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Abstract 

Background: Meiotic recombination is a vital biological process playing an essential 
role in genome’s structural and functional dynamics. Genomes exhibit highly various 
recombination profiles along chromosomes associated with several chromatin states. 
However, eu‑heterochromatin boundaries are not available nor easily provided for non‑
model organisms, especially for newly sequenced ones. Hence, we miss accurate local 
recombination rates necessary to address evolutionary questions.

Results: Here, we propose an automated computational tool, based on the Marey 
maps method, allowing to identify heterochromatin boundaries along chromosomes 
and estimating local recombination rates. Our method, called BREC (heterochromatin 
Boundaries and RECombination rate estimates) is non‑genome‑specific, running even 
on non‑model genomes as long as genetic and physical maps are available. BREC 
is based on pure statistics and is data‑driven, implying that good input data quality 
remains a strong requirement. Therefore, a data pre‑processing module (data quality 
control and cleaning) is provided. Experiments show that BREC handles different mark‑
ers’ density and distribution issues.

Conclusions: BREC’s heterochromatin boundaries have been validated with cyto‑
logical equivalents experimentally generated on the fruit fly Drosophila melanogaster 
genome, for which BREC returns congruent corresponding values. Also, BREC’s recom‑
bination rates have been compared with previously reported estimates. Based on the 
promising results, we believe our tool has the potential to help bring data science into 
the service of genome biology and evolution. We introduce BREC within an R‑package 
and a Shiny web‑based user‑friendly application yielding a fast, easy‑to‑use, and 
broadly accessible resource. The BREC R‑package is available at the GitHub repository 
https:// github. com/ Genom eStru cture Organ izati on.
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Background
Meiotic recombination is a vital biological process that plays an essential role in inves-
tigating genome-wide structural and functional dynamics. Recombination events are 
observed in almost all eukaryotic genomes. Crossover, a one-point recombination event, 
is the exchange of DNA fragments between sister chromatids during meiosis. Recom-
bination is a fundamental process that ensures genotypic and phenotypic diversity. 
Thereby, it is strongly related to various genomic features such as gene density, repetitive 
DNA, and DNA methylation [1–3].

Recombination rate varies not only between species but also within species and along 
chromosomes. Different heterochromatin regions exhibit different profiles of recombi-
nation events. Therefore, in order to understand how and why the recombination rate 
varies, it is vital to break down the chromosome structure into smaller blocks where 
several genomic features, besides recombination rate, are also known to exhibit differ-
ent profiles. Chromatin boundaries allow to distinguish between two primary states of 
chromatin that can be defined as euchromatin, which is lightly compact with a high gene 
density, and on the contrary, heterochromatin, which is highly compact with a paucity 
in genes. The heterochromatin is represented in different chromosome regions: the cen-
tromere and the telomeres. Euchromatin and heterochromatin regions exhibit different 
behaviors in terms of genomic features and dynamics related to their biologic function, 
such as the cell division process that ensures the organism viability. Consequently, eas-
ily distinguishing chromatin states is necessary for conducting further studies in various 
research fields and to be able to address questions related to cellular processes such as 
meiosis, gene expression, epigenetics, DNA methylation, natural selection and evolution, 
genome architecture and organization, among others [4–6]. In particular, the profound 
understanding of centromeres, their complete and precise structure, organization, and 
evolution is currently a hot research area. These repeat-rich heterochromatin regions are 
currently still either poorly or not assembled at all across eukaryote genomes. Despite 
the enormous advances offered by the Next Generation Sequencing (NGS) technologies, 
centromeres are still considered enigmas, mostly because they prevent genome assembly 
algorithms from reaching their optimal performance to achieve more complete whole 
genome sequences [7]. Besides, the highly diverse mechanisms of heterochromatin 
positioning [8] and repositioning [9] remain a complicated obstacle in the face of fully 
understanding genome organization. Thus, generating high resolution genetic, physical, 
and recombination maps and locating heterochromatin regions is increasingly attractive 
to the community across an extensive range of taxa [10–16].

Numerous methods for estimating recombination rates exist. Genomic inference 
methods, covering population-based, pedigree-based and gamete-based approaches, 
have been included in the latest review by [17]. Among the listed methods, population 
genetic-based methods [18] provide accurate fine-scale estimates. Nevertheless, these 
methods are costly, time-consuming, require substantial expertise, and most of all, do 
not apply to all kinds of organisms. Moreover, the sperm-typing method [19], which is 
also extremely accurate, providing high-density recombination maps, is male-specific 
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and is applicable only on limited genome regions. On the other hand, a purely statisti-
cal approach, the Marey Maps [20], could avoid some of the above issues based on other 
available genomic data: the genetic and physical distances of genomic markers.

The Marey maps approach consists of correlating the physical map with the genetic 
map representing respectively physical and genetic distances for a set of genetic markers 
on the same chromosome. Despite the efficiency of this approach and mostly the avail-
ability of physical and genetic maps, generating recombination maps rapidly and for any 
organism is still challenging. Hence, the increasing need for an automatic, portable, and 
easy-to-use solution.

Some Marey map-based tools already exist, two of which are primarily used. The 
MareyMap Online [21, 22] applies to multiple species, yet, it does not allow an accurate 
estimate of recombination rates on specific regions like the chromosome extremities. 
Second, the Drosophila melanogaster Recombination Rate Calculator (RRC) [23] solves 
the previous issue by adjusting recombination rate estimates on such chromosome 
regions, but as indicated by its name, it is D. melanogaster-specific. With the emerging 
NGS technologies, accessing whole chromosome sequences has become possible on a 
wide range of species. Therefore, we may expect an exponential increase in the markers 
number, requiring more adapted tools to handle such new scopes of data efficiently.

Here, we propose a new Marey map-based method as an automated computational 
solution that aims to, firstly, identify heterochromatin boundaries (HCB) along chromo-
somes, secondly, estimate local recombination rates, and lastly, adjust recombination 
rates on chromosome along the chromosomal regions marked by the identified bounda-
ries. Our proposed method, called BREC (heterochromatin Boundaries and RECombi-
nation rate estimates), is provided within an R-package and a Shiny web-based graphical 
user interface. BREC takes as input the same genomic data, genetic and physical dis-
tances, as in previous tools. It follows a workflow (see Fig. 1) that, first, tests the data 
quality and offers a cleaning option, then estimates local recombination rates and iden-
tify HCB. Finally, BREC re-adjusts recombination rate estimates along heterochromatin 
regions, the centromere and telomere(s), in order to keep the estimates as authentic as 
possible to the biological process [24]. Identifying the boundaries delimiting euchro-
matin and heterochromatin allows investigating recombination rate variations along 
the whole genome, helping to compare recombination patterns within and between 
species. Furthermore, such functionality is fundamental for identifying the position of 
the centromeric and telomeric regions. Indeed, the position of the centromere along 
the chromosome has an influence on the chromatin environment, and recent studies 
are interested in investigating how genome architecture may change with centromere 
organization [7].

Our results have been validated with cytological equivalents, experimentally gen-
erated on the fruit fly D. melanogaster genome [4, 25, 26]. Moreover, since BREC is 
non-genome-specific, it could efficiently be run on other model as well as non-model 
organisms for which both genetic and physical maps are available. Even though it is still 
an ongoing study, BREC has also been tested with different species, and the results are 
reported.

This paper is organized as follows: the set of our results, based on both simu-
lated and real data, are reported in "Results" section. They are then discussed in 
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"Discussion" section. Concluding remarks with some perspectives are outlined in 
"Conclusions" section. The full set of BREC modules, detailed within a step-by-step 
workflow, as well as further details on the data involved, and how the methods were 
calibrated and validated, are presented in "Methods" section. Additional files: 1, 3, 4, 

Fig. 1 BREC workflow. This figure provides an overview of the tool design explaining how the different 
modules are linked together and how BREC functionalities are implemented. The top‑to‑bottom diagram 
starts with the required input data, how they are pre‑processed (Step 0) and exploited (Main process: 6 
major steps), then, what outputs are expected to be returned and in which format. A more detailed version is 
included in the Additional file 16, where a zoom‑in on the main process is clarified for each of the six steps
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5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19 consist of Figures S1–S15, and Additional files: 
2, 6, 15, 17, 20, 21 include Tables S1-S6).

Results
In this section, we present the results obtained through the following validation pro-
cess. First, we automatically re-identified HCB with an approximate resolution to the 
reference equivalents. Second, we tested the robustness of BREC methods according 
to input data quality, using the well-studied D. melanogaster genome data, for which 
recombination rate and HCB have already been accurately provided [4, 23, 25, 27] 
(Additional file 1). Besides, we extended the robustness test to a completely different 
genome, the domesticated tomato S. lycopersicum [28] to better interpret the study 
results. Even if the Loess span value does not impact the HCB identification, but only 
the resulting recombination rate estimates, the span values used in this study are: 
15% for D. melanogaster (for comparison purpose) and 25% for the rest of the experi-
ments. Our analysis shows that BREC is applicable to data from various organisms, 
as long as the data quality is good enough. BREC is data-driven, thus, the outputs 
strongly depend on the markers density, distribution, and chromosome type identi-
fied (automatically, or with the user’s a priori knowledge).

Approximate, yet congruent HCB

Fruit fly genome D.melanogaster

Our approach for identifying HCB has been primarily validated with cytological data 
experimentally generated on the D. melanogaster Release 5 genome [4, 25, 26, 29]. For 
all five chromosomal arms (X, 2L, 2R, 3L, 3R). This genome presents a mean density of 
5.39 markers/Mb and a mean physical map length of 22.92Mb. We obtained congru-
ent HCB with a good overlap and shift, distance between the physical position of the 
reference and BREC, from 20Kb to 4.58Mb (see "Data and implementation" section). 
We did not observe a difference in terms of mean shift for the telomeric and cen-
tromeric BREC identification ( χ2 = 0.10 , df = 1, p− value = 0.75)(See Table  1 and 
Additional file 2). We observe a lower resolution for the chromosomal arms 3L and 
3R (see Additional file 3). This suggests that those two chromosomal arms’ data might 
not present as good quality as the rest of the genome. Interestingly, the local mark-
ers density for these two chromosomal arms shows a high variation, unlike the other 
chromosomal arms. For instance, the 2L for which BREC returns accurate results, 
shows a lower variation (see Additional file 4). Without these two arms, the max shift 
for both centromeric and telomeric BREC boundaries is smaller than 1.54Mb, with a 
mean shift decreasing from 1.43 to 0.71 Mb.

This first analysis suggests that BREC methods return accurate results on this 
genome. However, the boundaries identification process appears very sensitive to the 
markers’ local density and distribution along a chromosome (see Additional file  3). 
Therefore, we conducted further experiments on a different dataset, the tomato 
genome (see Additional file  5).
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Tomato genome S. lycopersicum

Results of experimenting BREC behaviour on all 12 chromosomes of S. lycopersicum 
genome [28] are shown as values in Additional file 6 and as plots in Additional file 7. 
This genome presents a mean density of 2.64 markers/Mb and a mean physical map 
length of 62.71Mb. We observe a variation in the shift value representing the dif-
ference on the physical map between reference HCB and their equivalents returned 
by BREC. Unlike the D. melanogaster genome, which is of a smaller size, with five 
telocentric chromosomes (chromosomal arms) and a strongly different markers dis-
tribution, the tomato genome exhibits a completely different study case. It is a plant 
genome, with approximately 8-fold bigger genome size. It is organized as twelve ate-
locentric chromosomes of a mean size of   60Mb, except for chromosomes 2 and 6, 
which are more likely to be rather considered telocentric based on their markers dis-
tribution. Also, we observe a long plateau of markers along the centromeric region 
with lower density than the rest of the chromosomes. Something which highly differs 
from D. melanogaster data. We believe all these differences between both genomes 
give a good validation and evaluation for BREC behavior towards various data quality 
scenarios. Furthermore, since BREC is a data-driven tool, these experiments help ana-
lyze data-related limitations that BREC could face while resolving differently. From 
another point of view, BREC results on the tomato genome highlight the fact that 
markers distribution along heterochromatin regions, in particular, strongly impacts 
the identification of eu-heterochromatin boundaries, even when the density is of 2 
markers/Mb or more.

Consistency despite the low data quality

We aim in this part to study to what extent BREC results are depending on the data 
quality.

BREC handles low markers density

We started by assessing the markers’ density on the BREC estimates. We generated 
simulated datasets with decreasing fractions of markers for each chromosomal arm 
(from 100% to 30%). For that, we randomly selected a fraction of markers, 30 times, 
and computed the mean shift between BREC and the reference telomeric and centro-
meric boundaries. We have noted that BREC’s resolution decreases drastically with 
the fraction and therefore with the marker density (see Additional file 8). However, 
BREC results appeared stable until 70% of the data for all the chromosomal arms, 
more specifically for the telomeric boundary detection. Only for the centromeric 
boundary of the chromosomal arm 3R, we observed the opposite pattern: BREC 
returns more accurate telomeric boundary estimates when the markers’ number 
decreases. This supports the low quality of the data around the 3R centromere.

This simulation process allowed to set a minimum density threshold representing the 
minimum value for data density in order to guarantee accurate results for BREC esti-
mates at 5 markers/Mb (fraction of around 70% of the data) on average in D. mela-
nogaster. This analysis also supports the fact that because the markers’ density alone can 
not explain the BREC resolution, BREC may also be sensitive to the marker distribution.
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Additional file 4 clearly shows that markers’ density varies within and between the 
five chromosomal arms with a mean of 4 to 8 markers/Mb. The variance is induced by 
the extreme values of local density, such as 0 or 24 markers/Mb on the chromosomal 
arm X. Still, the overall density is around 5 markers/Mb for the whole genome.

BREC handles heterogeneous distribution

Along chromosomes, genetic markers are not homogeneously distributed. Therefore, to 
assess the impact of the distribution of markers on BREC results, we designed different 
data scenarios regarding a reference data distribution (see "Simulated data for quality 
control testing" section). We choose as reference the chromosomal arms 2L and 2R of 
D. melanogaster as we have obtained the most accurate results with their data. After the 
concatenation of the two arms, we ended up with a metacentric simulated chromosome 
as a starting simulation scenario (total physical length of 44Mb). While this length was 
kept unchanged, markers local density and distribution were modified (see "Simulated 
data for quality control testing" section  and Additional file 9).

One particular yet typical case is the centromeric gap. Throughout our analysis, we 
consider that a chromosome presents a centromeric gap if its data exhibit a lack of 
genetic markers on a relatively large region on the physical map. Centromeric regions 
usually are less accessible to sequence due to their highly compact chromatin state. Con-
sequently, these regions are also hard to assemble, and that is why many genomes have 
chromosomes presenting a centromeric gap. It is essential to know that a centromeric 
gap is not always precisely located in the middle of a chromosome. Instead, its physical 
location depends on the chromosome type (see more details in Additional file 10).

We also assess the veracity of BREC on datasets with variable distributions using sim-
ulated data with and without a centromeric gap (see Additional file 9).

For all six simulation datasets, BREC results overlap the reference boundaries. Thus 
BREC correctly handles the presence of a centromeric gap (see Additional file 9: (a)(c)
(e)). BREC remains robust to a non-uniform distribution of markers, under the condi-
tion that regions flanking the boundaries are greater than 2 markers/Mb (see Additional 
file 11). In the case of a non-uniform distribution, BREC resolution is higher when the 
local density is stronger around heterochromatin regions (see Additional file 9: (c)(d)(e)
(f )). This suggests that low density on euchromatin regions far from the boundaries is 
not especially a problem either.

Accurate local recombination rate estimates

After identifying the HCB, BREC provides optimized local estimates of recombination 
rate along the chromosome by taking into account the absence of recombination in het-
erochromatin regions. Recombination rates are reset to zero across the centromeric 
and telomeric regions regardless of the regression model. To closely compare the third 
degree polynomial with Loess, using different span values, we experimented with this 
aspect on D. melanogaster chromosomal arms and reported the results in Additional 
file 12.

To assess the veracity of the recombination rates along the whole genome, we com-
pared BREC results with previous recombination rate estimates (see Fig.  2; [4, 25]). 
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BREC recombination rate estimates are significantly strongly correlated with reference 
data (Spearman’s: P ≪ 0.001 ) while the reference estimates fail in telomeric regions.

BREC is non‑genome‑specific

NGS, High Throughput Sequencing (HTS) technologies, and numerous further compu-
tational advances are increasingly providing genetic and physical maps with more and 
more accessible markers along the centromeric regions. Such progress in the availability 
of data of poorly accessible genomic regions is a huge opportunity to shift our knowl-
edge of heterochromatin DNA sequences and their dynamics, as in the case of Trans-
posable Elements (TEs), for example. Therefore, BREC is not identifying centromeric 

Fig. 2 Comparison of BREC versus FlyBase recombination rate recombination rates along the five 
chromosomal arms (X, 2L, 2R, 3L, 3R) of D. melanogaster Release 5. Both recombination maps are obtained 
using the same regression model: Loess with span 15%. The HCB defined by BREC are represented in red and 
the reference data are in blue. Heterochromatin regions identified by BREC are highlighted in yellow
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gaps as centromeric regions as it might seem. Instead, it is targeting centromeric as well 
as telomeric boundaries identification regardless of the presence or absence of mark-
ers neither of their density or distribution variations across such complicated genomic 
regions (see Additional file 13). Given that BREC is non-genome-specific, applying HCB 
identification on various genomes has allowed to widen the experimental design and to 
test more thoroughly how BREC responds to different data scenarios. Despite the sev-
eral challenges due to data quality issues and following a data-driven approach, BREC is 
a non-genome-specific tool that aims to help to tackle biological questions.

Easy, fast and accessible tool via an R‑package and a Shiny app

BREC is an R-package entirely developed with the R programming language. The cur-
rent version of the package and documentation are available on the GitHub repository: 
https:// github. com/ Genom eStru cture Organ izati on.

In addition to the interactive visual results provided by BREC, the package comes with 
a web-based Graphical User Interface (GUI) build using the shiny and shinydashboard 

Fig. 3 Screenshots of BREC web application ‑ Run BREC web page a and b show the inputs interface. c It 
shows the output of running BREC on the specified inputs, represented with an interactive web‑based plot 
as a result

https://github.com/GenomeStructureOrganization
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libraries. The intuitive GUI makes it a lot easier to use BREC without struggling with the 
command line (see screenshots in Fig. 3d and Additional file 14).

As for the speed aspect, BREC is quite fast when executing the main functions. We 
reported the running time for D. melanogaster R5 and S. lycopersicum in Additional 
files 2 and 15, respectively (plotting excluded). Nevertheless, when running BREC via the 
Shiny application, and due to the interactive plots displayed, it takes longer because of 
the plotly rendering. Still, it depends on the size of the genetic and physical maps used, 
as well as the markers density, as slightly appears in the same tables. The results pre-
sented from other species (see Additional file 13) highlight better this dependence.

Discussion
The main two results of BREC are the eu-heterochromatin boundaries and the local 
recombination rate estimates (see Fig. 2 and Additional file  3).

The HCB algorithm, which identifies the location of centromeric and telomeric 
regions on the physical map, relies on the regression model obtained from the correla-
tion between the physical distance and the genetic distance of each marker. Then, the 
goodness-of-fit measure, the R-squared, is used to obtain a curve upon which the transi-
tion between euchromatin and heterochromatin is detectable.

On the other hand, the recombination rate algorithm, which estimates local recombi-
nation rates, returns the first derivative of the previous regression model as the recombi-
nation rates, then resets the derivative values to zero along the heterochromatin regions 
identified (see Additional file 16).

We validated BREC methods with a reference dataset known to be of high quality: D. 
melanogaster. While two distinct approaches were respectively implemented for the 

Table 1 BREC HCB compared to reference boundaries from the reference genome of D. 
melanogaster 

The shift is the absolute value of the distance between the BREC and the reference physical heterochromatin boundary. 
The first five rows represent all chromosomal arms. Grouped columns present reference, BREC and shift values for the 
centromeric boundaries (Columns 2–4), and for the telomeric boundaries (Columns 4–6). Here the boundary values 
correspond to the internal HCB. The external boundaries are represented by the physical positions of the first and the 
last markers of the chromosomes. All values are expressed in Megabase (Mb). The asterisk indicates the largest shift value 
reported on centromeric and telomeric boundaries separately (see corresponding Additional file 3). The last four rows 
represent general statistics on the shift value. From top to bottom, they are minimum, maximum, mean, and median 
respectively. See details on the shift metrics in "Validation metrics" section

Chromosomal arm Centromeric (Mb) Telomeric (Mb)

Boundaries Shift Boundaries Shift

Reference BREC Reference BREC

X 20.67 20.10 0.56 2.46 0.92 1.54

2L 19.95 20.33 0.38 0.70 0.68 0.02

2R 6.09 5.01 1.08 20.02 20.71 0.69

3L 18.41 20.30 1.90 0.36 2.26 1.91*

3R 8.35 3.77 4.58* 27.25 25.64 1.61

Min. shift 0.38 0.02

Max. shift 4.58 1.91

Mean shift 1.70 1.15

Median shift 1.08  1.54
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detection of telomeric and centromeric regions, our results show a similar high resolu-
tion (see Table 1 and Additional file 3). Then we analysed BREC’s robustness using simu-
lations of a progressive data degradation (see Additional files 8 and 11). Even if BREC is 
sensitive to the markers’ distribution and thus to the local markers’ density, it can cor-
rectly handle a low global markers’ density. For the D. melanogaster genome, a density of 
5 markers/Mb seems to be sufficient to detect the HCB accurately.

We also validated BREC using the domesticated tomato S. lycopersicum dataset 
(see Additional files 6 and  7). At first glance, one might ask: why validating with this 
species when the results do not seem really congruent? In fact, we have decided to 
investigate this genome as it provides a more insightful understanding of the data-
driven aspect of BREC and how data quality strongly impacts the heterochromatin 
identification algorithm. Variations in the local density of markers in this genome are 
particularly associated with the relatively large plateaued centromeric region repre-
senting more than 50% of the chromosome’s length. Such data scenario is quite dif-
ferent from what we previously reported on the D. melanogaster chromosomal arms. 
This is partially the reason for which we chose this genome for testing BREC limits.

While analyzing the experiments more closely, we found that BREC processes 
some of the chromosomes as presenting a centromeric gap, while that is not actu-
ally the case. Thus, we forced the HCB algorithm to automatically apply the with-
no-centromeric-gap-algorithm, then, we were inspired to implement this option 
into the GUI in order to give the users the ability to take advantage of their a priori 
knowledge and by consequence to use BREC more efficiently. Meanwhile, we are 
considering how to make BREC completely automated regarding this point for an 
updated version later on. Besides, the reference heterochromatin results we used for 
the BREC validation are rather an approximate than an exact indicator. The physical 
positions used as reference correspond to the first and last markers tagged as "het-
erochromatin" on the spreadsheet file published by the Tomato Genome Consortium 
authors in [28]. However, we hesitated before validating BREC results with these 
approximate reference values due to the redundant existence of markers tagged as 
"euchromatin" directly before or after these reference positions. Unfortunately, we 
were unable to validate telomeric regions since the reference values were not avail-
able. As a result, we are convinced that BREC is approximating well enough in the 
face of all the disrupting factors mentioned above.

On the other hand, this method’s ambition is to escape species-dependence, which 
means it is conceived to apply to a various range of genomes. To test that, we also 
launched BREC on genomic data from different species (the house mouse’s chromo-
some 4, roundworm’s chromosome 3, and the chromosome 1 of zebrafish). Experi-
ments on these whole genomes showed that BREC works as expected and identifies 
chromosome types in 95% of cases (see Additional file 13).

One can assume, with the exponential increase of genomic resources associated 
with the revolution of the sequencing technologies, that more fine-scale genetic 
maps will be available. Therefore, BREC has quite the potential to widen the horizon 
of deployment of data science in the service of genome biology and evolution. It will 
be crucial to develop a dedicated database to store all this data.
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BREC package and design offer numerous advantageous functionalities (see Addi-
tional file 17) compared to similar existing tools [22, 23]. Thus, we believe our new 
computational solution will allow a large set of scientific questions, such as the ones 
raised by the authors of [5, 30], to be addressed more confidently, considering model 
as well as non-model organisms, and with various perspectives.

Conclusions
We designed a user-friendly tool called BREC that analyses genomes on the chro-
mosome scale, from the recombination point-of-view. BREC is a rapid and reliable 
method designed to determine euchromatin-heterochromatin boundaries on chro-
mosomal arms or whole chromosomes (resp. telocentric or metacentric). BREC also 
uses its heterochromatin boundary results to improve the recombination rate esti-
mates along the chromosomes.

Currently, the Shiny app is being deployed on the https:// shiny apps. io server, 
in order to provide an install-free experience to the users. In addition, the "whole 
genome" version of BREC is a work in progress. It will allow to run BREC on all 
the chromosomes of a genome of interest at once. This version might also present 
the identified heterochromatin regions on chromosome ideograms. As short-term 
perspectives for this work, we may consider extending the robustness tests to addi-
tional datasets with high quality and mandatory information (e.g. boundaries iden-
tified with the cytological method, high quality maps). Retrieving such datasets 
seems to become less and less complicated. We may also improve the identification 
of boundaries with a more refined analysis around them, using an iterative multi-
scale algorithm for instance. Finally, we will be happy to consider the users’ feedback 
and improve our tool’s ergonomy and usability. As mid-term perspectives, we under-
line that BREC could integrate other algorithms aiming to provide further analysis 
options such as the comparison of heterochromatin regions between closely related 
species. Also, we are aware that it would be interesting to compare BREC results 
with more existing methods. Thus, we plan to properly do so in the near future.

Methods
New approach: BREC

BREC is designed following the workflow represented in Fig. 1. To ensure that the broad-
est range of species could be analyzed by our tool, we designed a pipeline that adapts 
behavior with respect to input data. Each step of the workflow relies mostly on statistical 
analysis, adaptive algorithms, and decision proposals led by empirical observation.

The workflow starts with a pre-processing module (called "Step 0") aiming to prepare 
the data prior to the analysis. Then, it follows six main steps: (1) estimate Marey Map-
based local recombination rates, (2) identify chromosome type, (3) prepare the HCB 
identification, (4) identify the centromeric boundaries, (5) identify the telomeric bound-
aries, and (6) extrapolate the local recombination rate map and generate an interactive 
plot containing all BREC outputs (see Fig. 1). Each step is detailed hereafter and sum-
marised in Additional file 16.

https://shinyapps.io
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Step 0 ‑ Apply data pre‑processing

Since we have noticed that BREC estimates are sensitive to the quality of input data, we 
propose a pre-processing step to assess data quality and suggest an optional data clean-
ing for outliers. As such, we could ensure proper functioning during further steps.

Data quality control (DQC) The quality of input data is tested regarding two criteria: 
(1) the density of markers and (2) the homogeneity of their distribution on the physi-
cal map along a given chromosome. First, the mean density, defined as the number of 
markers per physical map length, is computed. This value is compared with the mini-
mum required threshold of 2 markers/Mb. Based on the displayed results, the user gets 
to decide if data cleaning is required or not. The threshold of 2 markers/Mb is selected 
based on a simulation process that allowed to test BREC results while decreasing mark-
ers density until the observed HCB estimates seemed to be no longer exploitable (see 
"Simulated data for quality control testing" section). Second, the distribution of input 
data is tested via a comparison with a simulated uniform distribution of identical mark-
ers density and physical map length. This comparison is applied using Pearson’s χ2 test 
[31], which allows examining how close the observed distribution (input data) is to the 
expected one (simulated data).

Data cleaning The cleaning step aims to reduce the disruptive impact of noisy data, 
such as outliers, in order to provide a more accurate recombination rate and heterochro-
matin boundary results. If the input data fails to pass the Data Quality Control (DQC) 
test, the user has the option to apply or not a cleaning process. This process consists 
of identifying the extreme outliers and eliminating them upon the user’s confirmation. 
Outliers are detected using the distribution statistics of the genetic map (see Additional 
file 18). More precisely, inter-marker distances (separating each two consecutive points) 
are computed along the genetic map. Using a boxplot, distribution statistics (quartiles, 
mean, median) are applied on these inter-marker distances to identify outliers, which are 
chosen as the 5% of the data points with a greater genetic distance than the maximum 
extreme value, and should be discarded. Thus, the cleaning targets markers for which 
the genetic distance is quite larger than most of the rest. After the first cleaning itera-
tion, DQC is applied again to assess the new density and distribution. The user can also 
choose to bypass the cleaning step, but BREC’s behavior is no longer guaranteed in such 
cases.

Step 1 ‑ Estimate Marey Map‑based local recombination rates

Once the data are cleaned, the recombination rate can be estimated based on the 
Marey map [20] approach by: (1) correlating genetic and physical maps, (2) generating 
two regression models -third degree polynomial and Loess- that better fits these data, 
(3) computing the prime derivative for both models which will represent preliminary 
recombination maps for the chromosome. The primary purpose of interpolation here is 
to provide local recombination rate estimates for any given physical position, instead of 
only the ones corresponding to available markers.

At this point, both recombination maps are used to identify the chromosome type as 
well as the approximate position of centromeric and telomeric regions. Nevertheless, as 
a final output, BREC will return only the Loess-based adjusted map for recombination 
rates since it provides finer local estimates than the polynomial-based map.
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Step 2 ‑ Identify chromosome type

BREC provides a function to identify the type of a given chromosome according to the 
position of its centromere. This function is based on the physical position of the small-
est value of recombination rate estimates, which primarily indicates where the centro-
meric region is more likely to be located. Our experimentation allowed to come up with 
the following scheme (see Additional file 10). Two main types are identified: telocentric 
and atelocentric [32]. Atelocentric type could be either metacentric (centromere located 
approximately in the center with almost two equal arms) or not metacentric (centromere 
located between the center and one of the telomeres). The latter includes the two most 
known subtypes, submetacentric and acrocentric (recently considered types rather than 
subtypes). It is tricky for BREC to distinguish between submetacentric and acrocentric 
chromosomes correctly. Their centromeres’ position varies slightly, and capturing this 
variation (based on the smallest value of recombination rate on both maps -polynomial 
and Loess-) could not be achieved yet. Therefore, we chose to provide this result only 
if the implemented process allowed to identify the subtype automatically. Otherwise, 
the user gets the statistics on the chromosome’s data and is invited to decide accord-
ing to further a priori knowledge. The two subtypes (metacentric and not metacentric) 
are distinguished following intuitive reasoning inspired by their definition found in the 
literature. First, BREC identifies whether the chromosome is an arm (telocentric) or not 
(atelocentric). Then, it tests if the physical position of the smallest value of the estimated 
recombination rate is located between 40% to 60% interval. In this case, the subtype is 
displayed as metacentric. Otherwise, it is displayed as not metacentric. The recombina-
tion rate is estimated using the Loess model ("LOcal regrESSion") [33, 34].

Step 3 ‑ Prepare the HCB identification

The HCB identification is a purely statistical approach relying on the coefficient of deter-
mination R2 , which measures how good the generated regression model fits the input 
data [35]. We chose this approach because the Marey map usually exhibits a lower qual-
ity of markers (density and distribution) on the heterochromatin regions. Thus, we aim 
to capture this transition from high to low quality regions (or vice versa) as it reflects the 
transition from euchromatin to heterochromatin regions (or vice versa). The coefficient 
R2 is defined as the cumulative sum of squares of differences between the interpolation 
and observed data. R2 values are accumulated along the chromosome. In order to elimi-
nate the biased effect of accumulation, R2 is computed twice: R2 − forward starts the 
accumulation from the beginning of the chromosome to provide the left centromeric 
and left telomeric boundaries. In contrast, R2 − backwards starts from the end of the 
chromosome, providing the right centromeric and right telomeric boundaries. These R2 
values were calculated using the rsq package in R. To compute R2 cumulative vectors, 
rsq function is applied on the polynomial regression model. In fact, there is no such 
function for non-linear regression models like the Loess because, in such models, high 
R2 does not always indicate a good fit. A sliding window is defined and applied on the R2 
vectors to precisely analyze their variations (see details in the next step). In the case of 
a telocentric chromosome, the position of the centromere is then deduced as the left or 
the right side of the arm, while in the case of an atelocentric chromosome, the existence 
of a centromeric gap is investigated.
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Step 4 ‑ Identify centromeric boundaries

Since the centromeric region is known to present reduced recombination rates, the 
starting point for detecting its boundaries is the physical position corresponding to the 
smallest polynomial-based recombination rate value. A sliding window is then applied to 
expand the starting point into a region based on R2 variations in two opposite directions. 
The sliding window’s size is automatically computed for each chromosome as the largest 
value of ranges between each two consecutive positions on the physical map (indicated 
as i and i + 1 in Eq. 1). After making sure the sliding window includes at least two data 
points, the mean of local growth rates inside the current window is computed and tested 
compared to zero. If it is positive (resp. negative) on the forward (resp. backward) R2 
curve, the value corresponding to the window’s ending edge is returned as the left (resp. 
right) boundary. Else, the window moves by a step value equal to its size.

There are some cases where chromosome data present a centromeric gap. Such a lack 
of data produces biased centromeric boundaries. To overcome this issue, chromosomes 
with a centromeric gap are handled with a slightly different approach. After comparing 
the mean of local growth rates regarding to zero, accumulated slopes of all data points 
within the sliding window are computed, adding one more point at a time. If the mean 
of accumulated slopes keeps the same variation direction as the mean of growth rates, 
the centromeric boundary is set as the window’s ending edge. Else, the window slides by 
the same step value as before (equal to its size). The difference between the two chromo-
some types is that only one sliding window is used for the telocentric case, its starting 
point is the centromeric side, and it moves away from it. As for the atelocentric case, two 
sliding windows are used (one on each R2 curve), their starting point is the same, and 
they move in opposite directions to expand the centromere into a region.

Step 5 ‑ Identify telomeric boundaries

Since telomeres are considered heterochromatin regions as well, they also tend to 
exhibit low fitness between the regression model and the data points. More specifi-
cally, the accumulated R2 curve tends to present a significant depletion around telom-
eres. Therefore, a telomeric boundary is defined here as the physical position of the most 
significant depletion corresponding to the smallest value of the R2 curve. As such, in 
the telocentric case, only one R2 curve is used. It gives one boundary of the telomeric 
region (the other boundary is defined by the beginning of the left telomere or the end 
of the right telomere). Whilst in the atelocentric case, where the are two telomeres, the 
depletion on R2 − forward detects the end of the left telomeric region, and the deple-
tion on R2 − backwards detects the beginning of the right telomeric region. The other 
two boundaries (the beginning of the left telomere and the end of the right telomere) are 
defined to be, respectively, the same values of the two markers with the smallest and the 
largest physical position available within the input data of the chromosome of interest.

(1)
sliding_window_size(chromosome) = max{|physPosi+1 − physPosi| : 1 ≤ i ≤ n− 1}
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Step 6 ‑ Extrapolate the local recombination rate estimates and generate interactive plot

The extrapolation of recombination rate estimates at the identified centromeric and telo-
meric regions automatically performs an adjustment by resetting the initial biased values 
to zero along these heterochromatin ranges. Finally, all of the above BREC outputs are 
combined to generate one interactive plot to display for visualization and download (see 
details in "Easy, fast and accessible tool via an R-package and a Shiny app" section).

It is important to emphasize that throughout the whole main process module, only 
Step 1 " Estimating Marey map-based local recombination rates " comes from previous 
methods ([20, 21]). Otherwise, each of the steps 2-6 are fully developed (designed and 
implemented) within BREC and represent a new contribution, in addition to step zero 
" Data pre-processing ", as mentioned above.

Data and implementation

Validation data

The only input dataset to provide for BREC is genetic and physical maps for one or sev-
eral chromosomes. A simple CSV file with at least two columns for both maps is valid. If 
the dataset is for more than one chromosome or the whole genome, a third column, with 
the chromosome identifier, is required.

Our results have been validated using Release 5 of the fruit fly D. melanogaster [36, 
37] genome as well as the domesticated tomato Solanum lycopersicum genome (version 
SL3.0).

We also tested BREC using other datasets of different species: house mouse (Mus mus-
culus castaneus, MGI) chromosome 4 [38], roundworm (Caenorhabditis elegans, ws170) 
chromosome 3 [39], zebrafish (Danio rerio, Zv6) chromosome 1 [40], respectively (see 
Additional file  13), as samples from the multi-genome dataset included within BREC 
(see further details on the full built-in dataset in "Description of main components of the 
Shiny app" section).

Fruit fly genome D.melanogaster Physical and genetic maps are available for download 
from the FlyBase website (http:// flyba se. org/; Release 5) [26]. This genome is represented 
here with five chromosomal arms: 2L, 2R, 3L, 3R, and X (see Additional file 2), for a total 
of 618 markers, 114.59Mb of physical map and 249.5cM of genetic map. This dataset is 
manually curated and is already clean from outliers. Therefore, the cleaning step offered 
within BREC was skipped.

Tomato genome S. lycopersicum Domesticated tomato with 12 chromosomes has a 
genome size of approximately 900Mb. Based on the latest physical and genetic maps 
reported by the Tomato Genome Consortium [28], we present both maps content 
(markers number, markers density, physical map length, and genetic map length) for 
each chromosome in Additional file 15. For a total of 1957 markers, 752.47Mb of physi-
cal map and 1434.49cM of genetic map along the whole genome.

Simulated data for quality control testing

We call data scenarios, the layout in which the data markers are arranged along the 
physical map. For experimentally testing the limits of BREC, various data scenarios have 

http://flybase.org/
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been specifically designed based on D. melanogaster chromosomal arms (see Additional 
file 9).

In an attempt to investigate how the markers’ density varies within and between the 
five chromosomal arms of D. melanogaster Release 5 genome, the density has been ana-
lyzed in two ways: locally (with 1Mb-bins) and globally (on the whole chromosome). 
Additional file 4 shows the results of this investigation, where each little box indicates 
how many markers are present within the corresponding region of size 1Mb on the 
physical map. The mean value represents the global density. It is also shown in Addi-
tional file 2 where the values are slightly different. This is due to computing the markers’ 
density in two different ways with respect to the analysis. Additional file 2, presenting 
the genomic features of the validation dataset, shows markers density in Column 3, 
which is simply the result of the division of markers number (in column 2) by the physi-
cal map length (in Column 4). For example, in the case of chromosomal arm X, this gives 
165/21.22 = 7.78markers/Mb . On the other hand, Additional file 4, aimed for analyzing 
the variation of local markers density, displays the mean of of all 1Mb-bins densities, 
which is calculated as the sum of local densities divided by the number of bins, and this 
gives 165/22 = 7.5markers/Mb.

The exact same analysis has been conducted on the tomato genome S. lycopersicum 
where the only difference lies in using 5-Mb instead of 1-Mb bins, due to the larger size 
of its chromosomes (see Additional file 5).

Validation metrics

The measure we used to evaluate the resolution of BREC’s HCB is called shift hereaf-
ter. It is defined as the difference between the observed heterochromatin boundary 
( observed_HCB ) and the expected one ( expected_HCB ) in terms of physical distance (in 
Mb)(see Equation 2).

The shift value is computed for each heterochromatin boundary independently. There-
fore, we observe only two boundaries on a telocentric chromosome (one centromeric 
and one telomeric). In comparison, we observe four boundaries in the case of an atelo-
centric chromosome (two centromeric giving the centromeric region and two telomeric 
giving each of the two telomeric regions).

The shift measure was introduced not only to validate BREC’s results with the refer-
ence equivalents but also to empirically calibrate the DQC module, where we are mostly 
interested in the variation of its value as per variations of the quality of input data.

Implementation and Analysis

The entire BREC project was developed using the R programming language (version 
3.6.3/2020-02-29) and the RStudio environment (version 1.2.5033).

The graphical user interface is build using the shiny and shinydashboard  packages. 
The web-based interactive plots are generated by the plotly package. Data simulations, 
result analysis, reproducible reports, and data visualizations are implemented using a 
large set of packages such as tidyverse, dplyr, R markdown, Sweave and knitr among 

(2)shift = |observed_HCB− expected_HCB|
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others. The complete list of software resources used is available on the online version of 
the BREC package accessible at https:// github. com/ Genom eStru cture Organ izati on.

From inside an R environment, the BREC package can be downloaded and installed 
using the command in the code chunk in Additional file 19. In case of installation issues, 
further documentation is available online on the ReadMe page of the GitHub repository. 
If all runs correctly, the BREC shiny application will be launched on your default internet 
browser (see Shiny interface screenshots in Additional file 14).

All BREC experiments have been carried out using a personal computer with the fol-
lowing specs:

• Processor: Intel® CoreTM i7-7820HQ CPU @ 2.90GHz x 8
• Memory: 32Mo
• Hard disc: 512Go SSD
• Graphics: NV117 / Mesa Intel® HD Graphics 630 (KBL GT2)
• Operating system: 64-bit Ubuntu 20.04 LTS

Description of main components of the Shiny app

Build‑in dataset

Users can either run BREC on a dataset of 44 genomes, mainly imported from [41], 
enriched with two mosquito genomes from [42] and updated with D. melanogaster 
Release 6 from FlyBase [26] (see Additional files 20 and 21), already available within the 
package, or, load new genomes data according to their own interest.

User-specific genomic data should be provided as inputs within at least a 3-column 
CSV file format, including for each marker: chromosome identifier, genetic distance, and 
physical distance, respectively. On the other hand, outputs from BREC running results 
are represented via interactive plots.

GUI input options

The BREC shiny interface provides the user with a set of options to select as parameters for 
a given dataset (see Fig. 3a). These options are mainly necessary in case the user works on 
his/her own dataset and this way the appropriate parameters would be available to choose 
from. First, a tab to specify the running mode (one chromosome). Then, a radio button 
group to choose the dataset source (existing within BREC or importing new dataset). For 
the existing datasets case, there is a drop-down scrolling list to select one of the available 
genomes (over 40 options), a second one for the corresponding physical map unit (Mb or 
pb) and a third one for the chromosome ID (available based on the dataset and not the 
genome biologically speaking). While for the import new dataset case, three more objects 
are added (see Fig. 3b); a fileInput to select csv data file, a textInput to enter the genome 
name (optional), and a drop-down scrolling list to select the data separator (comma , sem-
icolon or tab character -set as the default-). As for the Loess regression model, the span 
parameter is required. It represents the percentage of how many markers to include in the 
local smoothing process. There is a numericInput object set by default at value 15% with 
an indication about the range of the span values allowed (min = 5%, max = 100%, step = 
5%). The user should keep in mind that the span value actually goes from zero to one, yet, 
in a matter of simplification, BREC handles the conversion on its own. Thus, for example, 

https://github.com/GenomeStructureOrganization


Page 19 of 22Mansour et al. BMC Bioinformatics          (2021) 22:396  

a value of zero basically means that no markers are used for the local smoothing process 
by Loess, and so, it will induce a running error. Lastly, there is a checkbox to apply data 
cleaning if checked. Otherwise, the cleaning step will be skipped. This options could save 
the user some running time if s/he already have a priori knowledge that a specific genome’s 
dataset has already been manually curated). The user is then all set to hit the Run button. 
BREC will start processing the chromosome of interest by identifying its type (telocentric 
or atelocentric). Since this step is quite difficult to automatically get the correct result, the 
user might be invited to interfere via a popup alert asking for a chromosome type confirma-
tion (see Fig. 3b). As shown in Additional file 14a, all available genomes could be accessed 
from the left-hand panel (in dark grey) and specifically on the tab " Genomic data " where 
two pages are available: " Download data files  " which provides a data table correspond-
ing to the selected genome on a scrolling list along with download buttons, and " Dataset 
details " displaying a more global overview of the whole build-in aata repository (see Addi-
tional file 14b). To give a glance at the GUI outputs, Fig. 3c shows BREC results displayed 
within an interactive plot where the user will have the an interesting experience by hovering 
over the different plot lines and points, visualising markers labels, zooming in and out, sav-
ing a snapshot as a PNG image file, and many more available options thanks to the plotly 
package.
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