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Abstract

Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of infor-

mation, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active dur-

ing inductive reasoning in both the verbal and spatial domains. We aimed to understand

whether the left IFG supports inductive reasoning in a domain-specific or domain-general

fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of

domain during a rule search task. Thirteen participants were asked to extract the rule under-

lying streams of letters presented in different spatial locations. Each rule was either verbal

(letters forming words) or spatial (positions forming geometric figures). Our results show

that domain was decodable in the left prefrontal cortex, suggesting that this region repre-

sents domain-specific information, rather than processes common to the two domains. A

replication study with the same participants tested two years later confirmed these findings,

though the individual representations changed, providing evidence for the flexible nature of

representations. This study extends our knowledge on the neural basis of goal-directed

behaviors and on how information relevant for rule extraction is flexibly mapped in the pre-

frontal cortex.

Introduction

A recent body of evidence suggests that executive functions might be subject to a degree of

functional fractionation and that they can be mapped along the axes of the prefrontal cortex

(PFC) [1–5]. This fractionation might extend to the left-right dimension, implying hemi-

spheric specialization, or at least gradients of organization, in supporting executive functions.

However, the way executive functions are mapped along this dimension still needs to be fully

understood [6]. One central issue is to assess whether the fractionation along the left-right

dimension is domain-based, process-based or a combination of the two.

On one side, some studies suggest that the fractionation along the left-right dimension is

mostly domain-based. Evidence from neuroimaging studies shows that verbal information is

preferentially processed in the left ventrolateral PFC (vlPFC), while spatial information is pref-

erentially processed in the right vlPFC [7,8], suggesting that hemispheric specialization is

domain-based.
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However, some recent models [9,10] propose that the fractionation along the left-right

dimension is process-based. Particularly interesting is the Goel’s model describing the reason-

ing abilities of humans [10]. This model suggests that the left PFC has a role in reducing uncer-

tainty by processing conceptual connections and logical relations among the available

information, while the right PFC has a role in maintaining and even enhancing uncertainty by

overcoming preconceptions based on prior beliefs and therefore allowing us to explore a wider

range of possible solutions. These cognitive mechanisms are particularly important for our

inductive reasoning abilities. Indeed, inductive reasoning is a complex function that allows us

to increase our understanding of the world by making predictions based on our previous

knowledge [11]. Although the complex set of computations underlying inductive reasoning is

carried out in a large network of brain regions, a central role is played by the left PFC. In fact,

this brain structure has been shown to be particularly sensitive to rule induction [12–14] and

rule checking [15]. These studies support the hypothesis that hemispheric specialization is pro-

cess-based rather than domain-based. Viewed together with the studies mentioned above, it

seems that the organizing principles underlying the lateralization of executive functions are

still unclear. To explore these principles, we employed an inductive reasoning task.

Inductive reasoning was used recently to address the question of whether the gradient

along the left-right dimension is domain-based by manipulating rule domain within different

types of rule search [16]. Babcock and Vallesi (2015) measured the brain activity when partici-

pants were engaged in extrapolating rules based on verbal or spatial information. Extracting

rules recruited a large network of regions, among which the largest activations were found

bilaterally in the Inferior Frontal Gyrus (IFG), in the left Superior Frontal Gyrus (SFG), bilater-

ally in the lateral Orbital Gyrus (lOG) and in a portion of the left cerebellum. Interestingly, the

right IFG was activated only when extracting spatial rules, suggesting a selective preference for

spatial information. On the other hand, extracting both verbal and spatial rules activated a

common region in left IFG, as confirmed by a conjunction analysis, suggesting that the left

IFG is involved in rule extraction in both domains.

The latter evidence is particularly intriguing, and supports at least two possible explana-

tions. The first is that the left IFG supports a domain-independent cognitive process required

for the general task, such as rule extraction. The second possible account is that the left IFG

holds representations of domain-specific information required for the task. These two possibil-

ities could not be disentangled using the univariate analyses presented in Babcock and Vallesi

(2015). Multivariate analyses, however, offer an opportunity to support one or the other expla-

nation as these analyses are intended to specify the type of information processed in a region.

Indeed, Multi-Voxel Pattern Analysis (MVPA), a type of multivariate analysis, is sensitive to

information contained in fine-grained patterns, which goes undetected by univariate analysis

[17,18].

These fine-grained patterns can separate the two posited explanations. For the first, we

expect that the left IFG is employed in the same manner for both domains, thus there would

be no difference in the neural patterns associated with the verbal and the spatial domains in

this region. For the second explanation, we expect that the left IFG holds independent repre-

sentations for the verbal and the spatial domains. These representations should be decodable

in this region as separate neural patterns.

To tease apart these two explanations we employed a support vector machine (SVM)-based

MVPA to examine whether rule domain can be decoded in the left IFG. Specifically, we exam-

ined the representations of the verbal and spatial domains in the regions involved in the rule

discrimination phase as reported by Babcock and Vallesi [16]. The ability to decode domain in

the left IFG in our data would support a domain-specific function of this region, while the

inability to do so might suggest a domain-general function. Additionally, we examined the
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replicability and stability of the neural representations over two years employing a longitudinal

design. Replicability was addressed by considering the two time points separately, with the sec-

ond one viewed as a confirmation of the first. Stability was addressed in a cross-session analy-

sis, in which we trained the classifier on data from one time point and tested it on data from

the other time point.

Method

Dataset

We analyzed data from thirteen participants who took part in a longitudinal study composed

of two sessions (10 female, average age: 22.4±0.6 years at the first session). All participants

from Babcock and Vallesi [16] were invited to participate in a second session two years after

the first one; the participants who were able to return (13/20) make up the sample examined in

the present study. To ensure that the returners did not represent a biased sample, we compared

behavioral performance at the first session between the returners and non-returners and

found no differences (ps� .112). The two sessions used the same experimental procedure and

parallel forms of same task (counterbalanced across participants). All participants were right-

handed native Italian speakers with no known neurological or psychiatric conditions. All of

them had normal color vision as measured by the Ishihara Color Test [19]. They were screened

for MRI contraindication according to standard procedures and written consent was obtained.

The study was approved by the ethical committees of “Istituto IRCCS E. Medea—La Nostra

Famiglia” and Scuola Internazionale Superiore di Studi Avanzati (SISSA). The task and data

acquisition procedures in both sessions were the same as those reported in Babcock et al. [16].

Task design

Participants performed an inductive reasoning task using verbal and spatial information at

each session. The task was composed of twenty blocks, each containing three phases. These

phases followed the same basic procedure, but differed in the particular processes required. In

each phase, participants viewed a series of capital letters (the 21 letters of the Italian alphabet)

one at a time in varied spatial locations within a rectangle onscreen. These items (i.e., the let-

ters) were grouped into trials consisting of six to twenty items. The final item of each trial was

colored red (rather than green) to indicate that the trial had ended and that the participant

needed to make a choice response. Additionally, the final item of each trial was presented for

2000 ms (rather than 500 ms). Following presentation of this item, a new trial began (see Fig

1A). The three phases were distinguished by the composition of the trials and the choice

response required.

The first phase focused on rule discovery in the verbal and spatial domains. Note that this

phase was referred to as “pattern discovery” in Babcock and Vallesi (2015), but has been

renamed here to avoid confusion with the term “pattern” in the MVPA sense. The trials in this

phase consisted of two to twelve random (filler) items followed by a sequence of four to eight

rule items. For the random items, the letter identity and spatial location were randomly

selected, as was the number of random items in each trial. These were followed by the rule

items, which formed an exemplar from a category in either the verbal domain or the spatial

domain. Rules in the verbal domain represented semantic categories (e.g., sports, clothing

items, see the S1 Appendix for a full list) while rules in the spatial domain represented geomet-

ric figures or designs (e.g., vertical line, a semi-circle, see the S1 Appendix for a full list). Each

rule category comprised ten exemplars, two of each length (4–8 items). For both domains,

“rule” denotes a general category, while “exemplar” denotes a specific sequence of letters or

positions within a rule category. For example, the verbal rule category “clothing items”

Rule domain and inferior frontal gyrus
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included the exemplars gonna (skirt), giacca (jacket), and cappello (hat), among others. In the

spatial domain, the general category “vertical line” indicated that the items were presented at a

single x-value starting at one edge of the rectangle and proceeding in equally spaced steps to

the opposite edge, while an exemplar of this category was five items at x = 135 starting at the

top edge. In all categories, the exemplars were carefully selected so that the arrival of the final

item of each exemplar was fully predictable once the rule was acquired, that is, there were no

“catch” or misleading exemplars. For verbal rules, the specific exemplar determined the letter

identity of each rule item, while the spatial location was randomly selected. Conversely, for the

spatial rules, the specific exemplar determined the spatial location of the rule items and the let-

ter identity was randomly selected. For half of the rules, the domain of the rule, that is, verbal

or spatial, was indicated at the start of the phase, thus allowing participants to focus their atten-

tion on information pertaining to the relevant domain. For the other half of rules, participants

were told the rule could be from either domain. In this case they needed to search both

domains in parallel. The participants were aware of the composition of the items, that is, that

random items would be followed by an exemplar belonging to a general category and that the

end of the sequence would be denoted with a red item. They were asked to discover the rule

category based on the exemplars presented and indicate whether or not they had discovered

the rule at the end of each exemplar through a button press on the red item (specific response

buttons were counterbalanced across participants). Once the participant indicated s/he had

discovered the rule, the first phase ended and the second phase, described below, began. Alter-

natively, if the participant did not discover the rule after five exemplars, the participant was

told the category and then a new rule discovery phase with a different rule category began.

In the second phase new exemplars from the same rule were presented and participants

were asked to predict, through a button press, when the final item would arrive. This phase

was used to confirm that the participant had correctly inferred the rule in the first phase. This

phase included the same number of trials as its associated rule discovery phase and was fol-

lowed in all cases by the third and final phase.

In the final phase, participants were asked to complete a modified version of a 1-back task

designed to control for the working memory demands of the first phase (i.e., the rule discovery

Fig 1. A. Example of items during rule discovery and confirmation phases. A sequence of letters was presented on the screen. The rule items followed either a

spatial rule (e.g., a horizontal line) or a verbal rule (e.g., fruits). The appearance of a red letter indicated the end of the current trial. In this example, the rule was a

horizontal line equally spaced from one edge to the other. B. Overview of the task structure. In this example, the rule category is fruits and the exemplar is “PERA”

(pear in Italian).

https://doi.org/10.1371/journal.pone.0194054.g001
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phase). No rules were presented in this phase; instead each trial contained six to twenty ran-

domly selected letters at randomly selected locations. The final item of each trial was red and

required a choice response. When the domain of the associated rule discovery phase was ver-

bal, participants pressed one button if the target and the preceding item were both consonants

and the other button if at least one of these two items was a vowel (specific response buttons

were counterbalanced across participants). Alternatively, if a spatial rule was presented in the

associated rule discovery phase, participants pressed the right button if the target and preced-

ing item were both presented in the right half of the rectangle and the left button if at least one

of these two items was in the left half (instructions with the opposite sides were given to half of

the participants). As the arrival of the final item could not be predicted, participants had to

continuously update the relevant information. This cognitive process resembled the working

memory requirements of the rule discovery phase. This phase consisted of the same number of

trials as the associated rule discovery phase.

The full task consisted of twenty blocks, which each contained a rule discovery phase, a

confirmation phase that used the same rule category, and a working memory control phase

that used the same domain (see Fig 1B for an overview of the entire task structure). The

twenty blocks were presented across four acquisition runs. Within a run, a new block started

immediately after the previous one finished. Prior to each phase in every block, a reminder

of the specific task and how to respond to the target items was given after a blank screen of

jittered length (2000–8000 ms in 250 ms intervals). A total of forty rules were used in the

task, with each participant viewing half of the rules in the first session and the other half in

the second session (counterbalanced across participants). In each session, half of the rules

were from the verbal domain and half were from the spatial domain. Further half of the rules

in each domain were run under separate search conditions and half under parallel search

conditions.

Data analysis

The fMRI data were first analyzed using Statistical Parametric Mapping 8 (SPM8, Wellcome

Department of Cognitive Neurology, UCL, London, UK). The preprocessing of the data and

the univariate analyses were carried out as reported in Babcock et al. [16]. The preprocessed

data were analyzed within the General Linear Model (GLM), separately for each participant.

Data were modeled using a total of nine conditions as regressors. Four of these conditions

were the experimental rule discovery conditions (spatial rule-separate search, verbal rule-sepa-

rate search, spatial rule-parallel search, verbal rule-parallel search), two were confirmation

(phase two) conditions (spatial, verbal) and two were working memory control conditions

(spatial, verbal). The final condition comprised instances of absent or incorrect rule discovery.

Each condition consisted of a series of epochs, defined as a given phase (rule discovery phase,

confirmation phase, control phase) for a particular rule. The duration of each epoch was deter-

mined by the onset of the first item (i.e., a letter) and the offset of the last item, with each

epoch lasting an average of 17 seconds in the first session and 10 seconds in the second one.

Each epoch was modeled as a box-car function convolved with the canonical Hemodynamic

Response Function (HRF) [20]. Head motion regressors were included as well. An additional

set of four regressors, one per run, was included in the analysis in order to model unspecific

and sustained differences across the runs. We then extracted a t-contrast map for each condi-

tion of interest, separately for each participant. The resulting individual contrast maps were

then submitted to a random-effects analysis, carried out using a full factorial Analysis of Vari-

ance (ANOVA) with one factor of eight levels (conditions of interest). This procedure was

used to analyze the data acquired during both the first and the second session.

Rule domain and inferior frontal gyrus
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ROI definition

Given that we were specifically interested in examining which processes underline the activa-

tion found in Babcock and Vallesi (2015), a univariate analysis on the data acquired during the

first session was used to define the ROIs. We included all the resulting ROIs, not just the left

IFG, in our examination in order to have some regions of comparison. This also allowed us to

examine the homologous right IFG, which could be of particular interest given the uncertainty

surrounding the left-right axis. To extract these ROIs, we used a simple t-contrast between

the four rule discovery conditions (each weighted +1) and the two control conditions (each

weighted -2). The statistical significance of the resulting map was set at peak-wise p< 0.001,

and then corrected for multiple comparisons using a Family-Wise Error (FWE) correction

(p< 0.05) at the cluster-level. Additionally, clusters with fewer than 25 voxels were discarded,

as multivariate analysis requires a larger number of features (voxels) to be efficient [21]. The

anatomical locations of the resulting clusters were found using the neuromorphometric

toolbox provided in SPM12. These ROIs were used to carry out the ROI analysis in both the

first and the second session.

Region of interest MVPA

Multi-voxel pattern analysis (MVPA) was performed using a Support Vector Machine (SVM)

with a linear kernel [22] as implemented in the CoSMo MVPA toolbox [23]. Further statistical

analyses on the resulting classification accuracies were performed using R (R Foundation for

Statistical Computing).

The multivariate analysis was based on voxels consisting of β weights from the GLM analy-

sis conducted as described above. For each ROI and for each session, the univariate analysis

provided us with a series of β weights that were calculated separately for each condition (8)

and for each run (4), resulting in thirty-two β weights per session. These thirty-two β weights

were associated both with conditions of interest (i.e., the four rule discovery conditions) and

with conditions that were irrelevant to the aim of the present study (i.e., the confirmation and

control conditions). Since we were interested in decoding the domain for each rule discovery

condition, we submitted to the MVPA only the β weights associated with the four conditions

of interest. This procedure resulted in a total of sixteen multi-voxel β patterns per subject (four

conditions by four runs). This dataset was then divided in two subsets, one for each search

type, resulting in eight multi-voxel β patterns associated with the separate search conditions

and eight multi-voxel β patterns associated with the parallel search conditions.

The resulting β weights were then used as input for MVPA. Here, classification accuracies

were computed using leave-one-out cross-validation. Specifically, for each search type, three

runs were used for training and the fourth was used for testing. This procedure was repeated

four times, leaving out each run in turn; performance on the testing run was averaged across

the four trials. A summary of the analysis employed here is shown in Fig 2.

In order to validate whether the performance of our classifier exceeded chance perfor-

mance, we carried out permutation-based statistical testing. This process allowed us to gener-

ate a null distribution that was used to examine whether a given classification performance

was significant with α< 0.05. Specifically, the null distribution was calculated from the same

dataset after having randomly permuted the labels, an operation that should produce chance-

level accuracies with a similar variance to the main analysis. This analysis was then repeated

1000 times with different random permutations, using the same leave-one-out method, pro-

viding us with 1000 performance estimates. The 95th percentile of the estimated distribution

of permuted performance results was taken as the critical value for determining significance

among the experimental performance values.

Rule domain and inferior frontal gyrus
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To address our primary question, we ran multivariate analyses on each session separately

(i.e., the classifier was trained and tested only on data from only session 1 or only session 2) to

test whether rule domain could be decoded. To address the replicability of the results, we con-

trasted the pattern of results between the two sessions. Additionally, to explore potential differ-

ences in terms of the decoding accuracy across the left-right axis, the vectors of accuracies

associated with the left and right IFG were submitted to a two-way ANOVA for repeated mea-

sures, with “hemisphere” (2) and “session” (2) as factors, conducted separately for each search

type. To examine the stability of the representations of stimulus domain over time, two cross-

session analyses were conducted. Specifically, a classifier was first trained on all runs from ses-

sion 1 and then tested on all runs from session 2, and vice versa.

Finally, to address a possible confound represented by the number of selected features,

decoding performance was examined for both the left and the right IFG as a function of the

number of features (i.e., voxels) included in the analysis. This was important because the

selected ROIs varied in size and thus significant MVPA results could be inflated by the size of

the ROI. This bias may be introduced by the specific mechanics of the SVM. SVMs are usually

trained to identify the optimal separating boundary (hyperplane) between two classes of sti-

muli. During this process, the d dimensional input vector (x) is transformed into a higher di

dimensional feature vector (z) through a mapping function (z = F(x)), so that the new training

data can be separable by a hyperplane [24]. Theoretically, it follows that a high enough dimen-

sional space (d’>>d) might eventually lead the data to become separable. This is one of the

possible pitfalls of SVM applied to neuroimaging data, as it suggests that the probability to find

the optimal hyperplane increases with the number of voxels analyzed, resulting in an inflated

decoding performance. This inflation can be reduced, if not avoided, by reducing the feature

space (dimensionality reduction) through feature selection [25]. This problem is particularly

relevant in MVPA studies, in which informative features (voxels) need to be wisely selected in

order to make the classification task feasible [26].

A fairly neutral way to perform feature selection is to measure the decoding performance

on a subset of randomly selected features. Moreover, to better appreciate how the classifier

accuracy changes as a function of the number of selected features, this selection process is

repeated progressively including more features; this method has been successfully used before

in studies where MVPA was applied to functional data [21,27–30].

Fig 2. Summary of the ROI MVPA. ROIs were selected based on the contrast between the 4 rule discovery conditions

(weighted +1 each) and the two control conditions (weighted -2 each). All the resulting statistical maps were corrected

for multiple comparisons at the cluster level (p(corr)<0.05). The matrices of β values extracted from each ROI were

partitioned in terms of rule search type, forming one multi-voxel β pattern for each search type (one for the separate

search and one for the parallel search). The resulting multi-voxel β patterns were submitted to MVPA employing the

standard leave-one-out cross-validation technique. Classification accuracies were then used in group-level statistical

analyses.

https://doi.org/10.1371/journal.pone.0194054.g002
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In the present study, we followed this example and analyses were run on ten samples sizes,

from ten voxels to one hundred voxels, with a step size of ten, for each ROI. For each sample

size, the analysis was repeated ten times with a different random selection of voxels and the

resulting decoding performances were averaged. This analysis was repeated separately for each

participant, and the resulting accuracy performances were averaged across participants.

Results

Behavioral results

The primary behavioral measure of interest was the number of rule exemplars needed for par-

ticipants to indicate that they had discovered the rule. This measure can be viewed as a proxy

for difficulty, with higher difficulty resulting in a higher number of exemplars. In the first ses-

sion participants required an average of 2.1 exemplars to discover the rules, while in the second

session only 1.3 exemplars were needed. This decrease was significant (t(12) = 4.069, p = 0.002).

As no rules were repeated between the sessions, this decrease likely demonstrates that partici-

pants benefitted from their previous experience with the task generally at the second session.

The number of exemplars needed did not differ between the spatial and verbal domains at

either session (first session: spatial = 2.2, verbal = 2.0, t(12) = 1.190, p = 0.257; second session:

spatial = 1.4, verbal = 1.1, t(12) = 1.678, p = 0.119), suggesting that the two domains were com-

parable in difficulty. Comparisons between the search types showed a significant difference at

the first session (separate = 2.0, parallel = 2.3, t(12) = 3.638, p = 0.003) and a slight trend at the

second session (separate = 1.2, parallel = 1.3, t(12) = 2.006, p = 0.068) with parallel searches

requiring more presentations.

Univariate fMRI analysis

The ROIs used in the MVPA were localized using a group contrast between the four rule dis-

covery conditions versus the two control conditions (for further details, see the section on ROI

definition). This contrast revealed activations in the right inferior frontal gyrus (R IFG), the

left inferior frontal gyrus (L IFG), bilateral orbital gyrus (R and L OG), right superior frontal

gyrus (R SFG), and left cerebellum (L Cer). Fig 3 shows the position of the regions used as

ROIs; the peak MNI coordinates for each ROI are reported in Table 1

Region of interest MVPA

The ROI MVPA was used to test the hypothesis that the regions recruited during rule discov-

ery hold the representations of the rule domain. To this end, rule domain was decoded

Fig 3. Rendered template brain in MNI space showing the position of the ROIs identified by the univariate

analysis and used later in the multivariate analyses. The ROIs identified correspond to right inferior frontal gyrus (R

IFG), left inferior frontal gyrus (L IFG), bilateral orbital gyrus (R and L OG), right superior frontal gyrus (R SFG), and

left cerebellum (L Cer).

https://doi.org/10.1371/journal.pone.0194054.g003
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separately for the two search types (separate and parallel) as well as for the two sessions. The

results are shown in Fig 4 while Table 2 reports the classification performance for each ROI

and for each session.

This analysis revealed that the representation of the rule domain could be decoded in sev-

eral brain regions. When the analysis was run on the first session, decoding rule domain dur-

ing separate search produced above chance accuracies (i.e., 50%) in the left oIFG, in the right

IFG and in bilateral OG, while decoding rule domain during parallel search produced above

chance accuracies in all the regions taken in exam. When the analysis was run on the second

session, we observed a different pattern, with the classification accuracy obtained while decod-

ing rule domain during separate search being above chance in the left IFG and in the right

tIFG, while the classification accuracy obtained while decoding rule domain during parallel

search was above chance in the right SFG, the left IFG, in the right IFG, and in bilateral OG

(see Fig 5). Although classification performance in these brain regions was above chance level,

accuracy was higher than the 95th percentile based on permutation testing only in the left IFG

Table 1. Clusters of activation identified by the rule discovery vs control contrast.

Anatomical Localization BA MNI Coordinates Cluster p-corr Peak z-va Voxels per cluster

X Y Z

Left IFG 44 -56–52–56 16 35 24 10 5 18 <.0001 6.72

6.62

6.60

463

Right IFG 46 54 42 44 38 35 30 8 12 6 <.0001 7.65

5.71

5.17

167

Right SFG 8 10 32 44 <.0001 7.16 102

Left OG 47 -44–50–38 26 18 38 -12–14–18 0.023 5.73

5.69

5.53

32

Right OG 47 36 32 -26 0.032 7.31 27

Left cerebellum / -14–24–14 -92–86–86 -24–26–24 0.023 6.85

5.82

5.50

300

https://doi.org/10.1371/journal.pone.0194054.t001

Fig 4. A. ROI MVPA intra session results. Mean classification accuracy for the two types of search (separate, parallel)

shown separately for each ROI and session (first session: upper panel; second session: lower panel). Error bars depict

±SEM. The black line indicates the chance level (50%), while the red dashed line indicates the decoding level that is

significantly above chance (>95th percentile) derived by permutation testing.

https://doi.org/10.1371/journal.pone.0194054.g004
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and in the left OG during the separate search condition in the first session (65.38% and

67.30%, respectively). No other brain region showed accuracy higher than the 95th percentile.

Such a high classification accuracy could be generated by a genuine spatial structure or by a

difference in beta values. While the former is a genuine result, the latter is a potential con-

found. In fact, decoding performance is known to be strongly dependent on the magnitude of

the signal being decoded [31]. It follows that a given response selectivity in a given cortical

region might be detected with MVPA more readily if the response magnitude elicited by the

stimulus employed or by the cognitive process engaged is large than if it is small. To test the

hypothesis that our classification accuracy could be generated by difference in beta value, we

measured the average beta value for each ROI and for each condition and checked whether

any difference in terms of beta value could explain our results. The results are reported in Fig 5

and in Table 3. As hypothesized, the largest difference resulted from the comparison between

the verbal and the spatial conditions in the parallel search in the left OG (absolute difference:

0.47). This difference was by far the largest one with respect to the differences observed in the

other regions (absolute differences included between 0.002 and 0.31). Among these, the differ-

ence between the verbal and the spatial conditions in the separate search in the left IFG was

one of the smallest ones (absolute difference: 0.11). This pattern suggests that the results

observed in the left OG could most likely be spurious and resulting from a difference in beta

values between the conditions analyzed, while the results in the left IFG could not be

accounted for by differences in beta values. Normalizing the beta value could easily solve this

Table 2. The mean and the standard error mean of the classification performance are reported separately for each ROI, for each session and for each search type.

The 95th percentile calculated from the permutation testing for each session is reported in parentheses.

First session (95th: 65%) Second session (95th: 63%)

Separate Search Parallel Search Separate Search Parallel Search

R SFG 40.38±4.04 54.80±5.92 50.96±6.85 53.84±7.92

L IFG 65.38±7.37 62.50±5.29 58.65±4.09 52.88±6.66

R IFG 61.53±8.06 56.73±5.59 56.73±6.58 50.96±4.35

L OG 61.53±4.99 67.30±5.92 48.07±6.30 51.92±4.66

R OG 54.80±4.80 56.73±3.04 52.88±6.03 54.80±6.86

L Cer 51.92±5.97 57.69±3.88 51.92±5.02 49.03±5.91

https://doi.org/10.1371/journal.pone.0194054.t002

Fig 5. Beta values shown for each of the selected ROIs, separately for each condition. The largest difference in

terms of beta values among the conditions is shown by the left OG. This difference could introduce a bias in the

classification accuracy, explaining the significant results observed in the left OG.

https://doi.org/10.1371/journal.pone.0194054.g005
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problem, although another school of thought argues that normalizing the beta value can intro-

duce a bias in the analyses [32].

In the following analysis, the factor ‘hemisphere’ will not refer to the entire hemisphere, but

only to the left and the right IFG. The statistical analysis run on the classifier performance

associated with separate search revealed that the classifier ability to predict the domain was the

same for both hemispheres (main effect of “hemisphere”: F(1,12) = 0.249, p = 0.62). The perfor-

mance of the classifier across sessions was steady (main effect of ‘session’: F(1,12) = 0.649,

p = 0.436). Finally, the effect of the hemisphere on the classifier performance was independent

of the session (two-way ‘session’ x ‘hemisphere’ interaction: F(1,12) = 0.33, p = 0.859). In the

analysis on the performance accuracies associated with the parallel search, the classifier distin-

guished each class with the same accuracies in both hemispheres (main effect of “hemisphere”:

F(1,12) = 0.766, p = 0.39) and in both sessions (main effect of “session”: (1,12) = 1.871, p = 0.20),

with no interaction between the variables (F(1,12) = 0.203, p = 0.66).

Next, we tested whether the representation of domain was stable across sessions. This analy-

sis revealed that the representation of domain could not be reliably decoded across the ses-

sions. Though training the classifier on the first session and testing it on the second yielded

above 50% accuracy in the SFG, bilateral IFG and left orbital gyrus, none of the regions showed

accuracy above the 95th percentile. A similar pattern of results was observed when the classifier

was trained on the second session and tested on the first one, again with no region surpassing

the 95th percentile. The results are shown in Fig 6 and Table 4 reports the classification perfor-

mance for each ROI and analysis direction.

Table 3. Average beta value reported for each ROI and for each condition in terms of mean and standard deviation.

Separate Search Verbal Separate Search Spatial Parallel Search Verbal Parallel Search Spatial

R SFG 0.31±0.20 0.62±0.62 0.62±0.62 0.55±0.14

L IFG 0.25±0.15 0.14±0.14 0.50±0.50 0.21±0.12

L OG 0.28±0.15 -0.03±0.03 0.53±0.53 0.05±0.23

R IFG 0.08±0.12 0.31±0.31 0.21±0.21 0.25±0.18

R OG -0.09±0.12 0.01±0.01 0.19±0.19 0.20±0.11

L Cer 0.01±0.18 0.06±0.06 0.42±0.42 0.46±0.12

https://doi.org/10.1371/journal.pone.0194054.t003

Fig 6. ROI MVPA inter session results. Mean classification accuracy for the two types of search (separate, parallel)

shown separately for each ROI when the classifier was trained on session 1 and tested on session 2 (upper panel) and

when it was trained on session 2 and tested on session 1 (lower panel). Error bars depict ±SEM (n = 13). The black line

indicates the chance level (50%) while the red dashed line indicates the decoding level that is significantly above chance

(>95th percentile) derived by permutation testing.

https://doi.org/10.1371/journal.pone.0194054.g006
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Finally, we tested the ability of the SVM to classify domain as a function of different subsets

of voxels. Fig 7 shows the results separately for the left and the right IFG and for each search

type (separate and parallel).

If a cortical region is sensitive to domain, then the decoding accuracy is expected to rapidly

increase as a function of the number of features included in the analysis, and then stabilize at

high levels. This pattern is evident for the left IFG in the separate search condition. In this case,

the decoding accuracy reached 66.72% when the classifier was run on the first session, indicat-

ing a reasonable level of sensitivity to rule domain. On the other hand, this pattern is absent in

the right IFG where the classifier performance is either at chance level or below the chosen sig-

nificance level.

The pattern of results for the parallel search condition is similar to those reported above. In

the first session, the highest classification accuracy is still observed in the left IFG, although the

decoding performance (62.96%) does not reach the criterion for statistical significance (which

Table 4. The mean and the standard error mean of the classification performance are reported separately for each ROI, for each direction and for each search type.

The 95th percentile calculated from the permutation testing for each direction is reported in parentheses.

Train on Session 1/Test on Session 2 (95th: 64%) Train on Session 2/Test on Session 1 (95th: 64%)

Separate Search Parallel Search Separate Search Parallel Search

R SFG 50.96±3.30 58.65±5.36 51.92±3.42 57.69±3.61

L IFG 55.76±2.69 48.07±5.07 66.34±4.09 51.92±6.67

R IFG 60.57±4.87 53.84±4.56 66.34±4.56 58.65±4.33

L OG 60.57±4.44 52.88±5.32 58.65±3.57 57.69±3.33

R OG 50.00±3.74 46.15±5.36 58.65±4.98 46.15±4.77

L Cer 47.11±3.78 45.19±3.88 51.92±3.11 56.73±4.38

https://doi.org/10.1371/journal.pone.0194054.t004

Fig 7. Decoding of domain during separate (A) and parallel (B) search is shown as a function of the number of

voxels included in the analysis for each session. Also shown are chance decoding performance (black line) and the

performance level that is significantly above chance (>95th percentile) derived from permutation testing (grey dashed

line).

https://doi.org/10.1371/journal.pone.0194054.g007
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was 65%). In all the right IFG, the classification performance is steady at chance level. In the

second session, both the regions show accuracies below the criterion for significance, indicat-

ing that the classifier was unable to distinguish between the verbal and spatial domains for the

parallel search.

Discussion

Previous studies have shown that the left IFG is sensitive to inductive reasoning applied to

both the spatial and verbal domains [12,16]. In the current study we sought to assess whether

the left IFG encodes information about rule domain as a way to understand the processes com-

puted by this region. The results suggested that left IFG encodes domain-specific information.

This result was clear in the first session and suggested by the pattern of results obtained in the

second session, though the specific representations were not stable between the two sessions.

The representation of rule domain

At least part of the information needed to represent rule domain was successfully decoded in

the left IFG. On one side, this result suggests that both spatial and verbal types of information

could be available in this region in the form of neural population codes [33]. On the other side,

however, this result suggests that the information decoded by the classifier could possibly be

influenced by different cognitive trajectories captured by our HRF model. The current experi-

ment does not allow us to rule out either of these interpretations. Further experiments can try

to address this riddle.

These interpretations could however hold only for the separate search condition. In the par-

allel search condition, the decoding accuracy failed to reach the 95th percentile threshold in the

left IFG. As participants needed to search both domains in this condition, the left IFG was

likely processing information belonging to both the verbal and spatial domains concurrently,

resulting in the two neural codes competing for resources (e.g., metabolic resources). This

competition likely resulted in a noisier neural code, which would ultimately deteriorate the

representation of rule domain during this condition. A complementary reason could be that,

under a parallel rule search condition, to have overlapping neuronal populations coding for

both domains in this brain region could have been instrumental for the specific nature of this

task.

The rule domain was apparently decodable in the left OG, where the decoding ability in dis-

tinguishing the two domains during the parallel search reached the significance level. How-

ever, this higher accuracy could be generated by the difference between the two domains in

terms of beta values. Additionally, rule domain was not decodable at the 95th percentile thresh-

old in any of the other brain regions involved in inductive reasoning (right IFG, right OG,

right SFG, left cerebellum).

We further focused on the specific role of the left and the right IFG. Although both of these

regions are known to be involved in inductive reasoning, we were able to decode rule domain

only in the left IFG. This effect could be due to the fact that the size of the left IFG is larger

than the size of the right IFG, and therefore the classification accuracy could have been inflated

in the former region. To assess this possibility we directly tested the effect of the number of

voxels considered on the classifier accuracy in the left and in the right IFG. These analyses

again revealed that rule domain was decodable in the left but not in the right IFG. This result

suggests that the neural population code underlying the spatial and verbal domains in the left

IFG is genuine and was not an artifact of the difference in the number of voxels across regions.

The finding that rule domain is represented in the left IFG, but not other regions involved

in inductive reasoning, seems particularly robust as the data from the second session yielded
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remarkably similar results. In those data, rule domain was successfully decoded in the left IFG

under the separate search condition and using a limited subset of voxels, while no other condi-

tions or regions resulted in above threshold decoding accuracy. This replication suggests that

the left IFG is reliably recruited to compute domain-specific processes during inductive

reasoning.

The left IFG and its role in inductive reasoning

These results support a crucial role of left IFG during the implementation of higher cognitive

functions and, more specifically, inductive reasoning. The involvement of the left IFG we

observed is consistent with previous work on inductive reasoning [34–37] as well as with pre-

vious studies that attempted to explore the relationship between IFG and executive functions

by means of multivariate analysis [38–40].

This explanation would be in line with previously reported evidence [41] in favor of the

‘sculpting the response space’ hypothesis [42], which sees the left dorso-lateral prefrontal cor-

tex as crucial for defining a set of responses suitable to accomplish a task. This interpretation is

also consistent with the hypothesis suggesting that the left hemisphere could work as an ‘inter-

preter’ [43,44]. This theory views the left hemisphere as a system that processes bits of incom-

plete information and connects them into clear patterns, which are then used to make sense of

the world. Connecting information is a process that relies on forming meaningful associations

between items [45]. Fletcher and colleagues (50) measured the hemodynamic activity associ-

ated with the process of learning new semantic relationships when previous relationships with

the same stimuli had already been created. Their results showed that the act of forming mean-

ingful associations produced an increase in the hemodynamic activity in the left PFC. Forming

this kind of association is an essential part of inductive reasoning.

On the whole, we think that the left IFG might hold a population of neurons tuned to pro-

cess verbal information, while the right IFG might hold a different population of neurons

tuned to process spatial information, as shown by our previous study [16]. Additionally, we

suggest that the information processed by the domain-dependent neurons located in the left

(verbal) and in the right IFG (spatial) could be integrated by a subset of neurons which flexibly

code for whatever domain is task-relevant, located in the left IFG, an explanation supported by

the successful decoding of rule domain in the left but not in the right IFG, as shown in this

study. Overall, this interpretation suggests that inductive reasoning would be localized in the

left PFC but not in the right PFC, and would be a domain-independent process, although new

studies are necessary to further corroborate our interpretation.

Particularly interesting is the study by Baggio and colleagues [40], in which participants

were asked to complete a task that relied on logical connectives, such as ‘and’, ‘or’ and ‘if.’ Spe-

cifically, the participants were first presented with visual cues representing specific combina-

tions of logical compound (e.g., “there is a yellow square and a green circle”), which was then

followed by a visual scene made of geometrical figures (e.g., a yellow square close by a green

circle). The participants had to judge whether the visual scene matched the combination of

logical compounds. The authors were able to decode information about the logical connectives

in the left IFG. This finding is interesting as evaluating information about logical connectives

was crucial for the reasoning task to be completed, in the same way as evaluating information

about rule domain was crucial to completing the reasoning task presented in our study.

Dynamic recruitment

Our results also show that the classifier was unable to decode rule domain across the two ses-

sions, despite being reliably decoded within each session. On one side, this discrepancy could
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be partially explained by subtle differences in the procedures used to acquire and analyze the

data, such as tiny differences in the scanner parameters, or small misalignments in the co-reg-

istration. On the other side, this result could be a genuine effect, suggesting that the recruit-

ment of the left IFG during inductive reasoning could be a process that dynamically employs

different neuronal sub-populations. The representations of domain created in the first session

likely faded over the two years, as they were not being used, and then new representations

were formed in the same region at the second session. Thus, it seems that the neurons in left

IFG are dynamically recruited to load the representation of the rules at hand, though these rep-

resentations may change over time. Dynamic recruitment of the prefrontal regions is evidence

also by the recruitment of the same regions by similar, but non-overlapping, tasks, such in the

study by Baggio and colleagues (59).

The neural mechanisms underlying such dynamic recruitment are still under investiga-

tion. Our explanation is that different populations of neurons within the same brain region

may carry out different operations. This explanation is consistent with the study by Wen-

delken and colleagues [46], in which the authors reported that visuo-spatial and semantic

information both produced a considerable activation within the bilateral rostrolateral PFC

(rlPFC) and that the two peaks of activations were located in different parts of the left rlPFC.

Wendelken and colleagues suggest that rlPFC neurons process domain general information,

but specific populations of neurons could process domain-specific information, and we

hypothesize that a similar mechanism could explain our results as well. Although our results

are in line with what was suggested by Wendelken and colleagues (60), it is important to

note that the brain region we are focusing on in this study (left IFG) is different from the one

identified by Wendelken (left rlPFC). This difference in terms of brain regions could suggest

that the mechanism described above could be a general one, shared by more than one set of

prefrontal neurons.

Representations of processes and representation of stimuli

The inferences drawn so far must be taken with prudence. In fact, the success in classifying the

two patterns underlying the verbal and the spatial domain could arise from or be affected by

different underlying cognitive processes. For example, inferring patterns is a complex process

that most likely requires participants to perform multiple tasks at the same time. Probably they

were viewing the stimulus, reading letters, generating hypotheses, and possibly validating their

hypotheses. Most of these processes might be shared between the two domains, and yet some

of these processes could be recruited more intensely in one domain than in the other. For

instance, when participants were told that the rule domain was verbal, then they could have

accessed the lexical system to make sense of the letters read. Accessing the lexical system could

happen more frequently when the rule domain is verbal than when is spatial. As a result, the

classifier could have picked up this subtle difference and use it to distinguish the representa-

tion of rule domain. However, such subtle differences could also be the necessary characteristic

that defines representations of cognitive processes. Specifically, the representation of each rule

domain could be defined by a particular configuration of cognitive processes that are engaged

at the same time, in the same way the representation of a human face could be defined by a

particular configuration of physical attributes forming the image. This is an important differ-

ence to keep in mind when we discuss representations of processes (e.g., rule domain) instead

of representations of stimuli (e.g., face). In summary, if our classifier picked up subtle differ-

ences in terms of cognitive processes related to rule discovery, and if representations of rule

domain are defined by specific configurations of cognitive processes, then we could safely con-

clude that what we decoded was in fact the representation of rule domain.
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A possible limitation of the present study was the relatively small sample size. The reason

why we focused on 13 participants only was to assess reliability and stability of multi-voxel pat-

tern representations through a longitudinal study, in which these 13 participants were available

for a second fMRI session two years after the first session. Nevertheless, we were still able to

show successful classifications in selected brain regions and executive functions have been suc-

cessfully examined with similar sample sizes in previous studies [47] [48].

In conclusion, the present data support the hypothesis that frontally-based hemispheric

specialization could be process-based [9]. In particular, our data suggest that the left vlPFC

contains populations of neurons specifically tuned to process domain-dependent information

required to carry out inductive reasoning tasks, by creating domain-based rule representations

that may dynamically change across sessions. Furthermore, in line with previous literature

[10], we suggest that hemispheric asymmetries may vary as a function of the difficulty and

complexity of the inductive reasoning task, with the right hemisphere working as a comple-

mentary system with respect to the left hemisphere.

The reason for this result could be that the left IFG reaches its full processing capacity, an

explanation which is consistent with previous evidence suggesting that a load-sensitive bilat-

eral fronto-parietal network may be engaged whenever a hemisphere has reached its limit in

learning and executing new rules [49,50]. The slightly higher engagement of the right IFG

observed when participants had to keep looking for both domains could also result from the

right hemisphere limiting the number of possible patterns.

In fact, searching for both verbal and spatial domains requires participants to evaluate ver-

bal patterns as well as spatial patterns. In order to optimize the search process, the right IFG

could constrain the possible number of patterns to evaluate.

This inter-hemispheric asymmetry could arise particularly when the cognitive demands

imposed by the inductive reasoning task are fairly low, such as when the rule domain to

attend to is known (i.e., separate rule search). In fact, when the cognitive demands are low, the

computational capacity of a single hemisphere could suffice to successfully execute the task at

hand [49]. However, when the task demands increase, such as when the rule domain to attend

to is unknown (i.e., parallel rule search), the left IFG could reach its computational limit. As a

result, part of the resources needed to integrate the domain-specific information could be allo-

cated on the right IFG, which would therefore support the left IFG in order to find relation-

ships among the available information.
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