontiers in Immunology | www.frontiersin.org 3
inflammatory responses (59, 60). IL-1 induces signal conduction
via IL-1R and IL-1R-accessory proteins to recruit MyD88-
dependent signaling cascades, namely, IRAK4, IRAK1, IRAK2,
TRAF6, and TAK1, that leads to the activation of the MAPKs
and NF-kB (4, 61).

Pellino1, Pellino2, and Pellino3 can interact with IRAK1,
TRAF6, and TAK1 (8, 32–34). Being upstream of TAK1 and
downstream of IRAK1, Pellino1 is critical for the IL-1R-MyD88
dependent pathway through interaction with the IRAK4–
IRAK1–TRAF6 complex (33). During this process, the catalytic
activity of IRAK1 and IRAK4 is required for IL-1-stimulated
activation of Pellino1 in Mouse embryonic fibroblasts (MEFs)
(35). Aside from Pellino1, Pellino2 also interacted with IRAK4
(14, 57). Pellino3 physically interacts with IRAK1, TRAF6,
A

B

C

D

FIGURE 1 | Molecular features of the Pellino family (9). (A) The structure of the Pellino family. In mammals, the Pellino family comprises three family members
(Pellino1, Pellino2, and Pellino3) with an amino acid length ranging from 418 to 479. The Pellino family shows a highly similar primary structure with a C-terminal
RING-like domain mediating K11, K48, and K63 linked conjugation of polyubiquitination and a cryptic phosphothreonine-binding N-terminal hidden split forkhead
associated (FHA) domain attached by a “wing” or appendage structure. IRAK1 and IRAK4 can phosphorylate the Pellino family on Ser-76, Ser-78, Thr-80, Ser-82,
and Thr-86. Individual site Ser-76, Thr-86, Thr-288, or Ser-293 or a combination of Ser-78, Thr-80, and Ser-82 is necessary to activate the Pellino family (17) fully.
IKKϵ/TBK1 activates Pellino1 in vitro by phosphorylating Ser76, Thr288, and Ser293 (18). (B) The sites of Pellino1 interacting with other proteins. The amino acids
length of Pellino1 is 418 in both humans and mice. The 104th site of the FHA domain and 313th/336th sites of the RING-like domain are crucial to K48-linked
polyubiquitylation of IRAK1, RIP1, and RIP3 (19). The region between residues 198 and 345 is essential to the interaction between Pellino1 and Smad6/7 (20, 21).
(C) The sites of Pellino2 interacting with other proteins. The amino acids length of Pellino2 is 420 in humans and 418 in mice. The points 106, 187, 188, 287, 397,
and 400 are essential to the interaction between Pellino2 and IRAK1 (16, 22). The range between residues 169 and 233 is essential to the interaction between
Pellino2 and BCL10 (23). (D) The sites of Pellino3 interacting with other proteins. The amino acid length of Pellino3 is 469 in humans and 445 in mice. Residue 44 is
essential for the binding of Pellino3 to IRAK1 (24). Residue 316 is essential to Pellino3 autophagy-dependent degradation via p62 (25). The FHA and RING-like
domains are responsible for the interaction between RIP1 and caspase-8 (26, 27).
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TAK1, and NIK in HepG2 and 293 cells in an IL-1-dependent
manner (15). Pellino1 and Pellino2 can replace TRAF6 to
generate K63-Ub chains, activate TAK1, or induce IL-8
production via MyD88-IL-1b signaling in IL-1R cells that
express E3 ligase-inactive TRAF6 (40).

The Pellino family is associated with inflammatory mediator
production (35, 62). Pellino1 knockdown can lead to a reduction in
IL-1b-induced expression of proinflammatory cytokines in the
bronchial epithelial cells (BEAS-2B) (62) and inhibit IL-1-
mediated NF-kB activation and thus repress the production of IL-
8 (33). Furthermore, Drosophila mothers against decapentaplegic
protein 6 (Smad6) and Smad7 can bind to Pellino1 via mad
homology (MH2) domains to mediate growth factor-b (TGF-b).
It inhibited IL-1R signaling by preventing Pellino1 from forming a
complex with MyD88, IRAK1, IRAK4, and TRAF6, which further
suppressed IL-1b induced NF-kB activation and production of
proinflammatory cytokines (20, 21). Evidence shows that Pellino1
plays a critical role in IL-1R signaling viaMyD88, leading to NF-kB
activation and proinflammatory cytokine expression. However, this
conclusion is contradictory to other studies. Due to indistinct
variations in NF-kB activity and expression of TNF-a, IL-6, or C-
X-C motif chemokine ligand 10 (CXCL10) in mouse embryonic
fibroblasts between wild type (WT) and Pellino1 knockout (KO)
mice, Pellino1 is overlooked or unnecessary for the IL-1R pathway
(37). A similar phenomenon can be observed in Pellino1
knockdown airway primary epithelial cells with the insignificant
expression of proinflammatory cytokine CXCL8 induced by IL-1
(62). Furthermore, inactive-IRAK1induces Pellino1 significantly
impaired E3 ubiquitination ligase activity with a modest effect on
MAPK andNF-kB activation upon IL-1 (31). All the results indicate
that Pellino1 may not be necessary for inflammation production in
the MyD88 dependent IKK–NF-kB activation pathway. Whether
Pellino1 is necessary for IL-1R may be controlled by cell type.
Pellino2 also plays a critical role in IL-1R-mediated inflammatory
production and post-transcriptional control (22), and it may be a
positive regulator in the IL-1R pathway. The successive K63 and
K48 ubiquitination of IRAK1 and TAK1 are required for Pellino2 to
regulate IL-8 promoter activity by an NF-kB-dependent manner in
the human embryonic kidney (HEK) 293-EBNA cells and the
mouse embryonic fibroblast cell line C3H10T1/2 (22, 32). Upon
K63 ubiquitination (22) of IRAK1 by Pellino2, the intermediate
complex Pellino2–IRAK4–IRAK1–TRAF6 interacts with
membrane-bound pre-associated TAK1-TGF-b activated kinase
1/MAP3K7 binding protein 1 (TAB1)-TAB2, which results in the
formation of complex II (TAK1 complex, IRAK–TRAF6–TAK1–
TAB1–TAB2), and IRAK1 degradation, induced by K48-linked
ubiquitination of degradation. This is followed by translocation of
TRAF6–TAK1–TAB1–TAB2 (complex III) from the membrane to
the cytosol. TAK1 is activated and eventually leads to transcription
factors activation of NF-kB, AP-1, and Elk-1in MAPKs (8, 22, 34).
Pellino3 can also participate in the IL-1R signaling in HepG2 and
293 cells in an IL-1-dependent manner (15). However, Pellino3b
activates JNK leading to the activation of c-Jun and Elk-1 (8, 15),
and activates p38MAPK leading to cAMP-response element-
binding protein (CREB) activation (24) instead of NF-kB (15).
Mechanistically, upon IL-1 stimulation, upregulated Pellino3b
Frontiers in Immunology | www.frontiersin.org 4
interacts with and inhibits TAK1 complex releasing from
membrane to cytosol, leading to attenuation of TAK1-dependent
NF-kB activation due to Pellino3b induced K63-polyubiquitination
and IL-1 induced K48 polyubiquitination competing for IRAK1-
K134 ubiquitination site (8). Pellino3 activates p38MAPK via
interacting with IRAK1, TRAF6, and TAK1. It also promotes
translocation of p38 substrate MAPK-activated protein kinase
(MK2) from the nucleus to the cytoplasm and activates the
transcription factor CREB in a p38 MAPK-dependent manner
(24). The ability of Pellino3 to activate p38 MAPK appears to be
unique in the Pellino family (Figure 2).

For downstream signaling, Pellino1 leads to the activation of
NF-kB (33) but not c-Jun N-terminal kinase (JNK) (24, 33, 34) in
HEK293 cells. Mouse Pellino2 is required for NF-kB activation
in mouse embryo fibroblast cells (32) and is involved in JNK
signaling, which leads to AP-1 and the effect of ETS-like 1
transcription factor (Elk-1) activation in HEK293 cells (34).
Pellino3 promotes c-Jun and Elk-1 activation in JNK signaling
in HepG2 human hepatoma cells (15) and acts as a promoter to
activate p38 MAPK in HEK293 cells (24) instead of NF-kB (15).
Pellino3b, an alternative splicing variant of Pellino3, can
negatively regulate IL-1-induced and TAK1-dependent NF-kB
activation in synoviocytes (8) (Figure 2). As a conserved E3
ubiquitin ligase family, each member activates the same or
different transcription factors to regulate different downstream
pathways. Perhaps each member of the Pellino family has a
different division of labor upon IL-1.

Pellino Family in MyD88-Dependent
TLR Signaling
All TLRs mediate the signal conduction via Toll/interleukin-1
receptor (TIR) like IL-1R. Upon stimulation of ligands, several
TLRs such as TLR2 and TLR4 recruit MyD88, IRAKs, TNF
receptor-associated factor 3 (TRAF3), and TRAF6 to activate
TAK1, leading to the activation of MAPK and NF-kB (3, 63).
Upon LPS binding, TLR4 recruits MyD88, TRAF6, TRAF3, and
cellular inhibitors of apoptosis proteins (cIAPs). There are two
downstream signaling pathways for TRAF6. One is to activate
TAK1 leading to MAPK and NF-kB activation (64–67). The
other is to induce proinflammatory cytokines by stabilizing
cIAPs via K63-Ub and then the TRAF3 K48-Ub degradation
leading to the production of c-Rel (6).

An overall brain proteomes study in Pellino1 knockout mice
showed that Pellino1 was involved in promoting antigen
presentation, enhancing activities of adaptive and innate
immune cells (68) with the contribution to microglial activation,
neuroinflammatory responses, and neurological deficits through
the activation of NF-kB and MAPK (42, 64, 66). Pellino1
positively regulates the production of inflammatory factors in
MyD88-dependent TLR signaling (69, 70) as MyD88 deficiency
hindered the expression of Pellino1, NF-kB, IL-1b, IL-6, Beclin-1,
and cyclooxygenase-2 (COX-2) in a cerebral ischemia/reperfusion
(I/R) mouse model (70). Pellino1 also positively regulates the
MyD88-dependent pathway by promoting K63 linked
polyubiquitination of IRAK1, TBK1, TRAF6, and TAK1 to
active the MAPK and NF-kB signaling pathways via TLR2 and
February 2022 | Volume 13 | Article 728794
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TLR4 pathway (69, 71). Upon LPS stimulation, the expression of
Pellino1 is upregulated (69, 71, 72), possibly by increasing levels of
p65 and phosphorylated IKKa/b in microglia (73). Upregulated
Pellino1 activates microglia and enhances NF-kB production,
MAPK phosphorylation, and proinflammatory cytokines in
LPS-induced TLR4 signaling by increasing TRAF6 K63-linked
ubiquitination (64–66). In addition, Pellino1 promotes K63-Ub of
TRAF6 in the spinal cord to enhance morphine treatment (65).
However, Pellino1 is dispensable for inflammatory responses in
astrocytes (66). TRAF3 degradation contributes to the production
of inflammatory factors in the MyD88-TLR pathway. Pellino1 was
discovered to mediate K63 ubiquitination of cIAP, resulting in
cIAP K48 ubiquitin ligase activity, ubiquitin-dependent
degradation of TRAF3 (41, 74, 75) activation of microglia-
mediated chemokines, and proinflammatory cytokines via the
MyD88-dependent MAPK pathway (42, 66, 75). Pellino1 is also
involved in several neurogenic diseases. Upon trans-activating
protein (Tat), Pellino1 induces autophagy, interrupts expression of
tight junction protein zonula occludens1 (ZO-1), and increases the
Frontiers in Immunology | www.frontiersin.org 5
permeability of the blood–brain barrier (BBB) by triggering K63-
Ub of Beclin1 (76). Pellino1 also impairs microglial amyloid b-
protein (Ab) phagocytosis through promoting CCAAT enhancer-
binding protein b (C-EBPb) degradation in Alzheimer’s disease
(AD) (77). In Parkinson’s disease, upregulation of Pellino1 by a-
synuclein leads to the degradation of lysosomal-associated
membrane protein-2 (LAMP2) and the buildup of autophagy
with decreased autophagy flux by microglial exosomes (78).

Although mediated by LPS, the Pellino family plays a different
role in endotoxin tolerance in macrophages. Endotoxin tolerance
abrogated Pellino1 induction by LPS in macrophages (69, 71, 72)
but an enhanced expression of Pellino3 (79). Elevated
transcription of TNFa and IL-6 driven by TLR2/4 and also
increased expression of C–C motif chemokine ligand 5 (CCL5)
driven by TLR4 were observed in Pellino3-deficient human
myeloid leukemia mononuclear cells (THP-1) in response to
TLR agonists (79). The Pellino3 inhibits TRAF6 downregulation
by reducing IRAK1 degradation via K63 polyubiquitination,
which competes with K48 ubiquitination, resulting in NF-kB
FIGURE 2 | Pellino family in the Myd88-dependent TLR/IL-1R signaling. Upon IL-1 stimulation, Pellino1, Pellino2, and Pellino3 can interact with IRAK1, TRAF6, and
TAK1 (8, 32–34). Pellino1 mediates the degradation of IRAK1 by K48-Ub, leading to the activation of TABs and TAK1 with the ultimate activation of NF-kB. Pellino2
leads the activation of NF-kB and JNK by successive K63-Ub and K48-Ub of IRAK1 and activation of TAK1. Pellino3 mediates the activation of JNK and p38 by
K48-Ub, which leads to IRAK1 degradation and negatively regulates NF-kB activation by IRAK1 K63-Ub. In the TLR pathway, TRAF6 induces cIAPs K63-Ub to
enhance TRAF3 K48-Ub degradation, elevating proinflammatory cytokine production by interrupting TRAF3 induced K48 ubiquitin-dependent degradation of c-Rel.
Pellino1 can also mediate cIAPs K63-Ub to accelerate the production of proinflammatory cytokines in microglia. In macrophages, Pellino3 represses NF-kB activation
by inhibiting TRAF6 downregulation. It also inhibits IRAK1 degradation via K63-Ub competing with K48-Ub of IRAK1, hindering NF-kB activation.
February 2022 | Volume 13 | Article 728794
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suppression (36) in J774.1 cell lines. This is consistent with prior
Pellino3b results (8).

Several interesting results are discussed in the Pellino family-
related MyD88-dependent TLR/IL-1R signaling (Figure 2). IRAK1,
TRAF6, and MyD88 are crucial to the Pellino family, and the
IRAK1 is responsible for the activation of the Pellino family.
Pellino1 and Pellino2 can replace TRAF6 to generate K63-Ub
chains. MyD88 mediates the Pellino1 expression level. Whether
there is a similar phenomenon in Pellino3 needs further research.
Upon the same IL-1 stimulation, the members of the Pellino family
display different roles in regulating the IL-1R pathway. Pellino1 and
Pellino2 are positive IKK activation regulators; however, Pellino3 is
a negative regulator. This phenomenon is also present in TLR
signaling upon LPS stimulation. Pellino1 significantly induced
proinflammatory cytokines in microglial cells but showed no
inflammatory responses in astrocytes.

Interestingly, the downregulation of Pellino1 and upregulation
of Pellino3 were observed upon LPS induced endotoxin tolerance
in macrophages. However, each member of the Pellino family can
mediate the IKK activation or MAPK activation; not all the
members act as positive roles in the signaling. Perhaps the cell
type is critical in determining whichmember is accountable for the
associated pathway, and this should be researched further.

Pellino Family in TRIF-Dependent
Interferon Induction Signaling
TRIF plays a critical role in activating NF-kB via a MyD88-
independent pathway in TLR3 and TLR4 signaling (80, 81). In
addition to NF-kB activation, TRIF can also stimulate TANK
binding kinase1 (TBK1) and IKKϵ kinases to activate interferon
regulatory factor (IRF) transcription factors that drive the
expression of antiviral type I IFNs (80, 82). Upon LPS, poly(I:
C), and viral double-stranded RNA stimulation, TRIF is
recruited to promote TRAF3-dependent activation of TBK1 to
activate IRF3/7 leading to the induction of IFN expression (82,
83). IRF3 and IRF7 are the most important transcription factors
regulating type I IFN expression (80). Pellino1 possesses a novel
function in human viral pathogen infection (41, 62, 84, 85)
depending on TRIF. Pellino1, as a TLR3 positive regulator (18,
37, 86), is involved in modulating the production of
proinflammatory cytokines (37, 86) and induction of IFN-I in
the TLR3 pathway (41, 44, 86, 87). The deficiency of Pellino1
leads to inhibition of TLR3 and proinflammatory cytokines
production but without impairing IFN antiviral induction
under virus stimulation and TLR3 agonists in mice and
primary bronchial epithelial cells (PBECs) (62, 86). It seems
that Pellino1 is dispensable for IFN induction. However, further
studies showed that Pellino1 is upregulated by TRIF, TBK1, and
IKKϵ (18, 52, 69) via a TRIF-dependent manner in the TLR3
pathway but not the IRAKs-coupled and MyD88-dependent
pathway (37, 62). Perhaps there is a priority for Pellino1 to
decide which pathway to participate in. IKK ϵ and TBK1 can
enhance the activation of Pellino1 depending on IRF3 (18) and
K63-linked polyubiquitination of TBK1 (52, 55). As a new IRF3-
dependent gene, Pellino1 enhances the interaction of IRF3 with
the IFNb promoter to promote IFN production (44). In detail,
Frontiers in Immunology | www.frontiersin.org 6
Pellino1 interacts with deformed epidermal autoregulatory factor
1 (DEAF1) independent of its E3 ligase activity, followed by
DEAF1 binding to IFNb promoters IRF3 and IRF7 to promote
IFNb gene transcription and IFNb secretion in MEFs (88). The
protein Bid can upregulate Pellino1 and enhance Pellino1
interaction with TBK1, leading to IRF3 production (73, 89).

Contrary to the above conclusion of upregulating IFNs level,
Pellino1 negatively mediates the induction of IFNs inmicroglia via
TRIF dependent TLRs upon the stimulation of poly(I:C), LPS, and
the RNA virus in the CNS (41). Perhaps due to this, Pellino1
allows the entry and replication of West Nile Virus (WNV) in
mouse macrophages, human neurons, and microglia (84), and the
enhancement of ZIKA virus (ZIKV) vertical transmission and
neuronal loss in vitro and in vivo (85). However, Pellino3 does not
act as a mediator of proinflammatory cytokine expression in
response to TLRs but as a key regulator to control TRIF
dependent type I interferon expression in the TLR3 pathway by
negatively regulating activation of IRF7 but not IRF3 (87). This
was demonstrated in Pellino3 deficient animals, which had
increased resistance to encephalomyocarditis virus and enhanced
type I interferon expression but not proinflammatory cytokines in
response to TLR3 activation (87). The possible mechanism is that
the TLR3 induces the Pellino3 level, which interacts with and
ubiquitinates TRAF6. This modification suppresses the ability of
TRAF6 to interact with and activate IRF7 leading to
downregulation of type I interferon expression (87). More
interestingly, Pellino3 inhibits LPS-induced IFNb expression in
oxidation-low-lipoprotein (Ox-LDL) induced macrophage-
derived foam cells via IRAK1/IRAK4/Pellino3/scavenger
receptor-A1(SR-A1) dependent mono-ubiquitination of TRAF
family member associated NF-kB activator (TANK) (90). In
detail, Ox-LDL activates IRAK1 and Pellino3, which provokes
mono-ubiquitination of the adaptor TANK in TRAF3-containing
signaling complex, leading to the failure of LPS-induced TBK1
recruitment, IRF3 activation, and IFNb expression in
macrophage-derived foam cells (90).

In the TRIF-dependent interferon induction signaling
(Figure 3), Pellino1 and Pellion3 display polar functions in the
production of IFNs (41, 44, 86, 87). The role of Pellino1 in the
induction of IFNs seemed to be unclear. First, Pellino1 is
dispensable or required to produce IFN in PBECs and MEFs.
IFN-b induction is attenuated in myeloid cells and MEFs
expressing a Pellino1 mutant lacking E3 ligase activity. Second,
the fact that Pellino1 deficiency profoundly promotes IFN-b
expression in microglia and Pellino1-deficient mice display
heightened IFN-I levels demonstrate a potentially negative role
of Pellino1 in the induction of IFN-b. The above results were
confusing. The Pellino1 might play a different role in different
cell types, and this needs to be further investigated. Unlike
puzzled Pellino1, Pellino3 serves as a negative regulator of
IRF7 but not IRF3 in TLR3 upon viruses (87). Perhaps there is
a hypothesis that the Pellino family may follow a not yet clear
priority rule to determine which member is responsible for the
regulation of IFNs. So far, there is no report on Pellino2 and IFN
production. More attention should be paid to the discrepancy of
the Pellino family.
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Pellino Family in RIP-Dependent Signaling
RIP1 was initially discovered as an adapter kinase involved in the
transduction of TNFR signals. It is required for the suppression of
nuclear factor kappa-B kinase (IKK) activation and apoptosis via a
RIP homology interaction motif (RHIM) in TRIF-dependent
signaling (73, 91, 92) and TNF signaling in the absence of TRIF.
In the TRIF-dependent pathway, RIP1 ubiquitination induced by
poly(I:C) is required for IKK activation (92). The discovery of the
kinase RIP3 (93, 94) and its substratemixed lineage kinase domain-
like protein (MLKL) (95, 96) leads to an awareness of this pathway.
However, TRIF does not employ RIP1 to initiate IRFs (91, 92), and
RIP3 is not required for NF-kB activation in TLR signaling (97).
Both TNF/RIP1/RIP3/MLKL signaling and TRIF/RIP1/RIP3
pathway participate in the activation of NF-kB/MEKKs in cell
survival, apoptosis, and necroptosis (4).

Pellino1 mediates RIP1 K63-Ub to active NF-kB signaling in the
TRIF-dependent TLR pathway to maintain cell survival (37, 38, 98).
Under LPS and dual hypoxia stimulation, destabilized Pellino1
(Ser39 phosphorylation and turnover) induced by death-associated
Frontiers in Immunology | www.frontiersin.org 7
protein kinase 1 (DAPK1) leads to the release of TRIF-RIP1
signalosome to recruit caspase-8 and induces tubular damage and
cell apoptosis inacutekidney injury (AKI)model (98).Thebindingof
Pellino1, RIP1, and TIF inhibits tubular damage by hindering cell
apoptosis. In the TRIF-independent RIP pathway, IKK-related
kinases activate Pellino1 in TNFa-stimulated mouse embryonic
fibroblasts (MEFs) (35). According to an intriguing study, Pellino1
acts as a dual regulator of necroptosis and apoptosis. Pellino1 acts as a
pro-necroptosis K63-ubiquitin ligase role in necroptosis by forming
RIP1 andRIP3 complex in a RIP1 kinase activity-dependent way but
as an apoptosis inhibitor by reducing expression levels of cellular
FADD-like interleukin-1b converting enzyme inhibitory protein (c-
FLIP) in MEFs cells stimulated by TNFa (56). In contrast to the
previous result, Pellino1 might prevent HeLa cells aberrant
necroptosis by causing RIP3 hyperactivation and further
degradation via K48-linked polyubiquitylation (19). The results
reflect the different roles of Pellino1 in normal and cancerous cells.
However, Smad6 can block the interaction between Pellino1 and
RIP1 to inhibit NF-kB (84, 85). Pellino3 is also proved to be a novel
FIGURE 3 | The Pellino family in TRIF-dependent interferon induction signaling. Pellino1 is required for interferon production upon viral double-stranded stimulation
and is upregulated by TRIF, TBK1, and IKKϵ. IKKϵ and TBK1 enhance the activation of Pellino1 depending on IRF3 and K63 linked polyubiquitination of TBK1.
Pellino1 interacts with DEAF1 independent of its E3 ligase activity and leads to the binding of DEAF1 and IFNb promoters (IRF3 and IRF7) for IFNb gene transcription
and secretion. Bid upregulates Pellino1 and enhances the interaction of Pellino1and TBK1, leading to IRF3 production.
February 2022 | Volume 13 | Article 728794

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang and Li Pellino Family in PRRs Signaling
regulator of cell survival upon TNFa. Pellino3 can impair TNFa-
inducedcomplex II formationandcaspase-8-mediatedRIP1cleavage
via interacting with RIP1 and caspase 8, leading to the inhibition of
apoptosis in vitro and in vivo (27).

In the RIP-dependent signaling (Figure 4), both Pellino1 and
Pellino3 were involved in two types of programmed cell death:
apoptosis and necroptosis. It seemed that the K63-Ub of RIP1 is
crucial to cell fate. For instance, stimulations of TLR3 and TLR4
induce the interaction of RIP1 andTRIF followed by recruitment of
Pellino1, which mediates K63-linked polyubiquitylation of RIP1,
leading to recruitment of TAK-1 for NF-kB induced cell survival
(19, 37). Upon TNFa, the K63-linked polyubiquitylation of RIP1 is
also necessary for the NF-kB pathway and cell survival (99).
Pellino1 can also mediate RIP1 K63-linked polyubiquitylation on
TNFa. Pellino1-induced RIP1 K63-linked polyubiquitylation
appears to be a critical factor in cell survival, apoptosis, and
necroptosis. Current studies show that Pellino1 only induces
RIP1 K63-linked polyubiquitylation to trigger necroptosis but is
Frontiers in Immunology | www.frontiersin.org 8
not necessary for necrosome formation. Perhaps, the different
interaction sites between RIP1 and Pellino1 decide the signal
conduction. Interestingly, Pellion1 plays almost the exact
opposite role in necroptosis in different cell types, enhancing
necroptosis in normal cells (56) and preventing necroptosis in
Hela cells (19). As an important role in controlling complex II
formation in response to TNF, Pellino3 can interact with the
complex II components, caspase-8, and RIP1, to inhibit cell
death. Pellino3 plays a critical role in inhibiting the pro-apoptotic
effects of TNF independent of NF-kB (27). This is consistent with
previous reports indicating thatPellino3maynegatively regulate IL-
1-induced and LPS-induced activation of NF-kB (8, 36). More
efforts are needed to unravel the roles of the Pellino family in cell
survival and death.

Pellino Family in NLRs Related Signalings
NOD1, NOD2, and NLR Family Pyrin Domain Containing 3
(NLRP3) are involved in the anti-infection process by activating
FIGURE 4 | Pellino family in RIP-dependent signaling. Pellino1 induces the ubiquitination of RIP1 and RIP3 to regulate NF-kB activation in cell survival, apoptosis,
and necroptosis in TNFa, TLR3, and TLR4 signaling. Pellino1 targets RIP1 by K63-Ub to active NF-kB to maintain cell survival. Under the dual stimulation of LPS
and hypoxia, Pellino1 releases the TRIF-RIP1 signalosome to recruit caspase-8 and induces tubular apoptosis via DAPK1-mediated Pellino1 destabilization. Upon
TNFa, Pellino1 is a dual modulator in necroptosis and apoptosis. Pellino1 plays a positive role in necroptosis by K63-Ub to form RIP1 and RIP3 pro-necroptosis
complex in a RIP1 kinase activity-dependent way but as an apoptosis inhibitor by reducing expression levels of c-FLIP. Smad6 blocks the interaction between
Pellino1 and RIP1 to inhibit NF-kB activation. Pellino1 can induce RIP3 hyperactivation and degradation via K48-Ub to inhibit necroptosis.
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the NF-kB signaling pathway, type I IFN signaling pathway,
autophagy-related pathway, and pyroptosis pathway (100, 101).

In NOD2 related signaling, Pellino3 exerts a protective
function via NOD2 in chemical drugs induced models of
colitis (26). Pellino3 promotes magnesium-dependent
phosphatase (MDP) induced K63-Ub of RIP2 and recruits
TAK1 and IKK complexes to active NF-kB and MAPK in an
inhibitor of apoptosis family of protein (IAP)-independent
manner to maintain cell survival (26) (Figure 5).

Two pathways are involved in IL-1b secretion, TLR/IL-1R-
mediated upregulation of precursor pro-IL-1b and NLR-induced
activation of caspase-1 that cleaves pro-IL-1b to yield mature IL-
1b secretion (102). Pyroptosis is a novel programmed cell death
featured by IL-1b secretion (103). In NLRP3-related pyroptosis,
the oligomerization of NLRP3, pro-caspase-1, and the
inflammasome adaptor apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) causes pro-
Frontiers in Immunology | www.frontiersin.org 9
caspase-1 to be converted into active caspase-1, which then
cleaves pro-IL-1b and pro-IL-18, resulting in the maturation
and secretion of proinflammatory cytokines (104). Pellino1,
Pellino2, and Pellino3 are demonstrated to mediate the release
of IL-1b and IL-18 in cell pyroptosis (57, 105, 106). A new study
reveals that Pellino1 is required for NLRP3-induced caspase-1
activation and IL-1bmaturation (106). Pellino1 increases NLRP3
inflammasome activation, which results in IL-1b production, by
facilitating ubiquitination of the inflammasome adaptor ASC
K63, enhancing the ASC/NLRP3 interaction and ASC
oligomerization (106). Pellino2 is also essential for the priming
and activation of inflammasome to induce pyroptosis (57, 105).
In Pellino2 deficient macrophages, the activation of the NLRP3
inflammasome is suppressed (57). Pellino2 isolates IRAK1 from
NLRP3 via ubiquitination and mediates K63 ubiquitination of
NLRP3 to increase NLRP3 activation for mature IL-
1b generation in mice and bone marrow-derived macrophages
FIGURE 5 | Pellino family in the NLR-dependent signaling. Pellino1 mediates the K63 ubiquitination of inflammasome adaptor ASC, which enhances the ASC/
NLRP3 interaction and ASC oligomerization to facilitate NLRP3 inflammasome activation leading to induction of IL-1b secretion. Pellino2 induces IRAK1 isolation from
NLRP3 via ubiquitination and mediates K63 ubiquitination of NLRP3 to promote the activation of NLRP3 for mature IL-1b production in response to LPS. Pellino2
can co-localize with NLRP3 and ASC during inflammasome activation in macrophages upon the effect of potassium efflux. Pellino3 acts as a potential partner of
SQSTM1/p62, which leads to Pellino3 autophagy-dependent degradation in TLR4-signaling, thereby impairing Pellino3-dependent pro-IL-1B proinflammatory
expression. Pellino3 promotes MDP-induced K63 ubiquitination of RIP2 and recruits TAK1 and IKK complexes to active NF-kB and MAPK in an IAP-independent
manner to maintain cell survival.
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(MDMs) in response to LPS (57). Further studies show that
Pellino2 can co-localize with NLRP3 and ASC during
inflammasome activation in macrophages upon the effect of
potassium efflux (105). Both Pellino1 and Pellino2 are
implicated in NLRP3-mediated pyroptosis, demonstrating the
importance of the Pellino family in pyroptosis. Furthermore, the
autophagy-dependent degradation of Pellino3 induced by
sequestosome-1 (SQSTM1/p62) hindering IL-1b secretion
upon LPS offers a strong backup for the roles of the Pellino
family in pyroptosis (25).

The above results show that the Pellino family is crucial to
ubiquitin-dependent inflammasome activation and inflammatory
release (Figure 5). Previous studies reported that the Pellino family
is a key mediator for activation of NF-kB (37), and NF-kB is
involved in NLRP3 induction. The most surprising is that Pellino1
deficiency did not reduce the induction ofNLRP3 expression (106).
Pellino1, Pellino2, and Pellino3 may play a role in the division and
cooperation to mediate NF-kB activation, inflammasome
activation, and inflammatory release in pyroptosis. In NOD2
related signaling, Pellino3 is still a protective regulator to
maintain cell survival, consistent with Pellino3 in TNF signaling.
Perhaps Pellino3 may differ from Pellino1 and Pellino1 in special
cells and contexts. More efforts are needed to reveal the roles of the
Pellino family in programmed cell death.
Pellino Family in B-Cell and
T-Cell Signaling
In addition to the above functions in immunity, Pellino1 shows a
potent negative function in T cell and B cell activation (43, 107).
Under normal circumstances, Pellino1 is highly expressed in
mouse splenic B cells and T cells (107). Pellino1 inhibits T cell
activation and prevents autoimmunity by ubiquitinating c-Rel, a
downstream important protein in NF-kB activation, with specific
K48-Ub (107). Pellino1 is seemed to be unique for T cell
activation and maintenance of peripheral immune tolerance
for its high expression in lymphocytes (107). Pellino1
deficiency promoting B cell activation hints that Pellino1
negatively regulates B cells specifically in response to poly(I:C)
and noncanonical NF-kB stimulation (43, 108). Pellino1 inhibits
noncanonical NF-kB activation and alleviates lupus-like disease
in systemic lupus erythematosus by K48 ubiquitination of NIK to
downregulate nuclear p52 and Rel B (43) (Figure 6).

Ubiquitinationhasemergedasa criticalmechanismregulatingT
cell and B cell activation (109). Pellino1 is critical in regulating IKK
activation by TRIF dependent TLR signaling, although it is largely
dispensable for IKK activation in MyD88-dependent TLR/IL-1R
(37). However, in B-cell and T-cell (Figure 6), the reason it is
dispensable to active IKKbyTCR signalsmay be the degradation of
c-Rel induced by Pellino1specific K48 ubiquitination (107). The
noncanonical NF-kB pathway critically regulates B cell activation
and antibody production. It is reported that TRAF2-cIAPs
mediated the K48 ubiquitination of NIK as E3 ligases (110–112).
Pellino1 is also required for TLR-induced cIAPs ubiquitination and
activation in microglia (75). So it is reasonable to assume that
Pellino1-mediatedNIK ubiquitinationmay be due to the activation
of cIAPs by Pellino1.
Frontiers in Immunology | www.frontiersin.org 10
PELLINO FAMILY IN TUMOR AND
MicroRNAs RELATED SIGNALINGS

Pellino Family in Tumorigenesis
Pellino1 plays a novel role in angiogenesis, a typical phenotype in
tumorigenesis (113).

As a downstreamof vascular endothelial growth factor receptor 2
(VEGFR2), Pellino1 induces the AKT and MAPK activated protein
kinase 2 (MK2) phosphorylation to restore cell migration potential,
proangiogenic responses and the wound healing ability with
VEGFR2 deficiency in vitro and in vivo (114). Further studies
demonstrated that Pellino1 is a novel proangiogenic molecule
directly regulated by VEGFR (115). In mouse ischemia models,
Pellino1 deletion increases oxidative stress, reduces cIAP2-NF-kB
cell survival, decreases angiogenic response, and lowers tissue
function (116). Transgenic mice constitutively expressing human
Pellino1had a shorter lifespan, awide rangeof lymphoid tumors, and
prominent B-cell infiltration (117). Pellino-1 may be an oncogene in
cancer based on its proangiogenic and tumor development function.
The association of Pellino1 with protooncogene-MYC, B cell
lymphoma 6 protein (BCL6), murine double minute X (MDMX),
and p53 demonstrates the role of Pellino1 in cancer (117–120). In
diffuse large B-cell lymphoma, Pellino1 directly interacts with and
induces oncoprotein BCL6 K63-Ub (117). Pellino1 is required for
DNA damage in the promotion of HR repair by feedback activation
of ataxia telangiectasia-mutated gene (ATM) via NBS1
ubiquitination (121) and p53 activation upon exposure to DNA
damaging agents (120). Pellino1 negatively regulates and sequesters
MDMX via ubiquitylation in the cytoplasm and free p53 to activate
responsive genes such as p21 (119). Furthermore, Pellino1
downregulation causes MDMX nuclear localization, lowers p53
activity, and speeds up c-MYC-induced carcinogenesis linked with
a reduction in p53 function (119). IAP may be a positive partner of
Pellino1 in regulating tumor cell survival (116, 122). High expression
of Pellino1 inhuman lung cancer cell lines upregulates the expression
of IAP proteins (cIAP1 and cIAP2) through K63-Ub, which leads to
cell survival but not apoptosis (122). Pellino1 can also promote
epithelial-mesenchymal transition (EMT) by inducing K63-Ub of
Snail and Slug, contributing to tumorigenesis (47, 123).
Fundamentally, Pellino1 causes homeostatic regulation of the
mitotic cell cycle and checkpoints to be inhibited, contributing to
the initiation and progression of the neoplastic chromosome
aneuploidy through ubiquitination-mediated downregulation
budding uninhibited by benzimidazoles related1 (BubR1) and
induced mitotic dysfunction (124). This may be crucial evidence to
demonstrate Pellino1 to be an oncogene.

As a positive regulator of inflammatory factors, Pellino1 induces
the production of inflammatory factors followed by the change of
inflammatory microenvironment leading to the transformation of
normal cells to tumor cells. So it is necessary to study the
inflammatory microenvironment induced by the Pellino family in
normal cells, tumor cells, and even cell co-culture systems.

Pellino Family in microRNAs
Related Signalings
MicroRNAs (microRNAs) are small non-coding RNAs with the
capability ofmodulating gene expressionat the post-transcriptional
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level either by inhibitingmessengerRNA(mRNA) translationorby
promoting mRNA degradation (125). Several microRNAs are
involved in interactions with the Pellino family. MicroRNA-21
(126–128), microRNA-153-3p (129), and microRNA-155 (130,
131) are involved in T cell regulation; MicroRNA-590-5p (132),
microRNA-142a-3p (133), microRNA-155-5p (133), and
microRNA-744 (134) in inflammatory disease; MicroRNA-128-
3p (134) in tumor disease.

A positive correlation between microRNA-21 and Pellino1
suggests that microRNA-21 and Pellino1 might be associated
with autoimmune primary ovarian insufficiency (POI) patients
(126). MicroRNA-21 targets the Pellino1–c-Rel pathway to
promote glucose metabolism of pathogenic T helper cell 17
(TH17) cells by activating the NF-k B with a decrease in
Pellino1 and an increase in c-Rel (128). In systemic lupus
erythematosus, upregulated microRNA-153-3p represses
Pellino1 in vitro. It induces immune dysregulation by lowering
Frontiers in Immunology | www.frontiersin.org 11
umbilical cord mesenchymal stem cells (UC-MSCs) proliferation,
migration, and mitigates the decrease in T follicular helper (Tfh)
cells and increases T regulatory (Treg) cells (SLE) (129).
MicroRNA-155 represses the expression of Pellino1, leading to
the abrogation of the c-Rel, which controls cellular proliferation
and CD40L expression in Tfh cells (130). MicroRNA-155 (131),
microRNA-590-5p (132), microRNA-142a-3p (133), and
microRNA-155-5p (133) can all target and reduce Pellino1
expression, leading to the suppression of pro-inflammatory
production in neuroinflammation. MiR-744 interacting with the
3’ untranslated region (UTR) represses Pellino3 expression and
leads to upregulation of the IFN-dependent chemokines C–C
Motif Chemokine Ligand 5 (CCL5) and CXCL10 (135). In non-
small cell lung cancer, levels of Pellino3 are positive to the long
non-coding RNA (lncRNA) MIAT but negatively related to miR-
128-3p (134). It is clear that microRNAs primarily suppress the
expression of Pellino1 to modulate immune responses. More
FIGURE 6 | Pellino family in B cell and T cell. Pellino1 inhibits noncanonical NF-kB activation by K48 ubiquitination of NIK to downregulate nuclear p52 and Rel B
in the noncanonical NF-kB pathway. Pellino1 also negatively regulates T cell activation and prevents autoimmunity by specific K48 ubiquitination of c-Rel to inhibit
NF-kB activation.
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research should be conducted to determine the association
between microRNAs and the Pellino family.
CONCLUSION

As a highly conserved protein and positive regulator in immunity
discovered in Drosophila (52), the structure of Pellino in other
species is also conserved, e.g., viral Pellino (136), Freshwater
Prawn (137), Zebrafish (138), Crassostrea hongkongensis (139),
and Japonicas (140). Viral Pellino should be studied further for a
poxviral homolog of the Pellino protein capable of inhibiting Toll-
like receptor signaling independent of IRAK1 and inhibiting
Pellino3-mediated activation of the p38 MAPK pathway (136).
The function of viral Pellino suggests that the mammalian Pellino
family may act as a barrier or enhancer during viral infection.

There are two important conserved domains for the Pellino
family: the FHA domain promoting phosphorylation with IRAKs
(16, 24, 28–31)and the RING domain, which determines E3 ligase
features (7, 14, 39). The FHA domain in the Pellino family differs
from the classical FHA domain by containing an additional
appendage or “wing” that is formed by two inserts in the FHA
region (16). Interestingly, multiple IRAK phosphorylation sites in
the “wing” region and the importance of this appendage region for
IRAK binding remain to be experimentally addressed. More
interesting is that different domains can interact with the same
protein. Pellino1 can interact with RIP3 depending on the FHA
and RING-like domains (19, 37). The FHA and RING-like
domains are responsible for Pellino3 interacting with RIP1,
RIP2, and caspase-8 (26, 27). These suggest that the activation
of different sites may be a key factor in determining the cell to
survive or be dead dependent or independent on the RIP family.

There are some conflict points about the Pellino family in
regulating PRR signalings. In contrast to the positive role in
regulating proinflammatory cytokine induction (37), Pellino1
negatively regulates T-cell activation in autoimmunity (107); and
promotes microglia-mediated CNS inflammation (75) by negatively
regulating type I interferon induction and antiviral immunity in the
microglial cells (41). Pellino1 and Pellion3 display polar functions in
the induction of IFNs (41, 44, 86, 87). Unlike peripheral
macrophages expressing Pellino1, Pellino2, and Pellino3,
microglia predominantly express Pellino1 (75). The induction of
IFNs in MEFs and peripheral cells induced by Pellino1 deficiency
showed no significance (37). However, IFN-b induction is
attenuated in myeloid cells and MEFs expressing a Pellino1
mutant lacking E3 ligase activity (44). The more intriguing aspect
is that Pellino1 performs different roles in necroptosis and apoptosis
in the same cell, as a critical modulator of TNF-a-mediated cell
death pathways, enhancing necroptosis and inhibiting apoptosis by
modifying K63-Ub of RIPK1 with the inconstant expression of c-
MYC and c-FLIP (56). These indicate that specific tissue expression
of Pellino1 may promote their specialized roles in specific cells.
According to the current studies, the Pelino1 tissue expression level
is from high to low in peripheral blood, leukocytes, placenta, lung,
liver, kidney, spleen, thymus, skeletal muscle, brain, small intestine,
colon, and heart (33). Pelino3 tissue expression level is from high to
low is brain, testis, heart, liver, lung, placenta, stomach, kidney,
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spleen, small intestine, colon, and muscle (15). Perhaps the tissue
expression levels of Pellino1 and Pellino3 may be a clue to explain
the polarized function of the Pellino family. More attention should
be paid to Pellino2 and Pellino3 for a better understanding of the
roles of the Pellino family.

Several studies have shown that Pellino1 acts as an oncogene
role in tumorigenesis to maintain cell survival (116, 122) and even
upregulates other oncogene levels, e.g., Bcl6 and c-Myc (122). As a
positive regulator of inflammatory factors, Pellino1 induces the
production of inflammatory factors followed by the change of
inflammatory microenvironment leading to the transformation of
normal cells to tumor cells. It is necessary to study the
inflammatory microenvironment induced by the Pellino family
in normal cells, tumor cells, and even cell co-culture systems.

Only a few proteins have been reported tomediate the Pellino1,
e.g., Smad6/7 (20, 21), DEAF1 (88), Bid (89), and DAPK1 (98),
which positively or negatively regulate the Pellino family. A new
study reports six novel interaction partners of Pellino-2 in the liver
cells, insulin receptor substrate 1 (IRS-1), NIMA-related kinase 9
(NEK9), tumor necrosis factor receptor-associated factor 7
(TRAF7), roundabout homolog 1 (ROBO-1), and disheveled
homolog 2 (DVL-2) (141). More efforts are needed to study the
expression and binding partners of the Pellino family in both
the immune cells and non-immune cells. Understanding the
regulatory mechanism between the Pellino family and other
proteins can assist us in acquiring a comprehensive knowledge
of the cross-talk among PRRs signaling.

This paper mainly reviews the roles of the Pellino family in the
PRR signaling pathways. According to a flow of studies, we can
preliminarily infer that the Pellino family has indeed been involved
in the PRRs related pathways with the major function of regulating
IFNs and inflammatory factors leading to cell survival or death.
Maybe the different cell types and ligands stimulation play crucial
roles in the Pellino family-related PRRs signalings. However, there
are still many contradictory phenomena that cannot be explained
very well. The Pellino family might play different roles in different
cell types and contexts. Currently, Pellino1 has attracted a lot of
attention and more efforts will be needed to study Pellino2 and
Pellino3 in order to have a better understanding of the whole family
in immunity. The future focus is to probe a more detailed and clear
mechanism of the Pellino family in the immune system to improve
related immune diseases.
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