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Background: Therapies targeting immune molecules have rapidly been adopted and
advanced the treatment of hepatocellular carcinoma (HCC). Nonetheless, no studies have
reported a systematic analysis between immunological profiles and clinical significance in HCC.

Methods: We comprehensively investigated immune patterns and systematically
correlated 22 types of both adaptive and innate immune cells with genomic
characteristics and clinical outcomes based on 370 HCC patients from The Cancer
Genome Atlas (TCGA) database through a metagene approach (known as CIBERSORT).
Based on the Quantitative Pathology Imaging and Analysis System coupled with integrated
high-dimensional bioinformatics analysis, we further independently validated six immune
subsets (CD4+ T cells, CD8+ T cells, CD20+ B cells, CD14+ monocytes, CD56+ NK cells,
and CD68+macrophages), and shortlisted three (CD4+ T cells, CD8+ T cells, and CD56+ NK
cells) of which to investigate their association with clinical outcomes in two independent
Zhongshan cohorts of HCC patients (n = 258 and n = 178). Patient prognosis was further
evaluated by Kaplan-Meier analysis and univariate and multivariate regression analysis.

Results: By using the CIBERSORT method, the immunome landscape of HCC was
constructed based on integrated transcriptomics analysis and multiplexed sequential
immunohistochemistry. Further, the patients were categorized into four immune
subgroups featured with distinct clinical outcomes. Strikingly, significant inter-tumoral
and intra-tumoral immune heterogeneity was further identified according to the in-depth
interrogation of the immune landscape.

Conclusion: This work represents a potential useful resource for the immunoscore
establishment for prognostic prediction in HCC patients.
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INTRODUCTION

Hepatocellular carcinoma (HCC) ranks as the fourth leading
cause of cancer-related death worldwide (1). Amongst all
precision medicine, immunotherapy is quickly becoming a
leading option for modern cancer treatment. However, the
effectiveness of targeted therapy applied in HCC, such as
sorafenib (2) and regorafenib (3), is limited. Moreover,
immune therapy has also been unsuccessfully tested in HCC
for decades (4). Strikingly, blocking the interaction between
programmed death-1 (PD-1) and programmed death-ligand 1
(PD-L1) has presented a substantial survival benefit in an open-
label, non-comparative, phase 1/2 dose escalation and expansion
trial in advanced HCC patients (5). Recently, for patients
with unresectable hepatocellular carcinoma, atezolizumab
combined with bevacizumab presented with better overall and
progressionfree survival outcomes than those taking sorafenib in
the IMbrave150, a global, multicenter, open label, phase 3
randomized trial (6). Despite the promising advances made in
tumor-immunotherapy, the effectiveness remains largely limited,
which may be due to the complex dynamic nature and immune
heterogeneity. To date, to make educated decisions and design
novel combination treatment strategies, the comprehensive
landscape of cells infiltrating the tumor microenvironment
(TME) needs urgent elucidation.

The recruitment, distribution, and localization of immune
cells in the TME vary in tumor centers. An increasing body of
literature suggests a crucial role for the TME in cancer
progression and therapeutic responses (7). A strong correlation
between a high density of T-cell infiltration and favorable clinical
outcome has been shown in several solid tumors, such as
melanoma (8), colo-rectal (9), and breast cancers (10).
Similarly, the intra-tumoral balance of regulatory and cytotoxic
T cells was uncovered as a promising independent predictor for
prognosis in HCC (11). In addition, a serial of driver genomic
alterations was revealed by deep-sequencing on more than 1000
HCC patients (12). Moreover, a patient-derived cell line-based
model, pharmacologic data, and genomic comparisons of
multiple lesions in HCC demonstrated that intratumor
heterogeneity affected the sensitivity of different therapeutic
agents and tumor progression (13). Heterogeneity of TME can
be influenced by numerous factors, including chemokines,
cytokines, the permeability of the vasculature, and tumor cells
themselves (14). Although TME has been recently analyzed in
pan-cancer or HCC-specific settings, few studies can provide a
comprehensive characterization of immunological profiles and
clinical significance for HCC.

To identify TME infiltration patterns in HCC, previous
studies attempted to used immunohistochemistry (IHC), which
contained numerous types of immune cells including T cells, B
cells, macrophages, monocytes, and NK cells (15). However,
these IHC-based investigations typically used one specific
monoclonal antibody to identify a given immune cell type (16).
In addition, more reliable identification of immune cells can be
discriminated by flow cytometry (16). However, there is limited
information about the flow cytometry gating strategy, making it
challenging to further analyze. Furthermore, as an alternative,
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continuously accumulating transcription data can provide an
ideal resource for large-scale analysis of the immune landscape,
and integrated computational methods and platforms have been
developed to delineate the micro-anatomical components
in TME.

To improve early prognosis prediction and comprehensively
investigate the immune infiltration patterns in HCC, we
integrated public transcriptomics data from The Cancer
Genome Atlas (TCGA) and The Cancer Immunome Atlas
(TCIA) database, and employed the algorithm “Cell Type
Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT)” to demonstrate the immune gene
expression profiles in the current study. As an open algorithm,
CIBERSORT allows for high sensitivity and specific differentiation
of 22 different human immune cell phenotypes using a machine-
learning approach called support vector regression (17).
Furthermore, it has successfully been used for immunologic
model construction in several solid tumors (18).

In the present study, we used CIBERSORT to quantify the
proportions of immune cells in 370 HCC patients based on their
immune gene profiling available from public databases, and
systematically correlated the TME phenotypes with clinical
outcomes and pathologic features in HCC. Furthermore, we
optimized a platform to quantify the immune infiltration
patterns and inter-tumoral and intra-tumoral immune
heterogeneity through Quantitative Pathology Imaging and
Analysis System, and further independently validated six
reproducible immune subsets and three immune subtypes
according to specific gene expression patterns, molecular and
cellular characteristics, and clinical outcomes. This work should
represent a useful resource for the immunoscore establishment
of patient prognosis and treatment selection in HCC.
MATERIALS AND METHODS

Patients and Datasets
Two independent cohorts comprising 436 HCC patients who
underwent curative resection at Zhongshan Hospital of Fudan
University in 2006-2009 (training cohort, n = 258; validation
cohort, n = 178) were retrospectively analyzed. The inclusion and
exclusion criteria of patients, postoperative surveillance, and
treatment modalities have been described previously (19). 56
spatially separated samples obtained from 14 primary HCC
patients treated with curative resection were selected for the
immune heterogeneity research. Overall survival (OS) and time
to recurrence (TTR) were defined as the interval from the date of
surgery to death and tumor recurrence, respectively (19). Patients
without recurrence or death were censored at the last follow-up.
The study was approved by the Research Ethics Committee of
Zhongshan Hospital, with written informed consent obtained
from each patient (19). Detailed clinicopathologic characteristics
are summarized in Supplementary Table S1.

We systematically searched for HCC gene expression datasets
that were publicly available and reported full clinical
annotations. Patients without survival information were
January 2021 | Volume 10 | Article 574778
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removed from further evaluation. In total, we gathered eight
cohorts of samples from patients with HCC for this study:
GSE25097 (n = 557, 268 HCC tumor, 243 adjacent non-tumor,
40 cirrhotic, and six healthy liver samples), GSE14520 (n = 488,
247 HCC tumor, 239 adjacent non-tumors, two healthy liver
samples), GSE36376 (n = 433, 240 tumors and 193 adjacent non-
tumors), GSE45267 (n = 87, 48 HCC tumors and 39 adjacent
non-tumors), GSE6764 (n = 75), GSE41804 (n = 40), GSE60502
(n = 36), and TCGA-LIHC (n = 370). The raw data from the
microarray datasets generated by Affymetrix and Illumina were
downloaded from the Gene-Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/). The raw data for the datasets from
Affymetrix were processed using the RMA algorithm for
background adjustment in the Affy software package (20).
RMA was applied to perform background adjustment, quantile
normalization, and final summarization of oligonucleotides per
transcript using the median polish algorithm. The raw data from
Illumina were processed by the lumi software package (21). Level
four gene-expression data (FPKM normalized) of The Cancer
Genome Atlas (TCGA) were downloaded from the UCSC Xena
browser (GDC hub: https://gdc.xenahubs.net). Data were
analyzed with the R (version 3.4.0) and R Bioconductor
packages (22). For TCGA data-sets, RNA-sequencing data
(FPKM values) were transformed into transcripts per kilobase
million (TPM) values, which are more similar to those resulting
from microarrays and more comparable between samples (23).
The TCGA database was included for all further analyses.

Collection of Genomic and
Transcriptomics-Related Data
The corresponding clinical data from these public databases were
retrieved and manually organized when available. Updated
clinical data and sample information for TCGA-LIHC samples
were obtained from the Genomic Data Commons (https://portal.
gdc.cancer.gov/) using the R package TCGA biolinks. Overall
survival information, somatic mutation data, the numbers of
predicted neoepitopes based on tumor-specific HLA typing, and
total mutations for each HCC patient were obtained from the
web portal (https://gdc.xenahubs.net).

Evaluation of TME Infiltration Patterns
To systematically quantify the proportions of immune cells in
the HCC samples, we applied the CIBERSORT algorithm and the
LM22 gene signature, which allows for high sensitivity and
specific discrimination of 22 human immune phenotypes,
including T cells, B cells, NK cells, macrophages, monocytes,
DCs, and MDSC subsets (17). CIBERSORT is a deconvolution
algorithm that uses a set of reference gene-expression values (a
signature with 547 genes) considered a minimal representation
for each cell type and, based on those values, infers cell type
proportions in data from bulk tumor samples with mixed cell
types using support vector regression (17). Gene-expression
profiles were prepared using standard annotation files, and
data were uploaded to the CIBERSORT web portal (http://
cibersort.stanford.edu/), with the algorithm run using the
LM22 signature and 1,000 permutations. The range of
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infiltrating immune cells was calculated based on the
CIBERSORT score, which was available in The Cancer
Immunome Atlas (TCIA, https://tcia.at/). Detailed information
on CIBERSORT is summarized in Supplementary Table S2.

Multiplexed Staining, Imaging, and
Multispectral Analysis
Sections were dewaxed and then rehydrated through a series of
xylene to alcohol to distilled water washes. Heat-induced antigen
retrieval (pH 6.0, Enzo Life Sciences, Inc. USA) was then
performed by microwave antigen retrieval for 10 minutes.
Next, sections were cooled to room temperature for 1 hour
and transferred to Tris-buffered saline. Endogenous peroxidase
was blocked using 0.3% H2O2 for 30 minutes and washed in
0.03% Tris-Buffered Saline-Tween-20 (TBST, Amersco) three
times at 5 minutes each with gentle agitation. This was followed
by incubation with a protein-blocking solution (Enzo Life
Sciences, Inc. USA) for another 30 minutes to reduce
nonspecific antibody staining. Then sections were incubated
with the first primary antibody in a humidified chamber at 4°C
overnight. After the first incubation, corresponding secondary
horseradish peroxidase-conjugated polymer was used for
antibody conjugation (Vector Laboratories, CA), and staining
was detected using 1:200 dilution of fluorescein tyramide
signal amplification (TSA) (Perkin Elmer, Waltham, MA) for
10 minutes. TSA visualization was performed with the Opal
seven-color IHC Kit (NEL797B001KT; PerkinElmer) containing
fluorophores DAPI, Opal 520, Opal 540, Opal 570, Opal 620,
Opal 650, Opal 690, and TSA Coumarin system (NEL703001KT;
PerkinElmer). After serial rinsing, slides were again placed in
specific retrieval buffers in a microwave to remove redundant
antibodies before the next staining as specified by the
manufacturer (Perkin Elmer, Waltham, MA). After sequenced
staining based on the protocol of each panel, nuclei were
incubated and visualized with diamidino-phenyl-indole (DAPI)
(Sigma-Aldrich) for 5 minutes, and sections were subsequently
cover-slipped with fluorescence mounting media (Vector Labs,
Burlingame, CA) and allowed to dry overnight. We optimized
singles to duplex staining and so on until eventually a 7 plex
panel was developed. CD20 was detected with 1:100 dilutions of
Opal™520; CD56, 1:200 dilutions of Opal™540; CD4, 1:200
dilutions of Opal™570; CD68, 1:200 dilutions of Opal™620;
CD14, 1:200 dilutions of Opal™650; and CD8, 1:50 dilutions of
Opal™690. Detailed information of reagents and antibodies is
provided in Supplementary Table S3.

Slides were scanned using the PerkinElmer Vectra® 3
(PerkinElmer). Multispectral images were unmixed using
spectral libraries built from images of single stained tissues for
each reagent using the inForm advanced image analysis software
according to the prearranged protocols. First, slides were imaged
at 4x magnification based on DAPI and an automated inForm®

software algorithm (v. 3.0) was used to identify tissue areas of the
slides. The tissue areas were then imaged at 10x magnification for
channels associated with DAPI (blue), FITC (green), Cy3
(yellow), Cy5 (red), and TexasRed (red) for the multiple
markers-stained slides to create RGB images. These images
January 2021 | Volume 10 | Article 574778
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were processed by the automated inForm software enrichment
algorithm to identify possible 20x high-power fields (HPF) of
view according to the highest FITC/Cy3/Cy5/TexasRed. For each
region, Vectra® 3 Intelligent Slide Analysis System (Perkin
Elmer, Waltham, MA) captured the fluorescent spectra every
10 nm of the emission light spectrum and combined these
captures to create a single stack image.

Individual stained spectrum and auto-fluorescence were
utilized to establish a spectral library, which consisted of the
emitting spectral peaks of selected fluorophores for multispectral
analysis by inform v3.2 software (Perkin-Elmer, USA). All
computer pre-selected images were reviewed by a board-
certified pathologist for acceptability; images lacking tumor
cells, containing mainly necrotic cells, or abnormal
fluorescence signals not expected with antibody localization or
biology were rejected. Defining a pattern recognition learning
algorithm, each fluorescence-labeled biomarker of nucleated cells
can be individually identified according to unique fluorescence
intensity. Each specific fluorescent spectral was used to generate
pixel intensities for every pixel within the segmented region of
interest through inform v3.2 software. Then, each fluorophore
was spectrally unmixed into individual channels and saved as a
separate file for analysis. This was done for positive or negative
evaluation of each targeted biomarker, as well as the fluorescent
intensity cutoff value, which was strictly defined depending on
the FI threshold. FI threshold was set up by manual inspection of
several representative fields (up to 5) and confirmed by
corresponding bright field images. For cell phenotypic
identification, the method of circle selection training was used
for prejudged cells, and finally, an objective and consistent
morphological identification standard was established.

Quantification of Immune Cells’ Spatial
Distribution
Based on these pixel intensities, MATLAB was used to analyze
the information of individual cells through dimension reduction
(detailed MATLAB code was obtained from https://lvdmaaten.
github.io/tsne/). In each spectrally unmixed and phenotypic
image, relative spatial distribution and location information of
each single cell was defined as a bivariate point pattern. The
fluorescence spectra of each individual cell were obtained by
inform v3.2 software analysis. Unsupervised learning is
employed to verify that the approach can partition the tissue
sections according to distributional heterogeneity.

Statistical Analysis
For comparisons of two groups, statistical significance for
normally distributed variables was estimated by unpaired
Student t tests, and non-normally distributed variables were
analyzed by Mann-Whitney U tests (also called the Wilcoxon
rank-sum test). For comparisons of more than two groups,
Kruskal-Wallis tests and one-way analysis of variance were
used as nonparametric and parametric methods, respectively.
Correlation coefficients were computed by spearman and
distance correlation analyses. Two-sided Fisher exact tests were
used to analyze contingency tables. The Kaplan-Meier method
Frontiers in Oncology | www.frontiersin.org 4
was used to generate survival curves for the subgroups in each
dataset, and the log-rank (Mantel-Cox) test was used to
determine the statistical significance of differences. The hazard
ratios for univariate analyses were calculated using a univariate
Cox proportional hazards regression model. A multivariate Cox
regression model was used to determine independent prognostic
factors using the survminer package. All heatmaps were
generated by the function of pheatmap (https://github.com/
raivokolde/pheatmap). All statistical analyses were conducted
using R (https://www.r-project.org/) or SPSS software (version
17.0), and the P values were two-sided. P < 0.05 was considered
statistically significant.
RESULTS

Integrated Analysis of Immune Cell
Subpopulations Defining the Immunome
Landscape of HCC
The transcriptome data of 2085 HCC patients were retrospectively
selected from eight public datasets (GSE25097, GSE14520,
GSE36376, GSE45267, GSE6764, GSE41804, GSE60502, and
TCGA-LIHC). Detailed patient characteristics were obtained
from the GEO (https://www.ncbi.nlm.nih.gov/geo/) and TCGA
(https://portal.gdc.cancer.gov/) database. Immune cell-infiltrating
patterns, signatures, patient selection scheme, and the workflow
chart were systematically evaluated, as shown in Figure 1. To
further characterize and understand the clinical differences among
these immune subsets, we focused on the TCGA-LIHC cohort
(n = 370), not only because it contained the paired tumor and
non-tumors, but also because it provided the most comprehensive
patient data. In addition, the CIBERSORT algorithm was more
suitable to deconvolve microarray data from the Affymetrix
platform (18).

According to the transcriptomic information, cluster analysis
was performed to reveal 28 distinct patterns of immune cell
infiltration, as the TCGA-LIHC database presented. In adaptive
immunity, the enrichment of central memory CD4+ T cells (370/
370), Th1 cells (338/370), activated CD8+ T cells (338/370), gd T
cells (298/370), and effector memory CD8+ T cells (265/370)
constituted the most abundant immune infiltrates in HCC,
whereas the fraction of effector memory CD4+ T cells (1/370),
Th17 cells (0/370), and tumor infiltrating-B cells (28/370) was
significantly lower in HCC. Likewise, in innate immunity,
plasmacytoid dendritic cells (370/370), monocytes (369/370),
Myeloid-derived suppressor cells (MDSC) (320/370), and NK
cells (268/370) were the four most common immune cell
fractions, and the sum of their mean proportions was more
than 60% in all clinical subgroups, whereas mast cells,
eosinophils, neutrophils, and natural killer T cells indicated a
sparse distribution, according to the Gene Set Enrichment
Analysis (GSEA) (Figure 2A).

To investigate the cellular composition of the immune
infiltrates in the TCGA-LIHC cohort, we further built the
CIBERSORT inferred relative fractions of 22 immune cells.
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Interestingly, the percentage of macrophage (M2) (17.69%) was
the highest, followed by resting memory CD4+ T cells (13.96%),
gd T cells (11.55%), and macrophages (M1) (7.29%) (Figure 2B).
In adaptive immunity, student’s t test revealed that the
percentages of activated B cells, monocyte, effector memory
CD8+ T cells, and activated CD8+ T cells were decreased in
intra-tumoral tissues, while the percentages of memory B cells, gd
T cells, Tfh cells, Th17 cells, effector memory CD4+ T cells, and
central memory CD4+ T cells were increased (Figure 2C). In
innate immunity, apart from macrophages, the percentages of
neutrophils, eosinophils, mast cells, activated dendritic,
immature dendritic cells, and monocytes were all decreased in
intra-tumoral tissues. No significant differences were found in
the comparison between normal and tumor tissues in activated
NK cells and resting NK cells (Supplementary Figure S1).
Furthermore, we investigated the coordination of immune cell
fractions in the TCGA-LIHC cohort. Unsupervised hierarchical
clustering of the immune cell correlation matrix was performed
by visualized correlation analysis (Figure 2D). In summary,
these results indicated a high degree of coordination of specific
types of immune cells in HCC.

Prognostic Landscape of Immunome
Profile in HCC
To obtain a comprehensive prognostic evaluation of the
immunome profile in HCC, we investigated the association
between immune cells and prognosis through Kaplan-Meier
analysis and log-rank test. Based on a mixed cell population
using a gene expression-based approach from the TCIA
database, we modified the RNA-Seq data, and cases were then
divided into two groups based on the abundances of specific cell
types. Notably, we found that more activated CD4+ T cell (HR =
1.41, 95% CI = 1.00 - 2.00, P = 0.049) and more central memory
CD4+ T cell (HR = 1.42, 95% CI = 1.02 - 2.02, P = 0.041)
Frontiers in Oncology | www.frontiersin.org 5
subpopulations were associated with dismal prognosis in HCC
(Figures 3A, B).

Conversely, in innate immunity, more activated NK cells (HR =
1.17, 95% CI = 0.83 - 1.66, P = 0.007) and CD56dim NK cells (HR =
0.65, 95% CI = 0.46 - 0.92, P = 0.015) were associated with favorable
prognosis in patients with HCC (Figures 3C, D). Meanwhile, other
immune components, including T cell subsets, B cell subsets
(Figure 3E), neutrophils, eosinophils, dendritic cells,
macrophages, and monocytes, were also investigated (Figure 3F),
although no significant differences were found. To further explore
other immune prognostic signatures, a global prognostic map of
other adaptive and innate immune components was summarized in
Supplementary Figure S2 and S3, respectively.

Landscape of Immunomodulators and
Their Prognostic Properties in HCC
Immune checkpoints consist of stimulatory and inhibitory
molecules (24). Immune checkpoint blockade therapy has
yielded promising clinical responses in patients with solid
tumors (25), including HCC (26). To complement our
immune population-centric survival analysis, we assembled an
expression landscape of 22 immunomodulators and a global map
of prognostic associations in HCC.

We first evaluated the expression of 22 immunomodulators,
including co-inhibitory and co-stimulatory molecules (Figure 4A).
Collectively, we found that PD-1, CTLA-4, VISTA, CD28, OX-40,
4-1BB, ICOS, and GITR were significantly increased in tumor
tissues compared with non-tumor tissues. However, LAG-3 was
significantly decreased (Figure 4B). Similarly, paired analysis of
immune checkpoint ligands clearly demonstrated that ICOSL,
4-1BBL, OX40L, and Galectin 9 were significantly elevated in
tumor tissues compared with non-tumor tissues. However, PD-L1
and PD-L2 were significantly decreased in tumor areas
(Supplementary Figure S4A).
FIGURE 1 | Flowchart presenting the overview of study design.
January 2021 | Volume 10 | Article 574778
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We then experimentally evaluated the reciprocal survival
associations of immunomodulators in HCC. Using median as the
cutoff value, we found that high OX40 (Figure 4C) and high OX40L
(Supplementary Figure S4B) were significantly associated with
poor prognosis, further indicating a potential clinical application for
them as a prognostic tool (Supplementary Figure S5).

To extend the above findings, we investigated the
coordination of immunomodulators in the TCGA-LIHC
cohort. Unsupervised hierarchical clustering of immune cell
correlation matrix was performed by visualized correlation
analysis (Figure 4D). Notably, a reasonably high correlation
among these immunomodulators was observed, further
indicating a high degree of functional coordination of specific
types of immunomodulators.

Immune checkpoint molecules were defined as essential “brake”
molecules for transducing inhibitory signals into immune cells and
regulating immune response and immune tolerance (27). Based on
Frontiers in Oncology | www.frontiersin.org 6
the TCGA-LIHC cohort, we performed correlation analysis
between five immunoinhibitors and six distinct immune
subpopulations. As shown in Supplementary Figure S6A, TIM-3
expression was significantly and positively correlated with the
infiltration of dendritic cells (R = 0.68, P = 2.18e-47). Similarly,
we further investigated the potential associations between six
immunostimulators and immune subpopulations (Supplementary
Figure S6B). Interestingly, ICOS was significantly and positively
correlated with the infiltration of CD8+ T cells (R = 0.585, P = 8.37e-
33). Correspondingly, cases exhibiting lower purity of tumor
contents showed the elevated expression levels of all immune
checkpoint genes. Conversely, cases rich in higher purities of
tumor contents indicated reduced expression levels of these genes.

Taken together, tumor-associated molecules involved in
immune checkpoints were often deregulated in TME, creating
a way to escape immune surveillance. Our results indicated that
heterogeneous molecular features were found in distinct immune
A B

D
C

FIGURE 2 | Landscape of TME and gene modules of the 22 immune subtypes in TCGA-LIHC cohort (n = 370). (A). Bubble heatmap for comparison of two TME
clusters, adaptive immunity, and innate immunity, comprising 28 immune cell fractions in TCGA-LIHC tumor tissues. The size of the circle represents the absolute
value of the Z statistics. (B). Unsupervised clustering of 22 TME cell types in the TCGA-LIHC cohort. TME clusters are shown as patient annotations. Columns
represent TME cells and rows represent samples. Hierarchical clustering was performed with Euclidean distance and Ward linkage. (C). Comparison of adaptive
immune cells between tumor (red) and normal tissues (blue) in the TCGA-LIHC cohort, calculated using the CIBERSORT algorithm. *, **, *** denote P < 0.05,
P < 0.01 and P < 0.001, respectively. NS denotes no significance (Mann-Whitney test). (D). Correlation matrix followed by unsupervised hierarchical clustering in 22
immune subsets. Pearson correlation coefficients (R) were calculated. Correlation coefficients were plotted with negative correlation (blue), positive correlation (red),
and R = 0 (white).
January 2021 | Volume 10 | Article 574778
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subpopulations, thus providing unique therapeutic opportunities
as depicted.

Multiplexed Sequential
Immunohistochemistry Enabling Defining
Immune Landscape in HCC
To in situ characterize the immune landscape through
geographic distribution, a workflow based on the sequential
IHC methodology was built, enabling simultaneous evaluation
of multiple biomarkers in one FFPE section. After multi-region
sampling from distinct HCC regions (Figure 5A), sequenced
multiplex staining was performed on serial sections with
standard preparation and incubation of primary and secondary
antibodies (Figure 5B). Following this, slides were visualized by
opal staining system and whole-slide digital scanning.
Furthermore, serially scanning and digitized imaging were
processed with a computational image analysis workflow after
all rounds were finished (Figure 5C). Finally, in-deep analysis,
like clustering and patients’ stratification, was performed based
on the corresponding algorithms and projects (Figure 5D).
Frontiers in Oncology | www.frontiersin.org 7
Based on the hypothesis that specific gene signatures could
predict individual immune cell subsets, we first evaluated the
ability of our single and sequenced multiplex staining assessment
to differentiate immune cell subsets in tonsil tissues, as the
positive control (Figure 5E). Consistent with this hypothesis,
corresponding visualization and phenotyping were able to
significantly differentiate subpopulations within complicated
immune microenvironments (Figure 5F).

To specifically describe the complexity and phenotype of the
immune profile in HCC tumor centers, we established and validated
the seven-color panel in paired tumor and non-tumor liver tissues
from two independent Zhongshan cohorts comprising 436 HCC
patients and encompassing six distinct epitopes to phenotype
lymphoid lineage cells (Figure 6A). This panel depicted and
visualized CD4+ T cells, CD8+ T cells, CD20+ B cells, CD14+

monocytes, CD56+ NK cells, and CD68+ macrophages,
respectively. The level of immune features was defined as the
median density of positively stained cells in two specific regions
of each HCC patient. Consistent with the transcriptome data
from the TCGA-LIHC cohort, a significantly higher density of
A B

D

E F

C

FIGURE 3 | Prognostic landscape of immunome profile in TCGA-LIHC cohort (n = 370). (A–D). Kaplan-Meier survival curve of tumor-infiltrating immune cells in LIHC
(activated CD4+ T cell, central memory CD4+ T cell, NK cell, and CD56dim NK cell). (E, F). Forest plot showing the results of multivariate Cox regression analysis of
13 selected adaptive immunity cells and nine innate immunity cells in LIHC. *, ** denote P < 0.05 and P < 0.01, respectively.
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CD8+ T cells (median, 46 vs 20 cells/mm2, P < 0.0001), CD20+

B cells (median, 145 vs 133 cells/mm2, P = 0.0475), CD56+ NK cells
(median, 10 vs 6.5 cells/mm2, P = 0.0276), and CD68+macrophages’
(median, 1738 vs 1358 cells/mm2, P < 0.0001) infiltration were
found in the non-tumor versus tumor liver comparison in training
cohort. Conversely, significantly higher infiltration of CD4+ T cells
(median, 356 vs 308 cells/mm2, P < 0.0001) was noted in tumor liver
tissues than non-tumor tissues. However, no significant difference
was found in tumor versus non-tumor liver comparison of CD14+

monocytes (median, 30 vs 41.5 cells/mm2, P = 0.4067) (Figure 6B).
Analogously, similar results were fully confirmed by the validation
cohort (Figure 6B). In addition, we further investigated the
frequency of distinct immune features in early and advanced
stages in the training cohort, but no significant differences were
found (Figure 6C). These findings demonstrated a dynamic change
of local immune status in HCC. In particular, the significant
Frontiers in Oncology | www.frontiersin.org 8
difference in immune infiltration implied that pro-tumorigenic
and anti-tumorigenic components are happening in TME.

Prognostic Significance of Distinct
immune Subgroups
To select prognostic immune features, we first sought to define
whether the infiltration of six immune cell types was related to
patient survival. We calculated the density of defined
subpopulations for each patient and stratified them into high
and low groups according to the median value. Strikingly, a
higher density of CD4+ T cells was significantly associated with
unfavorable OS (P = 0.017), but not TTR (P = 0.118) (Figure
7A). In contrast, a higher density of CD8+ T cells was
significantly associated with favorable OS (P = 0.041), but
not TTR (P = 0.466) (Figure 7B). Moreover, more infiltration
of CD56+ NK cells harbored a significantly prolonged OS
January 2021 | Volume 10 | Article 574778
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FIGURE 4 | Landscape of the immune checkpoints and corresponding ligands in TCGA-LIHC cohort (n = 370). (A). Unsupervised clustering of 22 immune
checkpoints and specific ligands in tumor tissues. Columns represent receptors/ligands and rows represent samples. Hierarchical clustering was performed with
Euclidean distance and Ward linkage. (B). Comparison of immune checkpoints between tumor and normal tissues in TCGA-LIHC cohort. *, **, *** denote P < 0.05,
< 0.01, and < 0.001, respectively. NS denotes no significance (Mann-Whitney test). (C). Forest plot showing the results of multivariate Cox regression analysis of 11
selected immune checkpoints in LIHC. * denotes P < 0.05. (D). Correlation matrix followed by unsupervised hierarchical clustering in 22 immune checkpoints and
specific ligands in tumor tissues. Pearson correlation coefficients (R) were calculated. Correlation coefficients were plotted with negative correlation (blue), positive
correlation (red), and R = 0 (white).

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tao et al. Tumor Immune Landscape in HCC
(P = 0.013) and TTR (P = 0.016) (Figure 7C). However, the high
density of CD14+ monocytes, CD68+ macrophages, and CD20+

B cells neither correlated with patients’ OS and TTR
(Supplementary Figure S7). Similar prognostic significance of
these immune subgroups was also confirmed in the validation
cohort (Supplementary Figure S8). Then, we conducted the
univariate and multivariate analysis of prognostic factors
associated with OS and TTR in the Zhongshan cohort (n =
258). Multivariate analysis revealed that the association of a high
density of CD4+ T cells with unfavorable OS (HR = 1.480, 95%
CI = 1.009 - 2.173, P = 0.045) was independent of AFP level,
tumor size, tumor differentiation, microvascular invasion, and
TNM stage (Table 1).

The goal of tumor-associated immunotherapy is to
successfully stimulate anti-tumor responses and inhibit tumor-
mediated immunosuppression. Anti-tumor immunity strategy
has been accomplished through different modalities including
cellular immunotherapy, specific vaccines, monoclonal
Frontiers in Oncology | www.frontiersin.org 9
antibodies, and oncolytic virotherapy. The existence and
composition of local immune status may affect the activity and
migration of tumor associated lymphocytes (TILs) during tumor
progression and tumor-mediated immunosuppression (28). To
further explore this hypothesis, we further evaluated the
potential prognostic implications of combined immune status.
As depicted in Figure 8, we investigated four distinct immune
subtypes of combined immune infiltrates and complex
associations with clinical outcomes, according to the previous
three immune subgroups, which were significantly correlated
with prognosis (CD4+ T cells, CD8+ T cells, and CD56+ NK
cells). The immune-hot subtype harbored lower infiltration of
CD4+ T cells, but higher densities of CD8+ T cells and CD56+ NK
cells, and was further defined as group I. Conversely, immune-
cold subtype had a higher infiltration of CD4+ T cells, but lower
densities of CD8+ T cells and CD56+ NK cells, and was defined as
group IV. The immune-intermediate subtype indicated both
higher infiltration of CD4+ T cells, CD8+ T cells, and CD56+
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FIGURE 5 | Schematic workflow of TME landscape characterizing through seven-plex IHC of key immuno-oncology phenotypic bio-markers. (A). Specimen
acquisition. Spatial multi-region sampling from FEEP sections. (B). Multiplexed IHC staining with specific targets indicated distinct phenotypes: CD4, CD8, CD20,
CD14, CD68, and CD56, which denoted CD4+ T cells, CD8+ T cells, CD20+ B cells, CD68+ macrophages, and CD56+ NK cells, respectively. (C). Image visualization
and phenotyping. Sequential steps, including single bio-markers, merged into composite image for enhanced target proteins visualization followed by inForm 2.1
(Perkin Elmer) based analysis including spectral unmixing, cell segmentation (nuclear/cytoplasmic/membrane) and cell phenotyping to precisely quantify immune
evasion in tumor and adjacent peri-tumor. (D). Clustering and patients’ stratification. Clustering and patients’ stratification were performed through obtained single-
cell-based chromogenic signal intensity and computer based K-means algorithm learning partitioning. (E). Immune landscape analysis of tonsil probed with a 7-plex
panel labeling markers through multiplex IHC in tonsil. Scale bars, 100 mm. Representive images of individual channel in 7-plex panel, including CD4, CD8, CD20,
CD14, CD68 and CD56, were presented. Scale bars, 100 mm. (F). Phenotype panel demonstrates that seven fluorescent signals can be clearly unmixed via spectral
imaging. Scale bars, 100 mm.
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NK cells (group II), or both lower densities CD4+ T cells, CD8+ T
cells, and CD56+ NK cells (group III). In the training cohort,
patient stratification based on these four groups presented that
the immune-hot subtype was associated with improved
prognosis, whereas the immune-cold subtype was associated
with dismal prognosis, and immune-intermediate subtype was
associated with medium prognosis (OS, P = 0.019; TTR, P =
0.043) (Figure 8A). Correlation with clinical outcomes in
validation further confirmed that patients with immune-hot
subtype had a better survival rate (OS, P = 0.001; TTR, P <
0.001) (Figure 8B). Interestingly, we next interrogated the
combined cohort with patient prognosis, and similar
prognostic significance of these immune statuses was also
confirmed (Figure 8C). Taken together, the distinct immune
status displayed opposite regulatory directions and this further
supported the crucial role of immune imbalance in HCC.

Inter-Tumoral and Intra-Tumoral Immune
Heterogeneity in HCC
In light of the evidence, it can be deduced that the complexity of the
tumor, including the intra-tumoral and inter-tumoral
heterogeneity, is the major cause of drug resistance and treatment
failure (29). To construct a rigorous approach for assessing the
spatial immune heterogeneity by histological biomarker expression
with accuracy and reproducibility is indeed required.
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To date, there have been no attempts to systematically map
and quantify immune heterogeneity in tandem with coupled
protein expression in histological preparations. To determine the
inter-tumoral and intra-tumoral immune heterogeneity of HCC
in our cohorts, we have optimized and applied a statistical
methodology to systematically quantify the spatial immune
heterogeneity in whole HCC tissue sections, based on the
multiplex imaging system, quantification platform, and
unsupervised hierarchical clustering analysis. Three spatial
intra-tumoral regions (defined as R1, R2, and R3) and one
peri-tumor area (defined as R4) were sampled at multiple sites
from 14 HCC cases, including 42 intra-tumoral tissues and 14
peri-tumor tissues, and were selected randomly for heterogeneity
exploration (Figure 9A).

Representative images of immunohistochemical variables are
shown in Figure 9A. For intra-tumoral immune heterogeneity,
using the peri-tumor area as a reference datum, immune cell
infiltration was observed to present a non-homogeneous density
in different tumor regions. Three immune subgroups were
visualized for exhibiting distinct and characteristic immune cell
patterns. The immune-hot presented the most TILs, whereas the
immune-cold indicated sparse TILs infiltration, and the immune-
moderate meant intermediate infiltration of TILs (Figure 9B).
Furthermore, image cytometry-based quantification illustrated
multiplex phenotyping findings, indicating that high infiltration of
A

B C

FIGURE 6 | Integrated and multiplexed IHC detection of immune landscape in ZS-HCC cohorts. (A). Seven-plex multispectral IHC images depict the immune
landscape in HCC with tumor, peri-tumor, and margin invasion areas. (Iso) isotype-matched control antibody. Detailed single spectral image of seven-color panel,
CD8 (red), CD68 (green), CD4 (white), CD56 (yellow), CD20 (cyan), CD14 (magenta), and DAPI (blue). Scale bars, 100 mm. (B). Comparison and distribution of the
six-immune features between tumor and paired normal tissues in the training cohort (n = 258) and validation cohort (n = 178). *, **, *** denote P < 0.05, P < 0.01,
and P < 0.001, respectively. NS denotes no significance (Mann-Whitney test). (C). Associations of the six-immune features in tumor areas with patients’ TNM stage
in training cohort (n = 258).
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FIGURE 7 | Prognostic landscape of immunome profile in ZS-HCC training cohort (n = 258). (A). Kaplan-Meier analysis of OS and TTR for tumor-infiltrating CD4+ T
cell subset based on cell density. (B). Kaplan-Meier analysis of OS and TTR for tumor-infiltrating CD8+ T cell subset based on cell density. (C). Kaplan-Meier analysis
of OS and TTR for tumor-infiltrating CD56+ NK cell subset based on cell density.
TABLE 1 | Univariate and multivariate analysis of prognosis factors associated with OS and TTR in Zhongshan cohort (n=258).

Variables OS TTR

Univariate Multivariate Univariate Multivariate

P HR 95%CI P P HR 95%CI P

Age, years (>51 vs. ≤51) 0.951 NA 0.727 NA
Gender (Male vs. Female) 0.492 NA 0.843 NA
HBsAg (Negative vs. Positive) 0.081 NA 0.305 NA
Liver cirrhosis (No vs. Yes) 0.564 NA 0.068 NA
Serum AFP, ng/ml (>20 vs. ≤20) 0.001 1.564 1.039–2.353 0.032 0.012 1.396 0.948–2.054 0.091
Serum ALT, U/L (>75 vs. ≤75) 0.462 NA 0.380 NA
Tumor size (cm) (>5 vs. ≤5) <0.001 2.237 1.429–3.504 <0.001 <0.001 1.346 0.882–2.052 0.168
Tumor multiplicity (Multiple vs. Single) 0.231 NA 0.072 NA
Tumor differentiation (Poor vs. Well) <0.001 1.636 1.107–2.417 0.014 0.012 1.205 0.810–1.791 0.357
Microvascular invasion (Yes vs. No) <0.001 2.015 1.322–3.072 0.001 <0.001 1.925 1.245–2.975 0.003
TNM stage (II–III vs. I) <0.001 1.454 0.910–2.321 0.117 <0.001 1.633 1.014–2.631 0.044
CD4+ T (High vs. Low) 0.017 1.480 1.009–2.173 0.045 0.118 NA
CD8+ T (High vs. Low) 0.041 1.035 0.654–1.637 0.883 0.466 NA
CD14+ Monocyte (High vs. Low) 0.245 NA 0.432 NA
CD20+ B (High vs. Low) 0.09 NA 0.329 NA
CD56+ NK (High vs. Low) 0.013 0.792 0.499–1.256 0.321 0.016 1.205 0.810–1.791 0.139
CD68+ Macrophage (High vs. Low) 0.211 NA 0.999 NA
Frontiers in Oncology | www.frontiersin.org
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OS, overall survival; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; TNM, tumor-nodes-metastases; HR, hazard ratio; CI, confidential interval; NA, not available.
The bold indicates P < 0.05.
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TILs was found in R1 (immune-hot), low TILs infiltration in R2
(immune-cold), and median TILs infiltration in R3 (immune-
moderate) and the corresponding peri-tumor area (R4)
(Figure 9C).

For inter-tumoral immune heterogeneity, immune cells
infiltrated into HCC tumor centers in a diffuse manner or in
lymphoid aggregates, but more abundant cells were in peri-
tumoral areas. Significant discrepant infiltrating density of CD4+

T cells, CD8+ T cells, CD20+ B cells, CD14+ monocytes, CD56+

NK cells, and CD68+ macrophages were found within different
tumors, excluding necrotic, hemorrhagic, and fibrotic
components. Composition analysis indicated the presence of
differential immune profiles between tumors and peri-tumor
tissues (Figure 9D). As highlighted in our immune analysis,
HCC had variable TME compositions, with immune signatures
impacting observed protein expression patterns.
DISCUSSION

Precise immunotherapy requires a comprehensive understanding of
its micro-environmental complexities and heterogeneities (30). It
remains largely undefined how tumor biological behavior is
Frontiers in Oncology | www.frontiersin.org 12
influenced by microenvironment characteristics (31). We revealed
the landscape of immune characteristics and complex associations
with clinical outcomes using different subgroups and
immunomodulators from over 800 HCC cases. We found that
more activated CD4+ T cells and central memory CD4+ T cell
subpopulations were associated with a dismal prognosis, but more
activated NK and CD56dim NK cells were associated with a
favorable prognosis in patients with HCC. When pairs of these
three variables (CD4+ T cells, CD8+ T cells, and CD56+ NK cells)
were combined and subjected to survival analyses, our analysis
showed that immune-hot subtypes harboring lower infiltration of
CD4+ T cells, but higher densities of CD8+ T cells and CD56+ NK
cells, had the longest survival. These results suggest that systematic
analysis of several tumor-infiltrating immune/inflammatory cells is
essential for establishing a prognostic model for HCC.

From an immunologic standpoint, the coordination among
particular cell types can affect the immune microenvironment.
The prognostic values of these selected immune profiles (CD4+ T
cells, CD8+ T cells, and CD56+ NK cells) were consistent with
previous studies (32). Recently, the prognostic roles of CD4+ T
cells in tumors have received extensive attention but remain
rather controversial. Previous studies indicated a favorable role
of CD4+ tumor-infiltrating lymphocytes in melanoma (33),
A
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FIGURE 8 | Prognostic significance of distinct immune subtypes in ZS-HCC cohorts. (A). Cumulative OS and TTR were calculated using the Kaplan-Meier method
and P value was calculated by the log-rank test among sub-types. Patients were divided into four groups according to the median proportion of CD4+ T cells, CD8+

T cells, and CD56+ NK cells in intratumoral tissues in training cohort (n = 258). (B). Validation cohort (n = 178). (C). Combined cohorts (n = 436).
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colon (34), breast (35), and HCC (36). In contrast, our analysis
supports the idea that more infiltration of activated CD4+ T cells
and central memory CD4+ T cells were associated with dismal
prognosis in HCC, which is similar to several studies on
melanoma (8), colo-rectal (9), and breast cancers (10). This
inconsistency may be due to factors such as the difference of
methodology, sample size, race, age, gender, and treatment. In
line with a previous study (37), a higher density of CD8+ T cells
was significantly associated with favorable OS in HCC patients.
Similar to the previous study (38), more CD56+ NK cell
infiltration in the intra-tumoral area was significantly associated
with better OS and TTR. These findings, together with our present
results, suggest that CD4+ T cells, CD8+ T cells, and CD56+ NK cells
are the hallmarks of an immune microenvironment.

Monocytes that have diminished or no HLA-DR expression,
called CD14+HLA-DRlo/neg monocytes, have emerged as
important mediators of tumor-induced immunosuppression
(39). MDSCs are a heterogeneous population of cells that
usually expand on pathological conditions of cancer,
Frontiers in Oncology | www.frontiersin.org 13
inflammation, and infection, and have a remarkable ability to
suppress T-cell responses (40). Therefore, MDSCs are commonly
referred to as monocytic myeloid derived suppressor cells (41).
In contrast to extensive studies on murine MDSCs, human
MDSCs are inadequately characterized by few uniform
markers, which comprise of two subsets: CD14+ monocytic
subpopulation (Mo-MDSCs) and CD15+ granulocytic
subpopulation (G-MDSCs) (42). Although MDSCs were not
investigated directly in our study, MDSCs were closely
correlated with other subgroups, such as Tregs, monocytes,
and macrophages (43). The coordination of MDSCs and the
other immune cells still needs further investigation in HCC.

The expression profiles and prognostic significance of other
immune phenotypes were also investigated. In HCC, tumor-
associated B lymphocytes presented both tumor-promoting and
anti-tumor effects (44). In our study, though no significant
prognostic difference was observed, the decreased distribution
of infiltrating CD20+ B cells in intra-tumoral tissues, compared
with that in peri-tumoral tissues, was found, suggesting B cells’
A B
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FIGURE 9 | Phenotyping of immune cell density-based subgrouping enables the evaluation of immune heterogeneity in HCC. (A). Representative images to show composite
and panel of single spectral image for CD8 (red), CD68 (green), CD4 (white), CD56 (yellow), CD20 (cyan), CD14 (magenta), and DAPI (blue), with three distinct immune
infiltration status in intra-tumor centers (R1, Hot; R2, moderate; R3, cold), compared with matched peri-tumor area (R4). Scale bars, 100 mm. (B). Representative phenotype
maps indicated three distinct immune infiltration status (Hot, Moderate, and Cold) in intra-tumor tissues and corresponding peri-tumor area, with machine learning algorithm to
virtually define in situ contexts. Scale bars, 100 mm. (C). Image cytometry-based quantification show multiplex IHC phenotyping findings, indicating high TILs infiltration in R1
(Hot), moderate TILs infiltration in R2 (Moderate), low TILs infiltration in R3 (Cold) and corresponding peri-tumor area (R4). Image plots depict location of cells were identified by
image cytometry. CD8+ T cell (red), CD68+ macrophage (pink), CD4+ T cell (green), CD56+ NK cell (yellow), CD20+ B cell (cyan), CD14+ monocyte (magenta), and other cells
(blue). (D). Heatmap presents densities of six distinct immune features in 14 HCC patients.
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potential antitumor effect in the HCC microenvironment (16).
Conversely, intra-tumoral neutrophils were defined as a dismal
indicator for HCC patients with sorafenib resistance in the
previous study (45). However, no significant prognostic values
were found in mRNA levels of neutrophils, eosinophils, dendritic
cells, macrophages, and monocytes, according to our analysis of
transcriptome sequencing results. In the previous studies,
macrophages were divided into two phenotypes (46). The
classical M1 macrophage was defined with inflammatory
response and antitumor immunity, while the alternative M2
macrophage was implicated in anti-inflammatory response and
pro-tumorigenic properties in an immune-suppressive
microenvironment (47). In our study, neither mRNA levels of
M1 nor that of M2 predicted significant prognosis.

Furthermore, we investigated 22 key immune checkpoint
modulators in HCC, since these co-stimulatory or inhibitory
modulators, especially CTLA-4, PD-1, or PD-L1, may sustain or
restrict the anti-tumoral potency of tumor-associated T cells
(48). Surprisingly, among 22 modulators, only high levels of
OX40 and OX40L were significantly associated with poor
prognosis. OX40 is a recently identified T-cell costimulatory
molecule belonging to the TNF/TNFR superfamily. It can
express in both activated T effector cells and Foxp3+ Tregs
(49). OX40 can act as a key negative regulator of Foxp3+ Tregs
and may have important clinical implications in models of
transplantation and autoimmunity and in HCC. We proposed
that adding immune checkpoint modulators to an immune
prognostic model will improve the accuracy of its prognostic
power, which needs further investigation.

HCC is defined as a remarkably heterogeneous type of
malignancy (50). Consequently, the heterogeneity at epigenetic,
genomic, transcriptome, and proteogenomic from the single cell to
the lesion hinders the efficacy of treatment, due to the immune escape
or drug resistance (29). Consistent with our previous studies, multi-
regional sampling and high-throughput analyses in the present study
further confirmed intra-tumoral heterogeneity in HCC (13). Analysis
of tumor spatial heterogeneity at the single-cell level can reveal
distinct features in cancer habitats that indicate different ecological
processes. Therefore, comprehensive investigation of the immune
heterogeneity of HCC and study of their associations with cancer
prognosis are considerately important.

Extensive literature has investigated the host immune
response to cancer and demonstrated the prognostic impact of
the in situ immune cell infiltrating into tumors (51).
Immunoscore presented the advanced feasibility and reliable
reproducibility in prognostic power, therefore it has been
demonstrated to be a prognostic factor superior to the AJCC/
UICC TNM classification (52). We used RNA sequence data,
multiplex IHC, and immunofluorescence to investigate immune
profiles (53). In addition, our study illustrated immune profiles
by recruiting two larger cohorts, including 436 HCC patients.
Furthermore, an expression landscape of 22 immunomodulators
and intra-tumoral heterogeneity were additionally evaluated in
our study. Our studies expand the current knowledge on the
association between immunological profiles and clinical
significance in HCC.
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Our study has several limitations. First, we established an
immune-related prognostic model of HCC based on
transcriptome levels and multiplex immunohistochemistry of six
immune subsets. However, immune checkpoint modulators are
lacking in our model. Second, although we confirmed the intra-
tumoral and inter-tumoral immune heterogeneity in HCC, the
correlations between these heterogeneities and prognosis were not
analyzed. Third, our study only focuses on the six immune subsets,
which cannot represent the landscape of immune cells. Fourth, the
CIBERSORT-based analysis of activated/central memory states
alone is not enough to make robust conclusions; more
validations would be required. In addition, the prognostic value
of CD4 in this study is limited because of the lack of Foxp3 co-
staining, which needs further investigation.

In summary, this comprehensive study not only shows the
immune landscape and heterogeneity in HCC, but also creates
new opportunities to carry out an integrated and in-depth study
in the near future. Further investigation of specific functions in
TILs with distinct immune checkpoint modulators will help us to
further understand the immune system in HCC.
CONCLUSION

Our findings provide a conceptual framework to understand the
immune landscape within HCC. Future work is needed to evaluate
its relevance in the design of combination treatment strategies and
guiding optimal selection of patients for immunotherapy.
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SUPPLEMENTARY FIGURE 1 | The cellular characteristics associated with the
innate immune subsets. (A) Comparison of innate immune cells between tumor and
normal tissues in TCGA-LIHC cohort. *** denotes P < 0.001. NS denotes no
significance (Mann-Whitney test).

SUPPLEMENTARY FIGURE 2 | Prognostic landscape of adaptive TME
signatures in TCGA-LIHC cohort (n = 370). Kaplan-Meier survival curves of tumor-
infiltrating immune subsets in TCGA-LIHC. (A–M) Each indicating activated CD8+

T cell, central memory CD8+ T cell, effector memory CD8+ T cell, activated B cell,
memory B cell, immature B cell, Effector memory CD4+ T cell, regulatory T cell,
gamma delta T cell, T follicular helper cell, Type 1 helper cell, Type 2 helper cell and
Type 17 helper cell, respectively.
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SUPPLEMENTARY FIGURE 3 | Prognostic landscape of innate TME signatures
in TCGA-LIHC cohort (n = 370). Kaplan-Meier survival curves of tumor-infiltrating
immune subsets in TCGA-LIHC. (A–I) Each indicating activated CD56bright NK cell,
neutrophil, activated dendritic cell, plasmacytoid dendritic, mast cell, myeloid-
derived suppressor cell, monocyte, macrophage, eosinophil, respectively.

SUPPLEMENTARY FIGURE 4 | The cellular characteristics associated with
specific ligands of immune checkpoints in TCGA-LIHC cohort (n = 370).
(A) Comparison of specific ligands of immune checkpoints between tumor and
normal tissues in TCGA-LIHC cohort. **, *** denote P < 0.01 and P < 0.001,
respectively. NS denotes no significance (Mann-Whitney test). (B) Forest plot
showing the results of multivariate Cox regression analysis of 11 selected specific
ligands of immune checkpoints in LIHC. * denotes P < 0.05.

SUPPLEMENTARY FIGURE 5 | Prognostic landscape of immune regulators in
TCGA-LIHC cohort (n = 370). (A–V) Kaplan-Meier survival curve of PD-1, CTLA-4,
LAG-3, TIM-3, VISTA, CD28, CD40L, OX40, 4-1BB, ICOS, GITR, PD-L1, PD-L2,
CD80, CD86, HLA-DRB1, Galectin-9, CD40, OX40L, 4-1BBL, ICOSL and GITRL.
P value was calculated by the log-rank test.

SUPPLEMENTARY FIGURE 6 | Visualizing the correlation of expression of
immune checkpoints with immune infiltration level in TCGA-LIHC cohort (n = 370).
The scatter-plots was generated and displayed as showing the purity-corrected
partial Spearman’s correlation and statistical significance. The gene expression
levels against tumor purity are always displayed on the left-most panel. Genes highly
expressed in the microenvironment have negative associations with tumor purity.
(A, B) Immune checkpoints.

SUPPLEMENTARY FIGURE 7 | Kaplan–Meier curves for OS and TTR of all
patients stratified by the immune subtypes in ZS-HCC training cohort (n = 258).
(A–C) CD20, CD68 and CD14, respectively.

SUPPLEMENTARY FIGURE 8 | Kaplan–Meier curves for OS and TTR of all
patients stratified by the immune subtypes in ZS-HCC validation cohort (n = 178).
(A–F) CD4, CD20, CD68, CD14, CD8 and CD56, respectively.
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