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Monozygotic twins are genetically identical but rarely phenotypically identical. Epigenetic
and transcriptional variation could influence this phenotypic discordance. Investigation of
intra-pair differences in molecular markers and a given phenotype in monozygotic twins
controls most of the genetic contribution, enabling studies of the molecular features
of the phenotype. This study aimed to identify genes associated with cognition in
later life using integrated enrichment analyses of the results of blood-derived intra-
pair epigenome-wide and transcriptome-wide association analyses of cognition in 452
middle-aged and old-aged monozygotic twins (56–80 years). Integrated analyses were
performed with an unsupervised approach using KeyPathwayMiner, and a supervised
approach using the KEGG and Reactome databases. The supervised approach
identified several enriched gene sets, including “neuroactive ligand receptor interaction”
(p-value = 1.62∗10-2), “Neurotrophin signaling” (p-value = 2.52∗10-3), “Alzheimer’s
disease” (p-value = 1.20∗10-2), and “long-term depression” (p-value = 1.62∗10-2).
The unsupervised approach resulted in a 238 gene network, including the Alzheimer’s
disease gene APP (Amyloid Beta Precursor Protein) as an exception node, and
several novel candidate genes. The strength of the unsupervised method is that it can
reveal previously uncharacterized sub-pathways and detect interplay between biological
processes, which remain undetected by the current supervised methods. In conclusion,
this study identified several previously reported cognition genes and pathways and,
additionally, puts forward novel candidates for further verification and validation.

Keywords: later life cognitive functioning, epigenome-wide association study, transcriptome-wide association
study, integrative, monozygotic twins, intra-pair comparison
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INTRODUCTION

Cognitive functioning involves processes such as attention,
action, learning, planning, memory, reasoning, problem-solving,
communication, and decision making (Chan et al., 2008). In
general, cognitive functioning of an individual matures and
improves until early adulthood (Salthouse, 2010). Some measures
of cognition, such as measures of effectiveness of processing
performed at the time of assessment (e.g., speed and memory
tests) starts to decline after early adulthood, whereas other
measures of cognition, such as measures representing abilities
acquired throughout life (e.g., vocabulary knowledge) increase
at least until the sixth decade of life (Salthouse, 2010). At older
ages, cognitive functioning in some individuals progresses from
normal to mildly impaired, and sometimes further to dementia
and neurodegenerative diseases like Alzheimer’s disease (AD)
(Gan et al., 2018). Other individuals remain cognitively healthy,
although the continued and inevitable decline in cognitive
functioning with age potentially has a significant influence on
their quality of life (Dause and Kirby, 2019).

The heritability of cognitive functioning has been reported
to be considerable, in the range of 50–80% as estimated in
twin studies (Pedersen et al., 1992; McGue and Christensen,
2002). Genome-wide association studies (GWAS) of general
cognitive functioning have so far identified more than 300
associated genetic variants (e.g., Ibrahim-Verbaas et al., 2016;
Sniekers et al., 2017; Davies et al., 2018; Savage et al., 2018;
Hill et al., 2019a), however, despite this success, large parts of
the heritability of cognitive functioning are still unaccounted
for (Hill et al., 2019b). Other sources of biological variation
that potentially contribute to the variation in a multi-factorial
phenotype like cognition are variation in molecular markers of
DNA methylation and gene expression (Trerotola et al., 2015).
Analyses of genome-wide epigenetic and transcriptomic data in
relation to cognitive functioning have mainly been performed
in individuals with different degrees of cognitive impairment
(i.e., elderly and/or diseased individuals) and not with a focus
on cognitive functioning during normative cognitive aging in
healthy middle-aged or young elderly individuals. However,
recently Starnawska et al. (2017) published an epigenome-wide
association study (EWAS) of 486 individuals from the survey of
middle-aged and old-aged Danish twins also investigated in the
present study: two CpG sites in the ZBTB46 and TAF12 genes
were identified to have suggestive significant association (p< 1E-
06) to cognitive function. Furthermore, enrichment analysis
revealed the “Neuroactive ligand-receptor interaction” gene set
to be the most enriched gene set (multiple testing corrected
p-value = 0.0588). Additionally, in an EWAS meta-analysis of
11 cohorts from the CHARGE consortium, Marioni et al. (2018)
investigated seven different measures of cognitive functioning
and found two significant results: an association between
cg21450381 located in an intergenic region on chromosome 12
and global cognitive functioning measured by the mini-mental
state examination (N = 6,780), and an association between a CpG
in the INPP5A gene and phonemic verbal fluency (N = 6,390).
Marioni et al. (2018) did not perform enrichment analysis.
Harries et al. (2012) performed a transcriptome-wide association

study (TWAS) in 691 subjects from the InCHIANTI study (age
range 30–104 years) and identified the CCR2 gene as nominally
significantly associated to cognitive function (multiple testing
corrected p-value = 0.076). Enrichment analysis was conducted,
but no significant gene sets were found. Finally, in a recent
TWAS of 470 individuals from the survey of Danish middle-aged
and old-aged twins also explored in the present study (Nygaard
et al., 2019), the POU6F1 gene was identified as associated
with cognitive functioning with suggestive significance (multiple
testing corrected p-value = 0.09). Gene set enrichment analysis
conducted in this study identified gene sets related to ribosomal
proteins, protein metabolism, RNA metabolism, the immune
system, and infectious disease as significantly associated with
cognitive function.

In addition to studies of one type of omics data at a time,
an approach aiming to decipher the functional genomics of a
given phenotype is the integration of different layers of biological
variation, e.g., the integration of genome-wide genetic data
(GWAS), genome-wide DNA methylation data (EWAS), and
genome-wide gene expression data (TWAS) (Pineda et al., 2015).
The most straightforward practice of integration of omics data
involves the integration of two different kinds of data, e.g., genetic
variants and gene expression data, or genetic variants and DNA
methylation data for identifying expression and methylation
quantitative trait loci (eQTLs and mQTLs), respectively (e.g.,
Yin et al., 2015; van Dongen et al., 2018). Integration of DNA
methylation data and gene expression data has been commonly
used to simply correlate the results obtained separately by
EWAS and TWAS analyses (e.g., Gervin et al., 2012; Li et al.,
2019). The rationale behind this approach is to exclude the
potential complex interaction between DNA methylation and
gene expression processes, while considering only genes of
relevance to the phenotype of interest, i.e., restricting to sites with
nominal significance below a chosen cut-off. The advantage of
this approach is a lowering of the potential risk of false negative
findings present when analyzing all sites in the dataset.

With the aim to investigate the functional genomics of
cognitive functioning in later life, we integrate the results of
an EWAS and a TWAS of intra-pair differences in cognition
and intra-pair differences in blood-derived DNA methylation
markers and in gene expression levels, respectively. The EWAS
and TWAS are performed as intra-pair analyses in 452 healthy
middle-aged and old-aged monozygotic twins resulting in a
robust study design, where the genetic contribution to the
phenotype and molecular markers can be controlled for. We
apply a conventional supervised gene set enrichment analysis
(GSEA) via the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Reactome databases, as well as an unsupervised
de novo pathway enrichment analysis using the algorithm
KeyPathwayMiner. The advantage of the latter is that it can
unravel sub-networks (also referred to as key pathways), which
are aberrant with respect to, for instance, gene expression values
compared to the organism’s interaction network (Alcaraz et al.,
2014), and hence can identify previously uncharacterized sub-
pathways (Alcaraz et al., 2016). Also, KeyPathwayMiner can
detect interplay between biological processes, which remain
undetected by the current GSEA methods that are based on
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a pre-defined list of pathways of known biological processes
(Batra et al., 2017).

MATERIALS AND METHODS

Study Population and Phenotype Data
The study population comprised 452 monozygotic twins drawn
from the Study of Middle-Aged Danish Twins (MADT)
conducted within the framework of the Danish Twin Registry.
MADT was initiated in 1998 as a Danish nation-wide study of
4,314 twins randomly selected from the consecutive birth cohorts
of 1931–1952. In 2008–2011 a follow-up study was performed on
all eligible twin pairs originally enrolled (Pedersen et al., 2019).
Zygosity was established by four questions regarding physical
similarity, which correctly classified more than 95% of the pairs
(Christiansen et al., 2003). The present study population included
all monozygotic (MZ) twin pairs who participated in the MADT
follow-up study and for whom genome-wide DNA methylation
and gene expression data were available. Informed consent to
participate in the survey was obtained from all participants
and the survey was approved by The Regional Scientific
Ethical Committees for Southern Denmark (S-VF-19980072) and
conducted in accordance with the Helsinki II declaration.

General cognitive functioning was assessed by a cognitive
composite score based on five brief cognitive tests related to
verbal fluency (the number of animals named in a minute),
immediate word recall (recall of items from a list of 12 words),
delayed word recall (recall of items from the list of 12 words
after approximately 10 min), forward digit recall (forward recall
of series of numbers), and backwards digits recall (backwards
recall of series of numbers) (McGue and Christensen, 2002). The
verbal fluency and immediate and delayed word recall tests were
adapted from the neuropsychological assessment proposed by
the Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) (Morris et al., 1989), while the forward and backwards
digits recall tests reflect attention and working memory (McGue
and Christensen, 2002). The scores from each of the five tests
were standardized using the means and standard deviations (SDs)
of the participants from MADT who were younger than 50 years
of age at baseline in 1998, and the cognitive composite score
was computed by summation of the five standardized scores. If
one of the five items were missing, the cognitive composite score
was multiplied by 5/4. When more than one item was missing
the composite score was coded as missing. Finally, the composite
score was linearly transferred to have a mean of 50 and a SD of 10.

Biological Data
The genome-wide methylation data was extracted from a dataset
of 492 MADT twins (Soerensen et al., 2019), while the genome-
wide transcriptome data was extracted from a dataset on 496
MADT twins (Nygaard et al., 2019).

Genome-Wide DNA Methylation Data
DNA was isolated from buffy coat using the salt precipitation
method and 500 ng DNA per sample was bisulfite converted using
the EZ Methylation Gold kit (Zymo Research, Orange County,

CA, United States). DNA methylation was measured using the
Infinium HumanMethylation450K BeadChip (Illumina, San
Diego, CA, United States). Quality control was conducted with
the MethylAid (van Iterson et al., 2014) and Minfi (Aryee et al.,
2014) R packages. Sample exclusion criteria: (a) <95% of probes
with a detection p-value < 0.01, (b) failing the internal quality
control probes of the MethylAid, or (c) failing verification of sex
by multidimensional scaling of the X chromosome probe values.
Four and two twin pairs were excluded due to poor sample quality
and sex discrepancy, respectively. Probe exclusion criteria: (a)
detection p-value > 0.01, (b) a raw intensity value of zero, (c) low
bead count (<3 beads), (d) cross-reactive probes (Chen et al.,
2013), or (e) measurement success rate < 95%. In total, 32,523
CpGs out of the 485,512 CpGs on the array were excluded,
leaving 452,989 CpGs for analysis. Normalization was performed
with Functional normalization (Fortin et al., 2014) using four
principle components. To obtain a distribution more suitable for
statistical testing (Du et al., 2010), M values were obtained by
adding 0.001 to the methylation β values and logit transforming
by the beta2m function (the lumi R package) (Du et al., 2008).
Finally, a principle component analysis (PCA) of these data was
performed (see Supplementary Figure 1 in the Supplementary
Material 1) with the aim to investigate the correlation between
potential technical and biological confounders and the principle
components (PCs) and, subsequently, to include either the PCs
or the confounding variable in the EWAS analysis (similarly
to Tobi et al., 2015). The PCA showed that the top 4 PCs
described the majority of the variance, as the subsequent PCs
explained less than 2% of the variance (see Supplementary
Figure 2 in the Supplementary Material 1). As PC1 correlated
highly (correlation coefficient = 0.99) with sex, only PC2-4
were included in the statistical model (see section “Intra-
pair Epigenome-Wide and Transcriptome-Wide Association
Studies”). The DNA methylation data was annotated using
GRCh37/hg19 using the annotation file and recommendations
supplied by Illumina Inc. (Illumina, San Diego, CA,
United States). For further details see Soerensen et al. (2019).

Genome-Wide Transcriptome Data
Whole blood was collected in PAXgene Blood RNA Tubes
(PreAnalytiX GmbH, Hombrechtikon, Switzerland), total RNA
was extracted by the PAXgene Blood miRNA kit (QIAGEN),
and gene expression was examined by the Agilent SurePrint
G3 Human GE 8 × 60K Microarray (Agilent Technologies).
Sample labeling and array hybridization were performed by the
‘Two-Color Microarray-Based Gene Expression Analysis – Low
Input Quick Amp Labeling’ protocol (Agilent Technologies);
samples were labeled with Cy5 and the reference (a pool
of 16 samples) was labeled with Cy3. The Agilent Feature
Extraction software v. 10.7.3.1 (Agilent technologies) was used
for array image analyses. The raw intensity data was background-
corrected using the normexp method, within-array normalized
by Loess normalization method, and between-array normalized
by Quantile normalization (Yang et al., 2002; Yang and Thorne,
2003), all in the limma R package (Ritchie et al., 2007). The
obtained data was applied to calculate log2-transformed Cy5/Cy3
ratios. Missing values were imputed by k-nearest neighbors
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averaging, and replicate probes were collapsed by calculation of
the median. All the 50,599 probes on the array were annotated
using the corresponding annotation file supplied by Agilent. For
further details see Nygaard et al. (2019).

Cell Count Data
Blood leukocyte subtypes (monocytes, lymphocytes, basophils,
neutrophils, and eosinophils) were counted for 443 of the 452
individuals using a Coulter LH 750 Haematology Analyser
(Beckman Coulter, Woerden, Netherlands). For the remaining
nine individuals, blood counts were imputed based on 450K
DNA methylation data from 695 twins using a modified version
of the PredictCellComposition method1 (see Soerensen et al.,
2019 for details).

Statistical Analyses
An intra-pair EWAS and an intra-pair TWAS of cognitive
functioning were performed and the results of these analyses
were subsequently used for the integrative analyses, first using
a supervised GSEA employing the hypergeometric test for over-
representation analysis of nominal significant findings in the
KEGG and Reactome databases via the Molecular Signatures
Database (MSigDB) database2 and second using an unsupervised
de novo pathway enrichment analysis using the algorithm
KeyPathwayMiner3 (Alcaraz et al., 2014).

Intra-Pair Epigenome-Wide and Transcriptome-Wide
Association Studies
Both the EWAS and TWAS were performed by intra-pair
analysis using a linear regression model (lm function) with the
intra-pair difference in DNA methylation or gene expression
level as the outcome variable, the intra-pair difference in the
cognitive composite score as the explanatory variable, while
adjusting for the sex, the mean age of the twin pair at time
of blood sampling and the intra-pair difference in monocytes,
lymphocytes, and eosinophils cell counts and, for the DNA
methylation data, the intra-pair differences in PCs 2-4. Basophil
counts were not included in the present statistical models due
to low variability in the dataset, and neutrophil cell counts were
not included as neutrophil and lymphocyte cell counts reflected
much of the same variance (see Supplementary Figure 1 in
the Supplementary Material 1). The intra-pair difference for
a given covariate was calculated by subtracting the co-variate
value of the twin with the lower cognitive composite score from
the co-variate value of the co-twin with the higher cognitive
composite score. The mean age of the twin pair at time of blood
sampling was used, as the twins of a pair did not necessarily
get their blood drawn on the same date. All analyses were
carried out in R version 3.3.1 (scripts can be found in the
Supplementary Material 1).

Pathway Analyses
For the pathway analyses the differentially methylated CpG
sites and differentially expressed probes associated with

1https://github.com/mvaniterson/wbccPredictor
2http://software.broadinstitute.org/gsea/msigdb
3https://keypathwayminer.compbio.sdu.dk/keypathwayminer

cognitive function with p values below 0.05 and 0.01 in
the EWAS and TWAS, respectively, were annotated to
genes as described above. Consequently, with a p-value
cut-off of 0.05, 20,732 CpG sites and 1,970 probes
were found in the EWAS and TWAS, and these were
annotated to 10,041 and 1,667 unique genes, respectively.
The overlap between the EWAS and TWAS genes was
532 genes (the genes are listed in the Supplementary
Table 1 in Supplementary Material 1), from hereon
called the 532-gene overlap. Using a p value cut-off of
0.01 the corresponding numbers were 3,847 CpG sites
and 333 probes, which were annotated to 2,776 and 279
unique genes, respectively, with an overlap of 25 genes
(the genes are listed in the Supplementary Table 2 in
Supplementary Material 1), from hereon called the
25-gene overlap.

Gene set enrichment analysis in MSigDB – the supervised
method
GSEA was performed for the 532- and 25-gene overlaps,
respectively, using the KEGG and Reactome databases (via
MSigDB). Hypergeometric probabilities, or p-values, from
the GSEA were corrected for multiple testing using the
Benjamini–Hochberg false discovery rate (FDR) correction
method (Benjamini and Hochberg, 1995), and only gene sets with
an FDR < 0.05 are reported here.

De novo pathway enrichment analysis – the unsupervised
method
KeyPathwayMiner is a de novo pathway enrichment method
used to identify sub-networks (also referred to as key pathways),
which are aberrant with respect to, for instance, gene expression
values compared to the organism’s interaction network (Alcaraz
et al., 2014). The output of this method is interaction networks
of the submitted genes [in this case the 532- (p-value cut-
off 0.05) and 25- (p-value cut-off 0.01) gene overlaps], as well
as exception nodes, which are genes added by the algorithm
to structure the network (i.e., they are not genes found to
associate to the phenotype of interest in the initial analysis).
The constructed networks can contain already known sub-
pathways, yet also previously uncharacterized sub-pathways
(Alcaraz et al., 2016). The following parameters were used for the
KeyPathwayMinerWeb application4: network: I2D (Brown and
Jurisica, 2007), search strategy: INES (individual node exception),
L = 0 and K = 2 or 4. L is the number of inactive samples,
i.e., samples in which a given gene is not differentially expressed
and methylated, and K is the number of inactive genes (also
called exception nodes) allowed in a key pathway. Initially K
values from 1 to 10 were tested (10 is the maximum value
allowed in the KeyPathwayMiner). For the 532-gene overlap,
key pathways with a K > 2 became highly complex and too
dense for analysis, while for the 25-gene overlap the same was
seen for K > 4. Consequently, K = 2 was chosen for the 532-
gene overlap, and K = 4 was chosen for the 25-gene overlap.
Cytoscape (Shannon et al., 2003) was used for visualization of
the key pathways.

4https://keypathwayminer.compbio.sdu.dk/keypathwayminer
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RESULTS

The characteristics of the study population can be found in
Table 1. The EWAS and TWAS results for the individual CpG
sites and probes can be found in Supplementary Tables 3a, 3b, 4
(Supplementary Material 2–4).

Supervised Gene Set Enrichment
Analysis
No gene sets displayed an FDR-corrected p value below 0.05
for the 25-gene overlap. Applying a less stringent cut-off
of p < 0.1, the two KEGG gene sets “Neuroactive ligand
receptor interaction” and “long-term depression” displayed
nominal significance (p-value = 4.28E-04, FDR-corrected p
value = 0.062, genes in overlap: CRHR1, NMUR2, CHRNA10,
and p-value = 6.71E-04, FDR-corrected p-value = 0.062, genes
in overlap: CRHR1 and PLCB1, respectively). No Reactome gene
sets were found using a cut-off of p < 0.1.

For the 532-gene overlap, the use of KEGG resulted in 26
enriched gene sets (FDR-corrected p –value < 0.05), including
“Alzheimer’s disease,” “long-term depression,” “neurotrophin
signaling pathway,” and “neuroactive ligand receptor interaction,”
as well as gene sets related to metabolism, cellular processes,
signal transduction, organismal systems (immune, endocrine,
excretory, and sensory systems) and cancers, and cardiovascular
diseases (see Table 2 and Supplementary Table 5 in
Supplementary Material 1, for details). Similarly, GSEA of
the 532-gene overlap using the Reactome database displayed 65
gene sets, which also related to metabolism, cellular processes,
signaling pathways, the immune system, and disease, but also
especially to hemostasis and transport of small molecules (see
Supplementary Table 6 in Supplementary Material 1).

Unsupervised de novo Pathway
Enrichment Analysis
Figure 1 displays the key network identified by the unsupervised
(KeyPathwayMiner) method for the 25-gene overlap. The
network contains 11 of the 25 genes of the 25-gene overlap,
as well as four exception node genes, added by the algorithm
to give structure to the network: the ELAV like RNA binding
protein 1 gene (ELAVL1), the CRK proto-oncogene gene, adaptor
protein gene (CRK), the epidermal growth factor receptor
gene (EGFR), and the mitogen-activated protein kinase 1 gene
(MAPK1). Correspondingly, the 532-gene overlap revealed a
network containing 236 genes of the 532-gene overlap as well

TABLE 1 | Characteristics of the study population.

Number of individuals (number of twin pairs) 452 (226)

Female pairs (%) 101 (45)

Age, mean (SD) 66.27 (6.04)

Age range 56–80

Cognitive composite score, mean (SD) 45.60 (9.55)

Cognitive composite score, range 11.68; 84.93

Intra-pair cognitive difference, mean (SD) 6.89 (5.40)

Intra-pair cognitive difference, range 0.002–32.395

as two exception nodes: the Amyloid Beta Precursor Protein
(APP) and the Nuclear Respiratory Factor 1 (NRF1) genes (see
Figure 2). Of the 236 genes in the network, 57 genes were directly
connected to APP, 57 genes were directly connected to NRF1,
10 genes were directly connected to both APP and NRF1, while
112 genes were not directly connected to APP nor NRF1 (see
Figure 2). All genes identified by the KeyPathwayMiner are listed
in Supplementary Tables 7–9 in Supplementary Material 1.

DISCUSSION

In the present study we integrated the results of an EWAS
and a TWAS of normative cognitive functioning in middle-aged
and old-aged individuals with the aim to identify key pathways,
which are distinct with respect to the biology behind cognitive
function. To our knowledge, no study has previously applied
such an approach.

In supervised gene set enrichment analyses (GSEA) of the
532 genes overlapping between the EWAS and TWAS (i.e.,
p < 0.05), the use of the KEGG database resulted in the
identification of 26 gene sets (Table 2, FDR < 0.05), while the
use of the Reactome database resulted in the identification of 65
gene sets (Supplementary Table 6, FDR < 0.05). Four KEGG
gene sets related to neurological functioning, i.e., “neuroactive
ligand receptor interaction” and “neurotrophin signaling,” or to
diseases of the nervous system, i.e., “Alzheimer’s disease” and
“long-term depression,” which appear to be of relevance for
cognitive functioning (Table 2). The remaining 22 KEGG gene
sets related to cellular processes, signal transduction, human
diseases (cancer and cardiovascular diseases), metabolism (amino
acid, carbohydrate, and lipid metabolism), and the endocrine,
immune, excretory, and sensory systems. The 65 Reactome gene
sets also related to signal transduction, metabolism, diseases
(diabetes and HIV), immune function, and cellular processes
(including the cell cycle, cell death, and transport), yet also
to hemostasis, DNA replication, developmental biology, and
extracellular matrix organization. Such a broad spectrum of
biological functions identified in the present study indicates
that the epigenetic and transcriptional control over cognitive
functioning in late life involves multiple biological processes (as
suggested by e.g., Konar et al., 2016).

The EWAS and TWAS published by Starnawska et al.
(2017) and Nygaard et al. (2019), respectively, investigated study
populations (N = 486 andN = 470, respectively) including the 452
twins in the present study population. Both studies performed
intra-pair analysis and enrichment analyses of either EWAS
or TWAS results, respectively, using KEGG gene sets in the
former and Reactome gene sets in the latter. The enrichment
analysis by Starnawska et al. (2017) reported four nominally
significant gene sets related to neurological functioning, among
these “neuroactive ligand receptor interaction,” which was also
identified in the present study (Table 2). The TWAS by
Nygaard et al. (2019) reported 81 significantly enriched Reactome
gene sets for intra-pair difference in cognition, of which 15
were also observed in the present study (see Supplementary
Table 6 in Supplementary Material 1). Interestingly, the
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TABLE 2 | Results of the gene set enrichment analysis of the 532-gene overlap with the supervised analysis using the KEGG database and FDR < 0.05.

Hierarchy (BRITE) Gene set name (KEGG) K/k p-value q value Genes in overlap

Cellular
Processes

Cell mobility Regulation of actin and
cytoskeleton (hsa04810)

216/14 2.79E-07 3.47E-05 PIK3R5, CRK, ITGA3, BDKRB2, INS, PIKFYVE, GIT1,
GSN, TIAM2, BAIAP2, ITGAX, PFN1, RDX, ARHGEF7

Transport and
catabolism

Endocytosis (hsa04144) 183/9 3.07E-04 5.19E-03 HSPA2, ERBB3, PIKFYVE, GIT1, DNM3, GRK6, PSD4,
ARAP3, HGS

Cell growth and
death

Apoptosis (hsa04210) 88/5 3.63E-03 2.94E-02 PIK3R5, CASP8, NGF, PRKAR1A, ATM

Cell cycle (hsa04110) 128/6 3.87E-03 3.00E-02 ATM, TGFB1, SKP2, YWHAZ, MCM7, STAG1

Environmental
Information
Processing

Signal transduction Calcium signaling (hsa04020) 178/12 1.30E-06 8.08E-05 NOS2, BDKRB2, PLCB1, ERBB3, NOS1, ATP2A2,
ATP2A3, GNA11, ADRA1D, P2RX5, PDE1A, ITPKB

MTOR signaling (hsa04150) 52/6 3.03E-05 1.13E-03 PIK3R5, INS, PDPK1, TSC2, EIF4E, HIF1A

WNT signaling (hsa04310) 151/9 7.20E-05 2.03E-03 MAPK9, PLCB1, PPARD, DVL3, WNT3, PSEN1,
CSNK2B, CTNNBIP1, CHD8

MAPK signaling (hsa04010) 267/12 7.63E-05 2.03E-03 MAPK9, CRK, TGFB1, NGF, HSPA2, RASGRP2,
CACNA2D1, DAXX, DUSP7, ELK4, MAPK8IP3, TAOK3

Signaling molecules
and interaction

Neuroactive ligand receptor
interaction (hsa04080)

272/10 1.39E-03 1.62E-02 CRHR1, BDKRB2, ADRA1D, P2RX5, TSHR, CRHR2,
MTNR1B, GABRQ, NMUR2, CHRNA10

Human
Diseases

Cancers: Overview Pathways in cancer (hsa05200) 328/17 3.73E-07 3.47E-05 PIK3R5, CRK, ITGA3, NOS2, MAPK9, HIF1A, PPARD,
DVL3, WNT3, TGFB1, ETS1, CASP8, SKP2, RXRG,
TPM3, NCOA4, DAPK3

Cancers: Specific
types

Renal cell carcinoma (hsa05211) 70/6 1.64E-04 3.05E-03 PIK3R5, CRK, PTPN11, TGFB1, HIF1A, ETS1

Small cell lung cancer (hsa05222) 84/5 2.97E-03 2.91E-02 PIK3R5, NOS2, ITGA3, SKP2, RXRG

Thyroid cancer (hsa05216) 29/3 4.51E-03 3.22E-02 TPM3, RXRG, NCOA4

Cardiovascular
diseases

Hypertrophic cardiomyopathy hcm
(hsa05410)

85/5 3.13E-03 2.91E-02 ITGA3, ATP2A2, TGFB1, CACNA2D1, TPM3

Dilated cardiomyopathy (hsa05414) 92/5 4.40E-03 3.22E-02 TGFB1, ITGA3, ATP2A2, CACNA2D1, TPM3

Neurodegenerative
diseases

Alzheimer’s disease (hsa05010) 169/8 8.41E-04 1.20E-02 PSEN1, PLCB1, NOS1, ATP2A2, ATP2A3, CASP8,
PSENEN, SDHA

Metabolism Lipid metabolism Arachidonic acid metabolism
(hsa00590)

58/5 5.64E-04 8.74E-03 GPX6, CYP2C9, CYP4F3, PTGDS, CBR1

Amino acid
metabolism

Arginine and proline metabolism
(hsa00330)

54/4 3.55E-03 2.94E-02 NOS2, NOS1, ALDH2, P4HA3

Carbohydrate
metabolism

Inositol phosphate metabolism
(hsa00562)

54/4 3.55E-03 2.94E-02 PLCB1, PIKFYVE, ITPKB, ISYNA1

Organismal
Systems

Endocrine system Insulin signaling (hsa04910) 137/10 4.90E-06 2.28E-04 PIK3R5, CRK, MAPK9, INS, PDPK1, TSC2, EIF4E,
PRKAR1A, PYGB, PYGM

Excretory system Aldosterone regulated sodium
reabsorption (hsa04960)

42/5 1.22E-04 2.52E-03 PIK3R5, PDPK1, INS, SCNN1B, ATP1A1

Nervous system Neutrophin signaling (hsa04722) 126/8 1.16E-04 2.52E-03 MAPK9, CRK, NGF, PSEN1, PIK3R5, PDPK1, PTPN11,
YWHAZ

Long-term depression (hsa04730) 70/5 1.33E-03 1.62E-02 PLCB1, NOS1, GNA11, CRHR1, PRKG1

Immune system Fc gamma r mediate phagocytosis
(hsa04666)

97/6 9.50E-04 1.26E-02 PIKFYVE, DNM3, PIK3R5, CRK, GSN, DOCK2

Chemokine signaling (hsa04062) 190/8 1.77E-03 1.94E-02 PLCB1, PIK3R5, CRK, DOCK2, GRK6, RASGRP2,
TIAM2, GNB3

Sensory system Taste transduction (hsa04742) 52/4 3.10E-03 2.91E-02 GNB3, SCNN1B, PDE1A, TAS1R2

q value: FDR (false discovery rate) corrected p-value; K, number of genes in gene set; k, number of genes in overlap.

ten gene sets related to the cell cycle identified in the
present study were all reported by Nygaard et al. (2019).
The remaining five gene sets found in both studies related
to DNA replication, the immune system, signal transduction
or diseases. Hence, the present study supports some of the
gene sets previously found relevant for either variation in
the methylome or in the transcriptome to be relevant for
both levels of biological variation, but also puts forward
novel gene sets.

The unsupervised method led to the identification of a
network of 15 genes for the 25-gene overlap (Figure 1, p-value
cut-off 0.01), and a network of 238 genes for the 532-gene overlap
(Figure 2, p-value cut-off 0.05).

The genes of the 15-gene network first and foremost encode
proteins taking part in processes relevant to cellular functioning
and signal transduction5. All 15 genes are expressed in brain

5genecards.org
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FIGURE 1 | The key network identified by the unsupervised de novo pathway enrichment analysis for the 25-gene overlap. The exception nodes are highlighted in
red, while the genes from the 25-gene overlap are highlighted in blue.

tissue and most have been reported as relevant for neurological
functioning. The exception nodes added by KeyPathwayMiner,
in order to give structure to the network, were the ELAV like
RNA binding protein 1 (ELAVL1), the CRK proto-oncogene,
adaptor protein (CRK), the epidermal growth factor receptor
(EGFR), and the Mitogen-Activated Protein Kinase 1 (MAPK1).
ELAVL1 is an mRNA stabilizing protein involved in, for instance,
differentiation of embryonic stem cells, while CRK is an adapter
protein binding tyrosine-phosphorylated proteins and involved
in several signaling pathways, including cell migration. EGFR
and MAPK1 are both protein kinases (EGFR a transmembrane
and MAPK1 an intracellular kinase, respectively) involved in
signaling cascades leading to, among others, cell proliferation.
While ELAVL1, EGFR, and MAPK1 are known from cancers,
all four genes have been linked to neurological functioning:
CRK is known from the Miller-Dieker Lissencephaly (‘smooth
brain’) syndrome, characterized by abnormal brain structures,
intellectual disability and seizures, while MAPK1 has been linked
to Alzheimer’s Disease (AD) (Lanke et al., 2018) and Retrograde
Amnesia, which is defined as memory loss often following an
injury or a disease. EGFR has been linked to dementia (Yokoyama
et al., 2017), while mice with neuron-specific deletion of ELAVL1
have been reported to have a phenotype resembling motor
neuron disease (Sun et al., 2018). Of the 11 remaining genes
(i.e., the genes originating from the 25-gene overlap) many have
also been linked to neurological functioning, e.g., nitric oxide
synthase 2 (NOS2), which synthesizes nitric oxide (NO), a free
radical messenger believed to be involved in neurotransmission
in the brain (reviewed in Džoljić et al., 2015). Protocadherin
alpha 6 (PCDHA6) that belongs to the protocadherin alpha

gene cluster encoding integral plasma membrane proteins, most
likely plays a role in the synapsis formation and function in the
brain (reviewed in Hamada and Yagi, 2001). Ataxin 2 (ATXN2)
belongs to a group of genes associated with neurodegenerative
diseases like amyotrophic lateral sclerosis, spinocerebellar ataxia-
2, and Parkinson Disease (reviewed in Lee et al., 2018), while
phospholipase C beta 1 (PLCB1) has been related to traits like
epilepsy, depression, and AD (reviewed in Yang et al., 2016)
and the Ras And Rab Interactor 3 (RIN3) has been linked to
AD and dementia (Rasmussen et al., 2019). Animal models of
PBX1 (PBX Homeobox 1) have pointed to Parkinson’s disease
(Villaescusa et al., 2016).

Nine of the genes in this 15-gene network were also present
in the 238-gene network identified by KeyPathwayMiner when
using the 532-gene overlap as input. The exception nodes added
by KeyPathwayMiner for structure in this large network, the
amyloid beta precursor protein (APP) and the nuclear respiratory
factor 1 (NRF1), are both very relevant for cognitive functioning.
APP encodes a transmembrane precursor protein, which is
cleaved to form peptides, of which some form the basis of the
amyloid plaques found in the brains of AD patients (reviewed
in Tiwari et al., 2019). In addition, APP is known to play
a role in cerebral amyloid angiopathy and is believed to be
involved in processes related to neural cell adhesion, neuronal
synaptic plasticity, synaptogenesis, and neurite growth (reviewed
in Huang and Jiang, 2011). Also related to neurite growth,
NRF1 encodes a transcription factor activating the expression of
proteins involved in cellular growth, development, respiration,
heme biosynthesis, neurite outgrowth, and mitochondrial DNA
transcription and replication, and is known to be involved in,
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FIGURE 2 | The key network identified by the unsupervised de novo pathway enrichment analysis for the 532-gene overlap. The exception nodes are highlighted in
red, while the genes from the 532-gene overlap are highlighted in yellow (the genes directly connected to APP), green (the genes directly connected to NRF1), pink
(genes directly connected to APP and NRF1), or blue (genes not directly connected to APP or NRF1).

among others, mitochondrial metabolism disease6. Its role in
mitochondrial processes is considered to be important in relation
to its role in neurodegenerative diseases (reviewed in Li et al.,
2017), and it has been shown that the targets of NRF1 include
genes involved in neurodegenerative diseases like Parkinson’s
disease and AD (Satoh et al., 2013). In addition, the 238-gene
network also contained presenilin 1 (PSEN1), a well-known
interaction partner of APP (reviewed in Huang and Jiang, 2011).

Post hoc GSEA restricted to the 236 overlap genes present in
the 238-gene KeyPathwayMiner network identified significantly
enriched gene sets related to several different biological
processes, including several signal transduction and cellular
processes, but also cancer, metabolism, the immune system and
hemostasis, as well as AD, neurotrophin signaling, gap junction,

6genecards.org

long-term depression, amyloid fiber formation, neutrophil
degranulation, neurotransmitter receptors, and postsynaptic
signal transmission, transmission across chemical synapses,
and the neuronal system (see Supplementary Table 10 in
Supplementary Material 1). No significantly enriched gene sets
were identified based on the 11 overlap genes present in the 15-
gene KeyPathwayMiner network, which, given the small size of
the network, was to be expected. Finally, if focusing on the 57
and 57 overlap genes directly connected to either APP or NRF1
in the 238-gene KeyPathwayMiner network, respectively, only
one gene set, “axon guidance,” was found to be enriched for
the NRF1 connected genes, while 13 gene sets were found to be
enriched for the APP connected genes; these were mainly related
to signal transduction, cellular processes, cancer, metabolism,
and “neurotrophin signaling” (see Supplementary Table 11 in
Supplementary Material 1).
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A potential limitation of the present study is the use of
blood samples to study DNA methylation and gene expression
of a phenotype primarily related to the brain. However, studies
investigating the use of blood as a proxy for brain tissue
when studying brain-related phenotypes have reported DNA
methylation and gene expression status in the brain to mirror
that in blood reasonably well (e.g., Aberg et al., 2013; Tylee
et al., 2013). Nevertheless, future studies on the far less accessible
brain tissue derived methylation and gene expression data and
cognitive function are relevant to decipher the relevance of
the pathways identified in the present study, specifically for
the brain. Another limitation of the present study is the fact
that probes/CpGs not annotated to genes are not included in
the analyses, and hence the biological variation contributed by
these sites is not considered. However, to include such CpGs
in the present study would necessitate detailed information
of the specific cis- or trans-action regulatory roles of each of
such CpGs, which would be out of scope of the present study.
Furthermore, as we did not want to introduce bias regarding
annotation in the present study, we chose simply to annotate
the CpGs and probes using the standard annotation files and
recommendations by Illumina and Agilent, respectively. We do,
however, realize that other annotation methods, for instance
considering the trans regulatory roles of the CpGs, could give
different results and consequently give rise to different sets of
overlapping genes. One important strength of this study is the
use of twin pairs; the intra-pair EWAS and TWAS enable us
to explore genes associated with epigenetic or transcriptomic
variation and cognition independent of genetic background
and sheared early environment (Tan et al., 2015), significantly
increasing the power of the study (Tan et al., 2017). Furthermore,
as the correlation of cognitive functioning between the twins
of a pair has been reported to decline with age, indicating
that non-shared environmental and stochastic effects accumulate
across lifespan potentially influencing the levels of cognitive
functioning in aging individuals (McCartney et al., 1990), it
supports the use of middle-aged and old-aged twins for studying
the contribution of epigenetic and transcriptomic variation to
the variation in cognitive functioning in later life. Finally, one
might argue that the genes found to overlap between the EWAS
and TWAS are simply chance findings. However, performing
a post hoc permutation (shuffling the cognition values in the
TWAS) did not identify the same genes as overlapping between
the EWAS and the TWAS, and did not identify the same
gene sets and networks (see Supplementary Tables 12–14 in
Supplementary Material 1).

CONCLUSION

This study identified biological pathways, which are distinct
with respect to both epigenetic and transcriptional variations in
relation to cognitive function in later life. Previously reported
genes and pathways were confirmed, and novel candidates are
put forward for further verification and validation. Hence, this
study also promotes the use of unsupervised de novo network
approaches for expanding our knowledge concerning the biology
behind cognitive functioning in later life.
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