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Simple Summary: Worldwide, overweight and obesity are an ever-increasing problem. Insulin
resistance is often associated with obesity and is a precursor to a range of other diseases (e.g., cardio-
vascular disease and type 2 diabetes). In this review, we discuss the role of dietary carbohydrates,
fats, and proteins in metabolic health. We also review how the “one nutrient at a time” approach
of traditional research may not be the most appropriate way, and how the use of the geometric
framework for nutrition platform could assist in reconciling apparently contradictory findings in
the literature.

Abstract: Obesity caused by the overconsumption of calories has increased to epidemic proportions.
Insulin resistance is often associated with an increased adiposity and is a precipitating factor in
the development of cardiovascular disease, type 2 diabetes, and altered metabolic health. Of the
various factors contributing to metabolic impairments, nutrition is the major modifiable factor that
can be targeted to counter the rising prevalence of obesity and metabolic diseases. However, the
macronutrient composition of a nutritionally balanced “healthy diet” are unclear, and so far, no
tested dietary intervention has been successful in achieving long-term compliance and reductions in
body weight and associated beneficial health outcomes. In the current review, we briefly describe the
role of the three major macronutrients, carbohydrates, fats, and proteins, and their role in metabolic
health, and provide mechanistic insights. We also discuss how an integrated multi-dimensional
approach to nutritional science could help in reconciling apparently conflicting findings.

Keywords: insulin resistance; macronutrients; obesity

1. Introduction

Obesity and associated metabolic diseases such as type 2 diabetes have become global
epidemics with more than 600 million obese and more than 450 million diabetic adults
worldwide [1,2]. Of the various factors contributing to metabolic impairments, nutrition
is the major modifiable factor that can be targeted to counter the rising prevalence of
obesity and metabolic diseases. However, despite decades of research, the specifics of a
nutritionally balanced “healthy diet” are unclear and none of the dietary interventions
have been successful in achieving long-term population-wide compliance or a significant
and sustained reduction in body weight [3,4]. Protein, fat and carbohydrate are the
major dietary macronutrients [4]. The World Health Organisation (WHO) recommends
consuming 55–75% of daily energy from carbohydrate, 15–30% energy from fat, and 10–15%
energy from protein [4], while the acceptable macronutrient distribution range (AMDR)
for the United States recommends 10–35% daily energy from protein, 20–35% from fat and
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45–65% from carbohydrate [5]. Interestingly, all three macronutrients (or at least certain
sub-types) have been linked to insulin resistance and diabetes [6–16]. In this narrative
review, we provide a brief overview of the potential role of protein, fat and carbohydrate
intake in obesity and metabolic disorders. We also discuss the mechanisms that may link
the consumption of these macronutrients to insulin resistance. Finally, we explain how
an integrated multi-dimensional approach to nutrition science could help in reconciling
apparently conflicting findings.

2. Carbohydrate

Carbohydrate is the most abundant macronutrient in the human diet, providing
45–70% of daily calories [3,4]. However, carbohydrates are not considered an essential
nutrient for humans [17], and their increased consumption has recently been associated
with “carbotoxicity” [6,7]. Several human trials have shown that reducing carbohydrate
consumption is beneficial for metabolic health, and ketogenic diets that severely limit carbo-
hydrate intake to <10% daily energy are effective in producing weight loss and improving
the glycaemic profile in type 2 diabetes [18]. Furthermore, a recent large-scale epidemio-
logical study (Prospective Urban Rural Epidemiology (PURE) study) showed that a high
carbohydrate intake (highest (quintile 5) vs. lowest quintile (quintile 1)) is associated with
increased risk of mortality and dyslipidaemia [7,19]. Together, these observations make
a case for revising current dietary guidelines to reduce the total amount of carbohydrate
consumption and decrease the proportion of daily energy derived from carbohydrate.

2.1. Types of Carbohydrates and Their Metabolic Effects

In addition to total carbohydrate intake, evidence suggests that the “type” of car-
bohydrate eaten is also an important determinant of metabolic outcomes [20–24]. Fibre,
starch, sucrose, and high fructose corn syrup (HFCS) are the major types of carbohydrates
in the diet of adult humans [20–24]. Fibre is not a major source of daily energy [4,25]. It
is composed of polysaccharides derived from plant cell wall, whole grains, fruits, and
vegetables, and includes resistant starch, inulin, oligofructose, polydextrose, and galac-
tooligosaccharides [21]. Studies have shown that consuming fibre-rich foods leads to
metabolic improvements such as weight loss and improved insulin sensitivity, and these
changes are associated with an increased abundance of beneficial bacteria in the gut mi-
crobiome [21,22,26]. Currently, the daily intake of fibre for the U.S. population is 16 g/d;
for European adults, the average intake is 20–25 g/d, which is less than the recommended
fibre intake by the U.S. Department of Agriculture (USDA) of 25–38 g/d [25,27].

In terms of energy, starch, sucrose, and HFCS account for most of the carbohydrate-
derived calories in adult Western diets [4]. Starch is a polysaccharide of glucose that exists
as either linear chains of glucose monomers joined to each other by α-1,4 glycosidic bonds
(amylose) or in branched form containing both α-1,6 and α-1,4 linkages (amylopectin) [28].
Sucrose (table sugar) is a disaccharide of glucose and fructose, while HFCS is a mixture of
glucose and fructose in monosaccharide form [4,29]. HFCS is produced by treating corn
syrup with the enzyme “glucose isomerase” that converts glucose derived from corn starch
to fructose [24]. In the United States, successful glucose isomerisation on an industrial
scale in 1967 led to the replacement of sucrose by HFCS in processed foods because of
greater availability and lower prices of corn [24,30]. While sucrose is still the predominant
caloric sweetener in most parts of the world, HFCS accounts for ~40% of caloric sweeteners
added to foods (e.g., canned fruits, jellies, and baked goods etc) and drinks in the United
States [24,31,32]. The most commonly used forms of HFCS are HFCS-55 (containing 55%
fructose and 45% glucose) and HFCS-42 [31,32].

Glucose and fructose are the monomeric building blocks of the major energy-providing
dietary carbohydrates [4]. Glucose is a source of energy for all tissues, but fructose is not
essential for human metabolism and it is rarely consumed in isolation [23,31]. Fructose
can be synthesised endogenously in the liver from glucose via the polyol pathway [33].
In general, most Western diets contain over three-fold more glucose than fructose [34]. In
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contrast to fructose found in nutrient-rich whole fruits, consuming fructose-derived calories
from nutrient-poor sources such as caloric sweeteners (sucrose, HFCS and pure fructose)
added to processed foods and beverages have been associated with adverse metabolic
consequences [23,24]. For example, epidemiological data from the United States suggest
that increased consumption of fructose, especially from HFCS, is responsible for the rapid
rise in obesity prevalence over the last 40–50 years [24,35]. The increase in fructose and
HFCS consumption closely paralleled the rise in prevalence of overweight and obesity in
the United States between 1960 and 2000 [24,35]. In addition to obesity, higher intakes of
sucrose, HFCS, and fructose, especially from beverages, increase the risk of developing
type 2 diabetes [36–39]. Similarly, experimental studies in animals and humans have
shown that consuming extra calories from fructose-containing sweeteners promote obesity,
dyslipidaemia, fatty liver, and insulin resistance [23,40–46]. These adverse effects are more
obvious when fructose is derived from beverages such as soda drinks, sweetened milk
drinks, fruit juices, and iced tea [45,47–49]. This is because, compared with solid foods, the
biological regulation of total energy intake is less precise when sugars are consumed as
fluids [4,50,51]. Furthermore, fructose intake stimulates parts of the brain associated with
feelings of reward and pleasure, and these hedonic effects of fructose can promote increased
energy consumption [52]. Functional MRI scanning in healthy volunteers after a glucose or
fructose drink showed that fructose stimulated greater reactivity to food cues in the visual
cortex and left orbital frontal cortex [53]. Behavioural studies in animals have also shown
signs of dependence, such as bingeing, withdrawal, craving, and cross-sensitisation to
other drugs with intermittent sucrose administration [54]. However, contrary to the effects
of consuming excess calories from fructose, results of the studies comparing the metabolic
consequences of fructose-containing caloric sweeteners with other types of carbohydrates
(e.g., glucose and starch) have been inconsistent and contradictory [43,45,55,56]. This has
led to strong controversy in sugar research and has caused debate as to whether fructose
per se is harmful for health beyond its contribution to excess calories [45,55].

2.2. Glycaemic Index and Metabolic Effects of Carbohydrates

In addition to molecular structure, glycaemic index (GI) is also used as a marker of
carbohydrate quality. GI is a measure of the glycaemic response to consuming a food
item containing 50 g of carbohydrate. It is measured as the incremental AUC (iAUC) for
blood glucose over a two-hour timeframe and expressed as a percentage of the iAUC of
a reference food, usually pure glucose solution or white bread, which are assigned GI
values of 100 (GI = (iAUCfood item/iAUCreference) × 100) [57,58]. A related parameter is the
glycaemic load (GL), which is the product of GI and available carbohydrate in a given
amount of food (GL = GI × available carbohydrate in the food item) [57]. Foods with
GI values of ≤55 are classified as low GI foods; those with GI of 56–69 are medium; and
those with GI ≥ 70 are labelled as high GI foods [57]. Most starchy foods have a GI of
>70, and Thai Jasmine rice has a GI of 100 [59]. Compared with low GI diets, consuming
high GI diets would produce a greater spike in postprandial blood glucose and insulin
concentrations [58]. This will result in the rapid utilisation of glucose by peripheral tissues,
leading to a faster return of feelings of hunger, and the spike of insulin could lead to greater
anabolic effects of insulin such as lipogenesis and increased lipidaemia. This could lead
to adverse consequences such as obesity and insulin resistance in the long-term [58]. In
addition, emerging evidence suggests that high GI diets could have transgenerational
effects due to epigenetic changes induced in the placental and foetal tissues [60,61].

Results of experimental studies comparing the effects of low vs. high GI diets on subjective
measures of satiety, fullness and appetite have been inconsistent [57]. Although some studies
have reported higher ratings of fullness in subjects consuming low GI diets [62,63], others have
reported no significant differences in satiety on low vs. high GI foods [64–66]. Furthermore,
data from studies investigating the relationship between dietary GI and obesity have
been equivocal [57]. A cross sectional study in young Japanese women showed a positive
correlation between GI, GL, and body mass index (BMI) [67]. Similarly, in a study involving
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175 subjects with type 2 diabetes, there was a positive association between dietary GI
and waist circumference [68]. In an eight-week weight loss trial including 30% energy
restriction, subjects on a low GI diet lost significantly more weight than those in the high
GI group [69]. At a molecular level, a study in male subjects given a high or an isocaloric
low GI meal after exercise, showed that glucose and insulin AUC were increased, while
gene expression of fatty acid transporter CD36 in skeletal muscle tissue was significantly
reduced after consuming a high GI meal [70]. This indicates reduced fat metabolism after
consuming a high GI meal [70]. Contrary to these observations, no association between
dietary GI and BMI was observed in a study of Spanish adults [71]. Moreover, in older
adults from the United Kingdom, no association was reported between GI and body weight
or BMI [72]. This was similar to the data for elderly subjects from rural Spain, showing
no association between GI or GL and waist circumference or BMI [73]. The results of
these epidemiological studies are consistent with several weight loss trials, including those
that involved energy-matched interventions, which reported no differences in weight
loss on subjects maintained on high vs. low GI diets [74–77]. The evidence from the
prospective studies for the association between dietary GI and risk of developing type
2 diabetes [78–81], and results of experimental trials exploring the link between GI and
markers of glycaemic control, have also yielded contradictory evidence [75,82,83].

Possible reasons for the inconsistent evidence about the metabolic outcomes associated
with high vs. low GI diets include confounding factors such as the higher fibre content
of low GI diets and the use of food frequency questionnaires in observational studies for
collecting self-reported dietary data [57]. Another issue with the concept of GI is that
foods containing sucrose or HFCS can have low GI values (e.g., the GI of pure fructose is
19) but still be adverse for metabolic health [22,84]. However, a recent meta-analysis of
prospective cohort studies involving healthy adults showed a 90% increase in the risk of
type 2 diabetes when comparing the lowest to the highest GI exposure across the globe (GI
of 48 vs. 76) [85]. The strong association with high dietary GI and risk of type 2 diabetes
was independent of levels of dietary fibre intake [85]. Furthermore, a recent publication
from the high-profile PURE study involving data for 137,851 subjects from 20 countries
on five continents showed an increased risk of cardiovascular disease and death with
high GI of the diet [86]. When comparing the highest vs. lowest quantiles of GI, the risk
of a composite outcome of major cardiovascular event and death was increased both in
subjects with (hazard ratio 1.51) and without (hazard ratio 1.21) pre-existing cardiovascular
disease [86]. The WHO commissioned a systematic review and meta-analysis of prospective
studies and randomised clinical trials to investigate the association between the intake of
dietary fibre, whole grains, GI, and cardiometabolic disease [22]. When compared with
people that consumed low fibre diets, coronary artery disease, type 2 diabetes and all-cause
mortality were decreased by 15–30% in high fibre consumers [22]. The observational
data for mortality translated into 13 fewer deaths for highest vs. lowest fibre intake per
1000 participants over the course of the studies [22]. In experimental trials, high fibre intake
resulted in benefits such as lower body weight and lower levels of cholesterol [22]. The
results of whole grain consumption were similar to fibre intake, but a reduction in the risk
of type 2 diabetes with low vs. high GI diet was modest when compared with data for
fibre intake [22]. Similarly, data from clinical trials showed inconsistent effects of GI index
on cardiometabolic outcomes [22]. Thus, overall, the evidence for using low GI diets as
a strategy for the prevention and treatment of cardiometabolic disease is not as strong as
that for high fibre intake [22,57]. Further well-controlled studies are required to formulate
dietary guidelines in the light of the impact of GI on cardiometabolic outcomes.

2.3. Molecular Mechanisms of Metabolic Benefits of Fibre Intake

The mechanisms of beneficial effects of dietary fibre on gut microbiota composition
and function as well as on host metabolism are well established [21]. Bacteria in the cecum
and colon have the enzymatic machinery to ferment dietary fibre into short-chain fatty acids
(SCFAs), mainly acetate, butyrate, and propionate at a ratio 3:1:1 which are absorbed into



Biology 2021, 10, 336 5 of 27

systemic circulation. Binding of these fatty acids to G-protein-coupled receptors (GPCRs)
in various tissues is thought to mediate the metabolic effects of fibre intake [21,25,87,88].
Butyrate, acetate, and propionate bind, with the highest selectivity, to the G-protein coupled
receptors GPR109A, GPR43 and GPR41, respectively [87–89]. Butyrate is the major source
of energy for enterocytes in the gut, while propionate and acetate might be metabolised
in the liver. Acetate has the most marked systemic effects with plasma concentrations
reaching 19–160 µM vs. 1–13 µM for butyrate and propionate [21].

Resistant starch, made of linear amylose chains in granules that are resistant to diges-
tion by intestinal enzymes, is one of the most commonly used types of fibre in research.
Mice fed on resistant starch had increased glycolysis and fatty acid oxidation in liver [90].
It is also known to beneficially reshape their gut microbiota by increasing the abundance
of Bacteroides, Akkermansia, and Bifidobacterium while reducing Firmicutes [90]. Sim-
ilarly, in the setting of isocaloric diets, replacing 30% energy from starch with resistant
starch for 12 weeks produced an increase in the concentration of all three SCFAs in ce-
cum, reduced body weight and adiposity by increasing energy expenditure and oxidative
lipid metabolism, and increased insulin sensitivity in mice [21]. Compared with native
starch-fed mice, mice consuming a high resistant starch diet had drastically different
plasma metabolome, including a 22-fold increase in the circulating concentrations of the
tryptophan-derived metabolite indole propionate [91]. Treatment of rats with indole pro-
pionate resulted in an improved glycaemic profile [92]. In humans, the consumption
of resistant starch lowered cholesterol and body fat, substantially increased acetate and
propionate concentrations in plasma, and improved insulin sensitivity in subjects with
metabolic syndrome [89,93].

Intake of SCFAs reproduces most of the benefits associated with increased fibre
intake. Most of the mouse studies have focused on the high fat diet (HFD) model of
obesity, and diets containing 5% (wt./wt.) of individual SCFAs have been commonly
used. Supplementation of HFD diets with SCFAs either completely or partially prevented
HFD-induced obesity without any changes in physical activity [94]. Acetate was found to
be most effective of all the SCFAs in reducing body weight in some studies, while others
showed an equal effect for all three SCFAs [94]. In addition, a 12 week HFD mouse study
showed an increased energy expenditure and fatty acid oxidation secondary to increased
AMPK activity and UCP2 expression in the liver with SCFAs supplementation [95]. This
led to about a 1.5-fold higher glucose infusion rate in animals fed any of the three SCFA-
containing diets during hyperinsulinemic clamp studies, indicating improved insulin
sensitivity [95]. Improvement in glucose tolerance, lower fasting insulin and blood glucose,
mitochondrial biogenesis, beige adipogenesis, and increased UCP-1 expression in brown fat
have also been reported with SCFA intake [96–98]. Similar to resistant starch consumption,
a decrease in the proportion of Firmicutes and an increase in Bacteriodes was observed
with SCFA intake [94]. In obese humans, consumption of 1.5 g/day acetate for 12 weeks
reduced body weight and BMI and caused a 3.5% decrease in abdominal fat area [99].

GPCR activity is required for metabolic benefits of SCFAs. HFD feeding reduces
the expression of GPR-41, 43 and 109A in the adipose tissue of animals [97,100]. Studies
using knockout mice have been critical to understanding the mechanisms of the metabolic
effects of SCFAs. GPR41−/− mice were found to have a lower resting heart rate and
UCP1 expression in brown fat, and their energy expenditure remained unchanged after
propionate treatment [87]. Mice lacking GPR109A were obese and developed hepatic
steatosis on a chow diet [101]. GPR43−/− mice were found to be obese on a chow diet and
had higher body weights than wild-type mice on an HFD [88]. This translated into impaired
glucose tolerance and reduced sensitivity to exogenous insulin in clamp studies [88]. In
contrast, overexpression of GPR43 in adipose tissue protected from HFD-induced obesity,
lowered fasting blood glucose, increased energy expenditure and fat metabolism, and
reduced liver triglycerides [88]. Treatment with antibiotics or housing animals in germ-
free conditions completely blocked the effects of GPR43 deletion and overexpression,
suggesting that these effects are microbiome-dependent [88].
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2.4. Molecular Mechanisms of Adverse Effects of Carbohydrate Intake

Diverse mechanisms have been proposed to mediate the molecular effects of car-
bohydrate intake. Rapid digestion of simple carbohydrates produces spikes of insulin
secretion that cause a dip in blood glucose levels and stimulation of appetite [6]. More-
over, carbohydrate-induced insulin release may facilitate fat deposition by stimulating
lipogenesis and inhibiting lipolysis [3]. The ketone or aldehyde moiety of carbohydrate
molecules can react with the amino group of lysine in proteins or DNA bases, or with a
free hydroxyl group of lipids to generate reactive oxygen species (ROS) [43]. Increased
production of ROS has been linked to insulin resistance and pancreatic beta-cell dysfunc-
tion in diabetes [102]. Dihydroxyacetone phosphate and methylglyoxal produced from
cellular glucose metabolism can also react with free amino groups found in proteins to form
advanced glycation end products (AGEs) [6,103]. AGEs are widely reported to mediate
complications of diabetes in several tissues [6].

It has been suggested that the pro-lipogenic nature of fructose metabolism in the
liver makes it more detrimental for metabolic health than other carbohydrates [6,43]
(Figure 1). Around 50–75% of the fructose absorbed by the intestines is metabolised in
the liver [104]. After entering the hepatocytes through GLUT2 and GLUT5 transporters,
the enzyme ketohexokinase (KHK; also called fructokinase) phosphorylates fructose to
fructose-1-phosphate [6,105]. The enzyme aldolase-B then converts fructose-1-phosphate
into D-glyceraldehyde and dihydroxyacetone phosphate [6,105]. Further downstream
metabolism of these three-carbon metabolites can lead to fatty acid synthesis via acetyl-
CoA or generate a glycerol backbone of triglycerides [105]. Contrary to glucose, fructose
metabolism in the liver is not tightly regulated by insulin signalling or by negative feedback
from ATP and citrate, and this absence of feedback signals facilitates the potent induction of
de novo lipogenesis (DNL) [6]. Comparison of DNL induction by high glucose vs. fructose
intake for six days in humans showed a fractional DNL rate of 2% with glucose and up to
10% with fructose [43,106]. Studies in mice where a high fat diet was supplemented with
either a 30% fructose or glucose solution showed that both these monosaccharides activated
the lipogenic factor ChREBP in the liver [107]. However, fructose additionally activated
the lipogenic transcription factor SREBP1c and genes associated with fatty acid synthe-
sis [107]. Glucose activates ChREBP, which leads to increased glycolysis and fatty acid
synthesis [108]. Activation of the glucose-response activation conserved element (GRACE)
domain of ChREBP by glucose metabolites leads to the binding of ChREBP to carbohydrate
response element (ChoRE) sequences present on the promoter DNL pathway genes such
as Fas, Acc and Scd1 and increases their mRNA expression [109,110]. Fructose-induced hy-
perinsulinaemia and the resultant increase in insulin signalling increases the expression of
DNL genes by activating SREBP-1c in the liver [111]. Mice with defects in the processing of
SREBP-1c in ER and Golgi (required for SREBP-1c activation and its nuclear translocation)
had markedly reduced insulin-induced DNL [112,113]. For example, deficiency of Scap, a
protein that escorts SREBPs from ER to Golgi, reduced liver fat and triglyceridaemia in high
fat diet and high sucrose diet models of rodent obesity [114]. Fructose-induced DNL results
in the generation and secretion of very low-density lipoprotein (VLDL) particles into the
systemic circulation that contributes to hypertriglyceridaemia and adversely affects lipid
profile [45]. In addition, compared with glucose solution, the supplementation of a high fat
diet with fructose solution reduced fatty acid oxidation in mice [115]. This was thought
to be mediated by a fructose-induced increase in concentrations of hepatic malonyl-CoA
(an inhibitor of fat oxidation), mitochondrial dysfunction characterised by reduced mi-
tochondrial area, and increased inhibitory acetylation of fat oxidation pathway factors
CPT1a and ACADL [115]. Overall, these changes in fat metabolism culminate in hepatic
steatosis, increased visceral adiposity, and ectopic lipid deposition in liver and muscle
tissue [42,44,45]. The toxic lipid species (ceramide and diacyl glycerol) generated secondary
to ectopic lipid accumulation are proposed to eventually inhibit insulin signalling, leading
to insulin resistance [45].
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The enzyme KHK is the major mediator of metabolic outcomes of high fructose intake,
and recent research has identified this enzyme as a potential therapeutic target for the
management of obesity and fatty liver [104,115,116]. KHK exists in two isoforms: KHK-C
and KHK-A. The highly active isoform “C” is expressed mainly in the liver, kidney and
intestines, and metabolises the majority of the fructose absorbed from the diet [104,116].
The isoform “A” has widespread but low levels of tissue expression and low affinity for
fructose [104,116]. Mice provided with a 30% fructose solution to drink for 10 weeks as
well as obese human subjects with non-alcoholic steatohepatitis (NASH) showed increased
hepatic expression of KHK and downstream lipogenic genes Acaca, Acly and Scd1 [107].
Knockdown of hepatic KHK by siRNA or combined deletion of KHK-A and KHK-C
protected the mice from high fructose-induced obesity, fatty liver, glucose intolerance and
insulin resistance [104,107,116,117]. The activity of KHK results in the breakdown of ATP
to ADP and AMP, and this ATP depletion may result in an increase in phosphofructokinase
(PFK) activity, leading to the increased utilisation of glucose for glycolysis and downstream
DNL [118]. ATP degradation also activates AMP deaminase which converts AMP to
inosine monophosphate, which is further converted into hypoxanthine, xanthine, and
eventually into uric acid [6]. Uric acid is a proinflammatory metabolite that induces
mitochondrial oxidative stress and inhibits aconitase in the citric acid cycle [6,119]. This
stimulates DNL by the accumulation of citrate and the stimulation of ACLY and FASN
enzymes [119]. Serum uric acid levels correlated positively in non-diabetic human subjects
with the severity of hepatic steatosis [119]. Allopurinol, a xanthine oxidase inhibitor that
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blocks the conversion of xanthine to uric acid, reduced hepatic steatosis in a mouse model
of metabolic syndrome [119]. Additionally, uric acid causes endothelial dysfunction that
could lead to hypertension and insulin resistance [48].

Sucrose (or fructose) are often added to high fat rodent diets to model Western diets
that are rich in fat and sugar [116]. This is because adding sucrose to a high fat diet makes
the metabolic impairment more severe [120,121]. In the liver, in addition to steatosis,
this combination of sucrose and fat facilitates the induction of mild inflammation and
fibrosis [116,122]. This indicates that fructose interacts with other nutrients in the diet
to influence the metabolic phenotype. However, the mechanistic underpinnings of the
interaction of fructose (and glucose) with fat and protein have not been examined in detail.

3. Fat

Dietary fats have been linked to the development of a number of clinical metabolic
disorders such as obesity, insulin resistance, type 2 diabetes and cardiovascular disease.
Deposition of triglycerides within tissues other than adipose tissue has long been proposed
as an important indicator of these medical problems [123]. Fatty acids, although often seen
as detrimental, are critical for life, having extremely important functions in membrane
structure and function, cell signalling, steroid hormone production, as well as in metabolism
and energy production.

3.1. Types of Fatty Acids and Their Metabolic Effect

Free fatty acids (FFAs) are hydrophobic molecules and are usually grouped according
to the length and saturation of their side chain; these being short- (SCFA, 2–6 carbons),
medium- (MCFA, 8–12 carbons), long- (LCFA, 14–18 carbons) and very long- (VLCFA,
20–26 carbons) chain fatty acids. High dietary and plasma levels of LCFA have been asso-
ciated with obesity and insulin resistance, while MCFAs are not strongly associated with
deterioration in metabolic health [124]. Within these groups, FAs can be either saturated
(no carbon double bonds), monounsaturated (one double bond) or polyunsaturated (more
than one double bond). The most common forms of FAs circulating in human plasma are
palmitic acid (C16:0), palmitoleic (C16:1), stearic acid (C18:0), oleic acid (C18:1) and linoleic
acid (C18:2) [125,126].

Fats are often termed “good” or “bad” fats due to their reported effects on health.
Studies have shown that saturated FAs (SFAs) are associated with poorer metabolic and
cardiovascular outcomes, while polyunsaturated fats (including omega-3) are associated
with better outcomes [8,9]. Thus, of the recommended 20–35% of calories [5] coming from
fats, the predominant form should be from the “good” column, such as foods containing
monounsaturated fats, e.g., avocados, nuts, olive oil, chia seeds, and fatty fish, which are
sources of polyunsaturated fats. Limiting the amount of the “bad” saturated fat (dairy,
animal fats), and especially foods containing trans-FA (hydrogenised margarines and oils),
is also recommended for metabolic health [127].

Studies investigating high fat diets in animal models show that these diets can cause
weight gain, insulin resistance and metabolic disease [128]. Diets that are often used to
induce these metabolic changes contain 60% fat, or a 45% fat diet which often contains a
high amount of sucrose. These obesogenic diets often use lard as the major source of fat,
which contains high levels of the detrimental long-chain fatty acids palmitic and stearic
acids [129]. As previously mentioned, these diets cause the deposition of fat not only in
adipose tissue, but also in non-adipose tissue, such as the liver and muscle. This “ectopic”
deposition of triglycerides has been associated with decreased insulin-stimulated glucose
uptake into muscle and adipose tissue [130], while the liver continues to release glucose into
the circulation due to the failure of increased insulin levels to “switch off” gluconeogenesis
and limit hepatic glucose output [130]. All these effects contribute to the development of
fasting hyperglycaemia. In human studies, acute infusions of fatty acids have also been
found to produce insulin resistance in muscle and liver [131,132].
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As mentioned above, not all fatty acids are associated with detrimental outcomes. Ro-
dents fed diets containing mostly medium-chain fatty acids (MCFA) have not been associated
with metabolic alterations or insulin resistance, even when eaten in excess [133–135]. That is,
animals had less adiposity and better glucose tolerance [134,135], and while the liver had
an intermediate level of insulin sensitivity, MCFA-fed animals had preserved muscle and
adipose tissue insulin sensitivity compared to animals fed an LCFA diet [135]. Animals
fed diets with a fat source from fish oil also did not produce the same detrimental effect as
dietary LCFAs, having reduced fat mass, better glucose tolerance, and lower triglyceride
levels in the liver [129,136,137]. Thus, in addition to total dietary fat content, fat source is
an important factor in determining metabolic outcomes of diets with high fat content.

Another interesting aspect of high fat diets to note is the growing trend of using
ketogenic diets for weight loss. Ketogenic diets traditionally are very high in fat (often
85%) with very low levels of carbohydrates (<10%), and were originally designed for the
treatment of childhood epilepsy [138]. A side effect of this diet was weight loss, which
is likely due, in part, to the appetite-suppressing effect (and thus calorie restriction in an
ad libitum setting) of ketone bodies [139]. In another study that investigated the use of
eucaloric high fat diets (i.e., diets aimed at maintaining body weight), no alterations were
seen in insulin sensitivity in either humans and mice [140]. Thus, more research is needed,
but it seems that overconsumption of saturated, long chain, fats in a hypercaloric setting is
likely responsible for the observed insulin resistance.

3.2. Molecular Mechanisms Involved in HFD-Induced Insulin Resistance

Triglycerides are a biologically inert form of storing FA, and thus are unlikely to
be the driver of insulin resistance that occurs after high fat feeding. Evidence shows
that it is more likely that the bioactive lipid intermediates, including diacylglycerides
(DAGs) and ceramides, play a more causal role (Figure 2). Other factors, including excess
reactive oxygen species (ROS) generation from increased mitochondrial oxidation leading
to oxidative stress, may also play a role. Elevated levels of DAGs have been found in
liver, muscle, and adipose tissue in insulin-resistant states [130,141]. It is thought that
elevated DAG levels can increase the activity of various protein kinase C (PKC) isoforms,
which then interfere with the insulin signalling pathway. In muscle, for example, evidence
suggests that PKCθ phosphorylates inhibitory serine residues on IRS proteins which leads
to decreased signalling and reduced glucose uptake [141]. In the liver, PKCε is thought to
be the major isoform involved [142]; however, this has recently been challenged [143,144].
Whatever the mechanism, there is a strong link between increased DAGs and the insulin-
resistant state.
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Ceramides have also been shown to be increased in the muscle and liver of insulin-
resistant animals and humans [130,145]. A recent review by Summers (2020) describes
the many mechanisms in which elevated levels of ceramide can cause/contribute to the
development of insulin resistance, including through increased fatty acid uptake and
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production, decreased glucose uptake and lipolysis, and alterations in mitochondrial
fission and efficiency [146]. Manipulating ceramide levels has been shown to have positive
effects, with one study showing decreasing skeletal muscle levels of 18:0 ceramide by
genetic manipulation was associated with beneficial effects in mice [147], and lower levels
of ceramide 18:1/18:0 were found in a distinct population of metabolically healthy (and
thus insulin-sensitive) obese people [148]. Interestingly, in the liver, increases in very
long chain ceramides have been associated with better glucose tolerance in different
strains of mice [149]. In another study, lipidomic analysis of muscle from mice fed MCFA
has shown elevated levels of 18:0 ceramides, which is usually associated with insulin
resistance, but increased levels of 24:0 ceramide, associated with better outcomes [150].
Thus, although there is strong evidence for ceramides to be involved in insulin resistance,
further research is needed to elucidate the mechanisms for each species and its impact on
insulin-resistant states.

With an increase in fat intake, there is an increase in mitochondrial metabolism. It has
been shown that HFDs can cause increases in the mitochondrial machinery and oxidative
capacity in rodents [130]. However, this also increases the generation of the reactive oxygen
species including superoxides, which in muscle is produced primarily by electron leakage
from complex 1 and complex 3 of the mitochondrial electron transport chain [151,152].
Decreasing oxidative stress through various mechanisms, e.g., by overexpressing man-
ganese superoxide dismutase (SOD2; a superoxide scavenger [153,154]), or by treatment
with antioxidants [154], can lead to improved insulin sensitivity. Interestingly, while signs
of oxidative stress were noticed in muscles of mice fed LCFA diets, including increased
glutathione peroxidase activity, protein carbonylation, and lipid peroxidation, animals fed
MCFAs had levels similar to that of controls [134]. Diets supplemented with omega-3 FA
have also shown a decrease in liver oxidative stress when compared to HFD [155]. The
ability of the mitochondria to adapt fuel oxidation to fuel availability is termed metabolic
flexibility [156,157]. In obesity, this ability is usually impaired [157]; however, it is retained
in metabolically healthy but obese people [158]. Interestingly, a recent study showed that
low metabolic flexibility predicts future weight gain in normal-weight individuals [159].
An important regulator of this glucose/fatty acid switch is pyruvate dehydrogenase (PDH),
which itself is regulated in part by pyruvate dehydrogenase kinase 4 (PDK4) [160]. PDK4
has been found to be upregulated in rodents fed a high fat diet high in SFA [161–163],
as well as in insulin-resistant humans [164,165]. Although this seemed a good target for
the treatment of insulin resistance, Small et al. (2018) showed that acute treatment of
high fat-fed rats with dichloroacetate (DCA), an inhibitor of the PDKs, had little effect on
insulin-stimulated glucose uptake, although it did increase glucose oxidation [166].

Thus, although a lot of work has been done in the area of dietary fat and insulin
resistance, several key questions regarding the precise mechanisms mediating divergent
effects of different types of FAs on metabolic signalling remain unanswered.

4. Protein

When looking at potential nutritional interventions for lifestyle diseases such as
insulin resistance and obesity, a greater emphasis is typically placed on studying the
changing patterns of fat and carbohydrate consumption. Until recently, the role of dietary
protein in the emergence of these diseases has been largely overlooked for two major
reasons [167]. Firstly, protein contributes a much smaller component of an individual’s
overall dietary energy budget in comparison to non-protein counterparts. Secondly, protein
intake has remained far more stable over time when compared to fat or carbohydrate [168].
Rather than indicating that protein plays little to no role in appetite regulation and energy
balance, it is this long-standing stability of protein intake that provides an insight into
highly conserved mechanisms that drive feeding behaviour. Evidence shows that when
there is a nutritional imbalance observed in the levels of protein, carbohydrate and fat
within diets, animals tend to prioritise intake of protein more strongly than non-protein
energy. This phenomenon has been termed as “protein leverage” [169], and has been
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observed in a wide range of species, from insects to humans [170–173]. Through protein
leverage, excess energy is consumed in diets with a lower ratio of protein to non-protein
macronutrients, while an energy deficit is incurred (in ad libitum conditions) when protein
content is high, in order to defend the protein target. The absolute intake of protein remains
relatively constant, while the intake of fat and carbohydrate varies substantially as a means
to compensate in both cases [169].

4.1. Protein, Branch-Chained Amino Acids, and Their Metabolic Effects

Due to the hyperphagic feeding behaviour that humans and other animals display
in protein-dilute situations, one of the clear consequences of protein leverage is obesity.
It has long been recognised that obesity is a major risk factor in the development of
dyslipidaemia and associated chronic metabolic disorders such as insulin resistance and
diabetes, particularly in cases where energy expenditure is not increased [174]. Through
methods such as dietary restriction, exercise, and fasting [175–177], the first line of defence
used against combating obesity is often weight loss, because it has been shown to improve
outcomes such as insulin sensitivity, among other related co-morbidities [178–180]. To
achieve weight loss, it is often recommended that overweight and obese individuals
increase their protein intake in order to promote lean, fat-free mass and decrease overall
energy intake [181]. Some studies have shown that a short-term period on a high protein
diet can improve insulin sensitivity in subjects with obesity and insulin resistance [182–184].
While these high protein diets have been associated with weight loss, as a long-term dietary
intervention it is important to consider that there is growing evidence that a prolonged
exposure to high protein diets places individuals at a higher risk of developing insulin
resistance, type-2 diabetes and increased mortality in rodents and humans [14,185,186].
Conversely, chronic consumption of low protein diets is associated with better metabolic
health and increased survival [13,187,188].

It is clear that dietary protein plays a key role in mediating metabolic health. Recent
work, however, has highlighted that within proteins, the quantities and mixtures of amino
acids are themselves powerful modulators of metabolism [10–15]. Of the 21 proteinogenic
amino acids, nine are “essential” and must be supplied by diet; six are “conditionally
essential”; and another six are “non-essential” [189,190]. These amino acids are also
classified according to their biochemical structure (e.g., sulphur-containing or branched
chain amino acids) [189,190]. Restriction of specific amino acids, such as the sulphur-
containing amino acids, methionine and cysteine, have been shown to improve metabolic
health and lifespan in mice and rats through glutathione-mediated resistance to oxidative
stress [191,192]. Dietary threonine restriction has also been shown to improve glycaemic
control and reduce hypertriglyceridaemia in mice through the induction of FGF21 [11].
However, of the essential amino acids, particular attention has been given to the dietary
manipulation and circulating blood levels of the branched chain amino acids (BCAAs)
isoleucine, leucine, and valine, due to their central role in protein synthesis and influencing
key signalling pathways such as insulin, mTOR, and FGF21 [193].

As essential amino acids, BCAAs cannot be endogenously synthesised and must
be acquired from the diet. Once ingested, their fates are to become (i) direct substrates
for protein synthesis; (ii) signalling molecules that stimulate anabolic pathways; and/or
(iii) catabolised for ATP generation in an energy-limited environment [194]. Unlike other
amino acids, their initial metabolism is in skeletal muscle rather than the liver, where
they play a central role in stimulating anabolic pathways in muscle [195]. These unique
characteristics make BCAAs an important signal reflecting the balance between dietary
protein intake and endogenous protein catabolism [196]. Unlike carbohydrates and fats,
excess protein/amino acids cannot be directly stored. Instead, BCAAs are catabolised,
and the metabolites generated are used for ATP production or storage as triglycerides or
glycogen [195,196]. Together, the circulating levels of BCAAs and their related metabolites,
such as the branched-chain α-ketoacids and acylcarnitines, have been proposed as markers
of metabolic dysfunction [197].
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In both humans and rodents, elevated circulating levels of BCAAs and related metabo-
lites are positively associated with cardiometabolic risk factors such as insulin resistance,
elevated blood glucose, obesity, and dyslipidaemia [13,14,194,197–202]. However, it re-
mains unclear if the relationship between BCAAs and cardiometabolic risk factors are a
reflection of dietary factors (e.g., excess protein intake), or if elevated circulating BCAAs
are a cause or consequence of dysfunctional glucose, insulin, or lipid metabolism. Indeed,
some studies have shown that elevated BCAA levels, whether in the post-prandial or
fasting state, closely reflect dietary BCAA intake [10,14,203], and that BCAAs alone were
not the strongest metabolite signature associated with insulin resistance in different strains
of mice [204].

4.2. Molecular Mechanisms of Protein/BCAA Induced Insulin Resistance

Although disentangling this complex relationship between diet, circulating BCAA
levels and cardiometabolic health remains to be resolved, it is clear that a major mechanism
linking protein and BCAAs to metabolic dysfunction is the activation of mTOR (Figure 3).
The mTOR complex exists in two major forms: mTORC1, which integrates nutritional
signals from the environment to control key cellular processes such as protein synthesis
and autophagy; and mTORC2, regulating hormonal signals such as insulin and IGF-1 [205].
The relationship between mTOR and insulin sensitivity, however, integrates both these
complexes, with hormonal feedback from the insulin/IGF-1 pathway necessary for the
mTORC1 activation. Reducing total protein intake or BCAAs has been shown to reduce
mTORC1 activation in the liver, muscle, and white adipose tissue [185,206], and it is gener-
ally accepted that chronic hepatic mTORC1 signalling contributes to insulin resistance via
the inhibition of insulin receptor substrate-1 (IRS-1) [207]. Interestingly, BCAA-mediated
mTOR activation and insulin resistance appears to be influenced by the background nutri-
tional composition of the diet. mTOR activation and insulin resistance in rats is increased
with BCAA supplementation, but only when combined with a diet that was also high
in fat [197,198]. When given a high carbohydrate, low fat diet, BCAA supplementation
did not appear to increase hepatic mTOR activation, or influence BCAA metabolism or
related metabolites [10]. Additionally, it is notable that long term exposure to low protein
diets promotes the secretion of FGF-21, an endocrine signal which is now recognised to
improve glucose metabolism and reduce insulin resistance [208–210]. Together, these data
emphasise the importance of investigating not only the quantity of protein, but also the
quality and balance of amino acids within proteins.
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5. Limitations of the Single Nutrient Approach

In the sections above, we have described that consuming specific types/groups of
carbohydrate, fat, and protein can lead to adverse metabolic effects. While there is broad
consensus that increased intake of fructose-containing carbohydrates, saturated/LCFAs
and BCAAs impairs metabolic health, there is strong disagreement in the nutrition science
community about the role of different macronutrients per se on health. The polarised views
are fuelled by the contradictory findings of various research studies. For example, the
opinion that consuming increased amounts of carbohydrates is “toxic” for cardiometabolic
health is contradicted by multiple lines of evidence [167,211–214]. Contrary to the epi-
demiological data from the PURE study linking carbohydrates to increased mortality [7],
the habitual diets of human populations with the longest lifespans are typically high in
fibre-rich carbohydrates and relatively low in protein content (Blue Zone Diets) [215–221].
Moreover, several other epidemiological studies have linked reduced carbohydrate intake
(in combination with high protein intake) with increased mortality risk [211–214]. Data
from the Atherosclerosis Risk in Communities (ARIC) study from the United States revealed
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a U-shaped association between mortality risk and carbohydrate consumption—with con-
suming 50–55% daily calories from carbohydrates being optimal for longevity [222]. Simi-
larly, contrary to the benefits described for carbohydrate-restricted/ketogenic diets, various
trials in humans have shown improved metabolic outcomes (reduced body weight and
adiposity, improved lipidaemic profile and better insulin sensitivity) on high carbohydrate–
low fat diets (vs. control diets) [217,223–225]. This has led to “fat vs. carbohydrate” debates
in nutrition research [167].

The contrasting views in the literature about the metabolic effects of carbohydrate
consumption are a likely consequence of the conventional “single nutrient” approach to
nutrition science research [218]. This methodology focuses on the metabolic effects of
consuming individual nutrients but overlooks the fact that nutrients in our diet interact
to influence our health [226]. Humans do not consume individual nutrients [226]; rather,
our diets contain complex mixtures of macro- and micro-nutrients, and these nutrients
interact with each other to affect appetite, behavioural parameters, and physiology [218].
Therefore, to reconcile the various contradictions in the nutrition science literature, a
methodology is needed that enables a holistic approach to study the effects of each nutrient
as well as interaction between various nutrients on biology and health [5]. In addition, the
role of protein in the health effects of various diets requires particular attention given its
significance in appetite physiology and endocrine signalling [167,227].

6. Importance of Dietary Protein Content and the Value of a Multi-Nutrient Mixture
Approach to Research in Understanding the Nutritional Basis of Metabolic Physiology

Several epidemiological studies from countries around the world have shown that,
compared with carbohydrate and fat, protein consumption has remained relatively stable in
recent decades, indicating tight biological regulation of protein intake [167,227]. Contrary
to almost constant protein intake, the actual amount of protein in the diet has declined due
to its dilution by carbohydrate, and in the more recent years, by substitution of the carbo-
hydrate with fat [167,224,228–231]. These small changes in dietary protein content have
resulted in substantial increases in total calorie intake to achieve the target protein intake
(protein leverage), and this has likely been one driver of the epidemic of obesity and associ-
ated metabolic diseases [167,227]. For example, analysis of data from 2005–2006 from the
National Health and Nutrition Examination Survey (NHANES) showed that a 1% increase
in daily energy sourced from protein resulted in a decrease of 49 kcal/day for protein–fat
substitution, and a decrease of 33 kcal/day for protein–carbohydrate substitution in normal
weight subjects [232]. Moreover, analysis of NHANES 2009–2014 data and data from 13 de-
veloped countries showed that protein consistently provided ~16% of energy (regardless
of demographic and lifestyle factors), while there were significantly greater variations in
carbohydrate and fat intake [233]. We plotted the nutrient supply data from the Food and
Agriculture Organisation Statistical Database (FAOSTAT) for 100 countries for a 1980–2013
timeframe against the adult obesity estimates from the World Health Organisation (WHO),
and our analyses also showed that the prevalence of obesity significantly increased with
declining dietary protein content [167]. These observations support the view that the
dilution of protein in the modern-day industrialised food environments facilitate greater
calorie intake and promote obesity. However, a multi-nutrient methodology is required
to examine how protein–fat and protein–carbohydrate interactions further influence the
impact of protein dilution.

The geometric framework (GF) is a nutritional modelling platform that enables an
integrated assessment of the impact of nutritional composition of the diet on biological
parameters [226]. In this nutritional geometry-based methodology, phenotypic responses
of animals (such as body weight, adiposity, and lifespan) to diets with different compo-
sitions are plotted as response surfaces on an n-dimensional nutritional space [218]. In
the case of macronutrients, the nutritional space is three-dimensional (protein, fat and
carbohydrate dimension), and the response surfaces allow assessment of the effects of
individual macronutrients as well as their interaction on biological outcomes [234]. The GF
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has been successfully employed to resolve conflicting and contradictory findings about
the nutritional determinants of physiological and behavioural parameters across various
species [185,208,218,234–236]. Importantly, the impact of macronutrient composition of
diet on cardiometabolic health and longevity was investigated in a recent large-scale GF-
based mouse study. Mice were maintained on 1 of 25 experimental diets with various
ratios of protein, fat, and carbohydrate for their lifetime [185]. The study showed that
mice fed diets that were lower in protein and higher in carbohydrate content (LPHC diets)
had the longest lifespan (Figure 4). Due to protein leverage, the mice fed LPHC diets had
increased food intake and body weight, but in the long term, the LPHC diets led to the best
cardiometabolic outcomes (glycaemia, insulinaemia, lipidaemia, and blood pressure). On
the other hand, high protein–low carbohydrate diets led to reduced lifespan and impaired
cardiometabolic status despite reduced calorie intake and lower adiposity [185]. These
results were in agreement with the observations in invertebrates that also showed an
optimum lifespan on LPHC diets [236–238]. In contrast, low protein coupled with high
fat yielded a phenotype of less favourable metabolic outcomes (including fatty liver) in
comparison to LPHC diets [175,185]. Moreover, a low protein diet coupled with high fibre
levels can reduce hyperphagia and prevent the development of insulin resistance and type
2 diabetes [239,240]. These observations clearly show that effects of consuming a particular
nutrient (e.g., protein) on health and longevity is dependent on the overall nutritional
composition of the diet. Mechanistically, the health benefits of LPHC diets were associated
with reduced hepatic mTOR activity, increased circulating levels of metabolically benefi-
cial FGF21 hormone, increased UCP1 expression in brown adipose tissue, and increased
mitochondrial activity [185,208].
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The lifespan remains constant along the black isolines on the surfaces, and the numbers on surfaces
indicate the magnitude of lifespan (in weeks) along the isolines. The shortest lifespan is shown in
blue and the longest lifespan in red. Mice fed diets with the lowest protein–carbohydrate ratio (red
line) had the longest lifespan, while those fed high protein–low carbohydrate diets had the shortest
lifespan [185,218] (Reprinted with permission from refs. [185,218]. Copyright 2021 Solon-Biet, SM,
Simpson SJ).



Biology 2021, 10, 336 16 of 27

We recently analysed data from human trials of ad libitum carbohydrate-
restricted/ketogenic diets of 2.5–6 months duration using GF. It was found that compared
with habitual diets, the decrease in daily calorie intake and weight loss was a function of
protein consumption. The decrease in calorie intake and loss of body weight became more
pronounced with increasing proportions of daily calories from protein (Figure 5) [167]. In
addition, analysis of epidemiological data from recent decades for >100 countries across
the globe showed that, in early life, the mortality was minimal if 40–45% of energy was
obtained from fat and carbohydrate and 16% from protein. However, in later life, increas-
ing carbohydrate to around 65% and reducing protein to 11% led to the lowest level of
mortality [241]. Together, these observations in animals and humans highlight the value of
GF in revealing the nutritional basis of metabolic health and disease.
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decrease in body weight from baseline on carbohydrate restricted/ketogenic diets [167] (Reprinted
with permission from ref [167]. Copyright 2021 Wali, J.A). Two-dimensional geometric framework
(GF) surfaces showing the relationship between the intake of energy from protein and non-protein
(fat and carbohydrate) sources and the decline in body weight (kg) in study participants. In the GF
surfaces, red colour shows the maximum and blue colour shows the minimum decrease in body
weight, and black dots represents the intake of protein and non-protein energy reported in each study.
Human studies of 2.5–6 months duration which reported the average daily intake of macronutrients
of the study participants on carbohydrate-restricted diets and their mean decrease in body weight
(n = 14 studies) achieved on these diets (vs. baseline measurements) were included in these GF plots.
The decrease in body weight became greater as the protein intake increased (red areas of the surface).
Adapted with permission of the authors Wali et al. 2020 [167].

7. Conclusions

Increased intake of all three macronutrients (protein, fat, and carbohydrate) has been
associated with insulin resistance and metabolic disease in the literature. There is broad
consensus that specific subtypes of carbohydrate (fructose-containing carbohydrates), fat
(saturated LCFAs), and protein (BCAAs) are harmful for metabolic health [6–16]. Fructose
is thought to induce insulin resistance by stimulating DNL, reducing fat oxidation and
increasing uric acid production [6,43,105,106,115]. LCFAs likely cause insulin resistance by
promoting the accumulation of toxic lipid species such as ceramide and DAG in insulin-
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sensitive tissues and by increasing ROS production [141,142,146]. BCAAs are thought to
activate mTOR and inhibit insulin signalling by enabling insulin-induced IRS-1 degrada-
tion [207]. However, at the level of overall macronutrient groups, there is disagreement
in the literature if increased consumption of carbohydrate, protein, or fat is detrimental
or beneficial for metabolic health. An example of this disagreement is the carbohydrate
vs. fat debate in the nutrition science community [167]. These inconsistencies arise from
the inherent limitations of the single nutrient approach that has traditionally been used
in nutrition research [218]. The nutrients in our diet interact to influence metabolic out-
comes, and a multi-nutrient approach is therefore needed to reconcile various controversies
about the effects of consuming different nutrients [226]. The geometric framework (GF)
provides such a platform for an integrated assessment of the effects of consuming different
nutrients on health and disease [226]. Studies in animals employing the GF platform have
shown that low protein–high carbohydrate diets are optimal for increased life- and health-
span [185,208,218,234–236]. Moving forward, animal studies and human trials based on
the GF methodology are needed for a comprehensive understanding of the impact of
interaction between protein, fat, and carbohydrate on insulin and metabolic signalling and
their impairment in response to an unhealthy diet.
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