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Abstract
BACKGROUND: Signet-ring cell carcinoma (SRCC) is a very rare subtype of colorectal adenocarcinoma (COAD) with a
poor clinical prognosis. Although understanding keymechanisms of tumor progression in SRCCs is critical for precise
treatment, a comprehensive view of genomic alterations is lacking. MATERIALS AND METHODS: We performed
whole-exome sequencing of tumors and matched normal blood as well as RNA sequencing of tumors and matched
normal colonic tissues from five patients with SRCC. RESULTS: We identified major somatic alterations and
characterized transcriptional changes at the gene and pathway level. Based on high-throughput sequencing, the
pattern of mutations and copy number variations was overall similar to that of COAD. Transcriptome analysis revealed
that major transcription factors, such as SRF, HNF4A, ZEB1, and RUNX1, with potential regulatory roles in key
pathways, including focal adhesion, the PI3K-Akt signaling pathway, and theMAPK signaling pathway, may play a role
in the tumorigenesis of SRCC. Furthermore, significantly upregulated genes in SRCCs were enriched for epithelial-
mesenchymal transition genes, and accumulation ofmucin in intracytoplasmwas associatedwith the overexpression
ofMUC2.CONCLUSION:The results indicate that themolecular basis of colorectal SRCCexhibits key differences from
that of consensus COAD. Our findings clarify important genetic features of particular abnormalities in SRCCs.
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Introduction
Colorectal cancer is the third most common malignancy and a
leading cause of cancer-related deaths worldwide [1,2]. Colorectal
cancer represents a group of histologically heterogeneous tumors,
and its histological subtype is determined by the major component of
cancer cells [3–5]. There are several histological subtypes in
colorectal cancer; adenocarcinoma is the most common type, and
other subtypes include mucinous carcinoma, signet-ring cell
carcinoma (SRCC), squamous cell carcinoma, and undifferentiated
carcinoma [2–4]. The identification of the histological subtype is
important for cancer patient management because it plays an
important role in determining tumor biology and aggressiveness. In
colorectal cancer, histological subtype is considered an important
prognostic factor.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2018.04.007&domain=pdf
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SRCC is a rare subtype of colorectal cancer, accounting for
approximately 1% of patients with colorectal cancer [5,6]. Signet-
ring cell is characterized by intracytoplasmic mucin that displaces the
nucleus to one side. SRCC is defined as a carcinoma with a signet-
ring cell component of greater than 50% [4,6]. Previous studies have
reported that colorectal SRCC is associated with young age,
advanced tumor stage, high rates of metastasis, and poor prognosis
[5,7]. These aggressive behaviors are associated with specific
molecular features such as microsatellite instability, a high frequency
of CpG island methylator phenotypes, and frequent BRAF and
KRAS mutations [3,4]. Despite the poor prognosis, limited studies
have characterized colorectal SRCC owing to the low incidence.
Thus, clinicopathological features are not well understood, and few
studies have compared SRCC with typical adenocarcinoma of
colorectal cancer, especially at the molecular level. In addition, the
genomic characteristics of SRCC have been only partially defined by
low-throughput molecular studies so that comprehensive genomic
profiling is needed for better understanding molecular mechanisms
of SRCC.
In this study, we conducted a comprehensive analysis of five

SRCCs by both whole-exome and RNA sequencing with tumors and
matched normal. Whole-exome sequencing (WES) identified DNA
aberrations in somatic mutations and copy number alterations for
individual SRCCs. The transcriptome profiling also identified
differentially expressed genes between tumor and normal samples,
their involved pathways, and transcriptional regulators that may play a
critical role in SRCCs. Our results revealed that the molecular basis of
colorectal SRCC exhibits key differences from that of consensus
colorectal adenocarcinoma (COAD).

Materials and Methods

Sample Collection
This study was approved by the Institutional Review Board (IRB)

of Samsung Medical Center (IRB approval no. SMC 2013-11-008).
Written informed consent was obtained from each patient. The study
subjects were five Korean patients diagnosed with the SRCC subtype
of colorectal cancer at SamsungMedical Center, Seoul, Korea. Tumor
and matched normal tissues were obtained from surgical specimen.
Peripheral blood mononuclear cells (PBMC) were obtained from each
patient. PBMC and normal mucosa were used for genomic and
transcriptomic analysis as a control, respectively. Samples were snap-
frozen and stored in liquid nitrogen until use. Histology, clinical
stage, and analyzed lesions are summarized in Table 1. Hematoxylin
and eosin staining results for patient tumor samples are shown in
Supplementary Figure 1.
Table 1. Patient Characteristics of Five SRCCs

Characteristics SRCC1 SRCC2

Age 46 40
Gender M M
Tumor location Descending colon Rectum
MSI status MSS MSS
TNM stage IVB IVA
Metastasis Yes Yes
Lymphatic invasion Positive Positive
Perineural invasion Negative Negative
Vascular invasion Negative Negative
TCGA Colorectal Cancer Data Sets
We downloaded the 629 clinical, 489 raw mutation annotation,

623 mRNASeq, and 616 SNP6 copy number of COAD from Broad
GDAC firehose (http://gdac.broadinstitute.org, version:
2016.01.28). Based on clinical information, all COADs are
adenocarcinoma or mucinous carcinoma. Therefore, we used
TCGA COAD data sets as a reference in this study. We choose 32
of 623 samples for differentially expressed gene analysis because
those had matched normal-tumor pairs. Lists of TCGA samples and
its clinicopathological features are summarized in Supplementary
Table 3.

Isolation of Genomic DNA and RNA
Genomic DNA and RNA in tissues were purified using the

AllPrep DNA/RNA Mini Kit (Qiagen, Valencia, CA). Genomic
DNA from peripheral blood was extracted using the QIAamp DNA
Blood Mini Kit (Qiagen). Genomic DNA concentration and purity
were measured using a NanoDrop 8000 UV-Vis Spectrometer
(Thermo Scientific Inc., Wilmington, DE) and a Qubit 2.0
Fluorometer (Life Technologies Inc., Grand Island, NY). To
estimate DNA degradation, median DNA size and ΔCt values
were measured using a 2200 TapeStation Instrument (Agilent
Technologies, Santa Clara, CA) and real-time PCR (Agilent
Technologies), respectively. For RNA, concentration and purity
were measured using the NanoDrop and Bioanalyzer (Agilent
Technologies).

Whole-Exome Sequencing
Genomic DNA (1 μg) from each sample was sheared using the

Covaris S220 (Covaris, Woburn, MA) and used to construct a
library using SureSelect XT Human All Exon V5 and a SureSelect
XT Reagent Kit, HSQ (Agilent Technologies) according to the
manufacturer’s protocol. This kit is designed to enrich 335,756
exons of 21,058 genes, covering ~71 Mb of the human genome.
After enriched exome libraries were multiplexed, the libraries were
sequenced using a HiSeq 2500 sequencing platform (Illumina, San
Diego, CA). Briefly, a paired-end DNA sequencing library was
prepared by gDNA shearing, end-repair, A-tailing, paired-end
adaptor ligation, and amplification. After hybridization of the
library with bait sequences for 16 hours, the captured library was
purified and amplified with an index barcode tag, and library
quality and quantity were measured. Sequencing of the exome
library was carried out using the 100-bp paired-end mode of the
TruSeq Rapid PE Cluster Kit and TruSeq Rapid SBS Kit
(Illumina). Sequencing data and results are summarized in
Supplementary Table 1.
SRCC3 SRCC4 SRCC5

38 60 29
M M F
Ascending colon Rectum Rectosigmoid junctions
MSS MSS MSS
IVB IVB IVA
Yes Yes Yes
Negative Positive Positive
Positive Negative Negative
Positive Positive Positive



838 Integrative Analysis of Colorectal SRCC Nam et al. Translational Oncology Vol. 11, No. xx, 2018
Exome-seq Data Analysis
Sequencing reads were aligned to the UCSC hg19 reference

genome (downloaded from http://genome.ucsc.edu), using Burrows-
Wheeler Aligner [8] version 0.7.5a, with default settings. PCR
duplicates were marked using Picard-tools-1.93 (http://picard.
sourceforge.net/), data cleanup was performed with GATK, and
variants were identified with GATK-3.5 [9]. Then, point mutations
were identified using MuTect [10] and VarScan2 [11] with paired
samples. An in-house Perl script and ANNOVAR [12] were used to
annotate variants. Tumor purity estimation based on WES was
performed with THetA [13] (Supplementary Figure 2). Somatic copy
number alterations were identified using CNVkit [14], and the
resulting ratio was adjusted according to tumor purity.

RNA Sequencing
Library construction for RNA sequencing was performed using a

Truseq RNA Sample Preparation v2 Kit (Illumina). Isolated total
RNA was used in a reverse transcription reaction with poly (dT)
primers, using SuperScript II Reverse Transcriptase (Invitrogen/Life
Technologies) according to the manufacturer’s protocol. Briefly, an
RNA sequencing library was prepared by cDNA amplification, end-
repair, 3′ end adenylation, adapter ligation, and amplification.
Library quality and quantity were measured using the Bioanalyzer and
Qubit. Sequencing of the RNA library was carried out using the 100-
bp paired-end mode of the TruSeq Rapid PE Cluster Kit and the
TruSeq Rapid SBS Kit (Illumina).

RNA-seq Data Analysis
Reads from the FASTQ files were mapped to the hg19 human

reference genome using STAR version 2.5.0a in 2-pass mode [15],
and gene quantification was performed using RSEM [16]. Expressed
genes were defined as those with a transcripts per million (TPM)
value of more than 10 across all samples to reduce the false-positive
rate. Differentially expressed genes (DEGs) were identified using the
edgeR package version 3.14.0 with a cutoff (|log2 fold-change| N 2
and false discovery rate (FDR) b 0.001) [17]. DEGs were mapped to
the pathway using the REACTOME pathway database [18]. Tumor
purity based on whole-transcriptome sequencing was performed with
ESTIMATE [19] (Supplementary Figure 2). Fusion genes were
detected using deFuse [20] (v0.6.1) and JAFFA (v1.06) [21] with
default settings. The overlapped fusion transcripts between two
prediction tools were considered as candidates.
Prediction of Transcription Regulators
iRegulon (Cytoscape plugin) detects master transcription regula-

tors from a set of DEGs [22]. Regulators were predicted among the
set of DEGs using iRegulon. Briefly, Cytoscape networks were
created by importing the list of DEGs. The set of nodes (genes) was
submitted to iRegulon and analyzed using the following options: 1)
motif collection (10-kb region, 9,713 PWMs), 2) track collection
(750 ChIP-seq tracks of ENCODE uniform signals), 3) putative
regulatory region (10kb centered around TSS), 4) motif rankings
database (10-kb region centered around TSS, 7 species), and 5) track of
rankings database (10-kb region centered around TSS, ChIP-seq-
derived).

Gene Set Enrichment Analysis
A gene set enrichment analysis (GSEA) [23] was conducted to

analyze an SRCC-specific upregulated gene set. A GSEA preranked
analysis was performed by inputting a list of genes sorted according to
fold changes of each TCGA COAD and SRCC.

qPCR Assay
Total RNA was extracted from patient tissue (RNAprep Mini kit,

Qiagen), and 500 ng RNA was subjected to reverse transcription
using reverse transcription kit (Bioneer). Real-time quantitative PCR
amplification was performed with a SYBR Green (ABI) in a real-time
system (ABI, USA). Human-specific PCR primers (Bioneer) were
used to analyze expression of the following genes: TWIST1, SNAI1,
SNAI2, ZEB1, and GAPDH. mRNA levels of specific genes were
calculated as ΔΔCt and normalized to GAPDH.

Western Blot
To prepare tissue extracts, tissues were lysed using a protein lysis

buffer including a protease inhibitor. Then, 30 to 60 μg of protein
extract was incubated with primary antibodies against TWIST1
(ab50887, Abcam), SNAI1 (#3895, Cell Signaling), SNAI2
(ab38551, Abcam), and ZEB1 (sc-25388, Santa Cruz). β-Actin
(#3700, Cell Signaling) was used as normalized protein controls in
Western blotting.

Results

Somatic Alterations in Colon SRCC
Somatic mutations frequently observed in TCGA nonhypermu-

tated COADs [24] were also identified in SRCCs (Figure 1A,
Supplementary Figure 3). Most mutations were commonly found in
SRCCs and TCGA COADs. However, APC nonsense mutation was
observed at only one case (SRCC2) among five SRCCs (binomial test,
P = .006), but there was a high frequency in COADs (81%).
Mutations in three genes (USP6, DDX11, and CCDC166) having a
very low frequency in COADs (≤1%) were relatively high in SRCCs
(Supplementary Figure 4). Next, we performed a sequence context
analysis (Figure 1B). Transition/transversion ratios were broadly
consistent with those of COADs. A high frequency of CNT
transitions is predominantly observed in COADs [25], and similarly,
this transition type represented a large proportion of sequence
changes in SRCCs. Furthermore, we identified chromosomal
alterations in SRCCs. According to previous studies, COADs have
recurrent chromosomal alterations, such as gains of 1q, 7p and q, 8p
and q, 12q, 13q, 19q, and 20p and q and deletions of 1p, 4q, 5q, 8p,
14q, 15q, 17p and q, 18p and q, 20p, and 22q [24,26]. These
alterations were consistently detected in SRCCs (Figure 2). Taken
together, the results of somatic mutation and copy number alteration
analyses at the whole-exome level revealed that SRCCs and COADs
have overall similar properties at the genomic level, but APC gene
mutation was uncommonly detected.

In addition, we found four novel fusion transcripts in the two
SRCC cases (Supplementary Figure 5, A and B). One of the four
fusions was interchromosomal fusion, and the remaining three were
intrachromosomal fusions. Three of the four fusions showed the
highest expression fold change (tumor vs. normal) of the partner gene
in samples with fusion among the five SRCC samples (Supplementary
Figure 5C).

Differentially Expressed Genes and Their Transcriptional
Regulators

We investigated DEGs between SRCC tumors and matched normal
colonic tissues. We detected 596 DEGs (upregulated: 383;
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downregulated: 213) with |log2 fold-change| N 2 and FDR b 10−3 as
criteria and mapped these genes to pathways (Figure 3, A and B).
Upregulated genes were included in several pathways, including
“extracellular matrix (ECM) organization,” “focal adhesion,” “integrin
signaling pathway,” and “ECM-receptor interaction,” and these genes
may be related to phenotypic traits of signet-ring cells and metastasis
ability [27–30]. Other upregulated pathways were involved in cell
survival and proliferation, such as the “PI3K/AKT andMAPK signaling
pathways,” which are well-known signatures of cancer cells [31–35].
To identify the master transcription factors that regulate the

DEGs, we conducted an iRegulon analysis (Figure 3C). We found
four transcription factors (SRF, HNF4A, ZEB1, and RUNX1) that
were significantly enriched in DEGs and compared their expression
levels between tumor and normal tissues for each SRCC and TCGA
COAD (Figure 3D, Supplementary Figure 6). All four transcription
factors exhibited significantly altered gene expression levels (tumor vs.
normal), and three of four showed different patterns in comparisons
with TCGA COADs. For example, serum response factor (SRF) is a
transcription activator that binds to the serum response element in
the promoter region of target genes [36]. SRF gene expression was
highly elevated in tumors compared with normal tissues in SRCCs
but not in TCGA COADs. Hepatocyte nuclear factor 4 alpha
(HNF4A) is a nuclear transcription factor that regulates the
morphology and function of epithelial cells, and its gene expression
was lower in SRCC tumors than normal tissues. These results indicate
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that altered expression levels of these transcription factors play a role
in the tumorigenesis of SRCC.

SRCC-Specific Upregulated Genes
To identify signet-ring cell–specific dysregulated genes, we

compared the expression levels between five SRCCs and 32 TCGA
COADs (Figure 4A). After the removal of genes that did not exhibit
expression differences (P N .01), we found 759 genes (208 up- and
366 downregulated genes in both SRCCs and COADs, 179
upregulated in SRCCs but downregulated in COADs, and 6
downregulated in SRCCs but upregulated in COADs). To identify
the functional roles of SRCC-specific upregulated genes (179
genes; Figure 4A, bottom-right), we performed a GSEA. First, we
selected the genes that had high fold-change values in SRCCs,
which included the upregulated genes of both COADs and SRCCs
and SRCC-specific upregulated genes. Then, we ordered genes by
the fold change values (Figure 4A, from top-right to bottom-right).
As expected, enriched gene sets were “Colorectal Adenoma Up” and
“Colorectal Adenoma Down” (Figure 4B upper). Second, we
selected and sorted genes that had low fold-change values in
COADs. Interestingly, SRCC-specific upregulated genes were
enriched in gene sets of “Stem Cell Up Regulation” and “Epithelial-
Mesenchymal Transition (EMT)” (Figure 4B lower and Figure
4C). The EMT is a process involved in the loss of polarity in
epithelial cells and cell-cell adhesion. The progression to
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mesenchymal cells is related to the acquired migration ability,
invasiveness, and increased production of ECM components [37].
In addition, this EMT process can generate cells with stem cell–like
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Signature of Epithelial-Mesenchymal Transition and Mucin
Production
The main characteristics of signet-ring cells are a loss of cell-cell

interactions and accumulation of intracellular mucin. Typically,
epithelial cells express high levels of E-cadherin (CDH1), whereas
mesenchymal cells express N-cadherin (CDH2) [39]. We investigat-
ed the expression of genes encoding E and N-cadherin and their
transcription factors to estimate the EMT signature in SRCCs (Figure
5A). The expression of E-cadherin was lower in tumor tissues than in
normal tissues, whereas N-cadherin expression was higher in tumor
tissues than in normal tissues. Gene expression levels of transcription
factors that directly or indirectly regulate E-cadherin, such as SNAI1,
SNAI2, ZEB1, ZEB2, TWIST1, TCF4, ETS1, and RUNX2, increased
during the tumorigenesis of signet-ring cells. In addition, ELF3 is a
negative regulator of SNAI1, ZEB, and TWIST1, which exhibit
decreased expression in SRCC tumors [40]. These results indicate
that SRCCs undergo the EMT process, which is the main cause of the
loss of cell-cell interactions.
To determine which mucin-producing genes are activated in

SRCCs, we compared expression levels in tumor vs. normal samples
of human mucin genes (Figure 5B). Nonexpressed mucin genes are
not shown here. Among mucin genes, MUC2 was more highly
expressed (3.7-fold) in tumor than in normal tissues, but other genes
were either decreased or unchanged. In COADs, the expression levels
of all mucin genes, including MUC2, decreased (Supplementary
Figure 7). These results indicate that mucin accumulation in signet-
ring cells is caused by the abnormal expression of MUC2 [41–43].
Discussion
In this study, we first characterized somatic alterations on the

genome-wide scale for colorectal SRCC by whole-exome and RNA
sequencing. Previous SRCC studies are focused only few cancer gene
mutations and expressions or case reports. However, this work
provides genomic and transcriptomic alterations based on massive
parallel sequencing simultaneously. As compared with those for
SRCCs and TCGA COADs, we demonstrated interesting findings
that have not been previously reported about SRCCs. Mutations in
the APC gene are the initial genetic alterations in colorectal
tumorigenesis [44]. However, the low APC mutation rate in
SRCCs indicates that they undergo a developmental process different
from that of COAD. We also validated of low APC mutation rate
(17%) in additional 6 SRCC cases (Supplementary Figure 9A). A
previous study reported a distinct pattern of KRAS gene mutations in
SRCCs; specifically, there is a lower mutation frequency at codon 12
(2 of 16) but a higher mutation frequency at codon 61 (4 of 16) as
compared with those of non-SRCCs [45]. In our study, two samples
had KRAS mutations at codon 12 (SRCC2: G12C, SRCC4: G12D),
and mutation at codon 61 was not detected. A BRAF mutation was
not detected in our SRCCs (Figure 1A, Supplementary Figure 9A).
This might be explained by their microsatellite stable (MSS) status.
Previous studies have reported a high frequency of BRAF (V600E)
mutations in SRCCs, including high-level microsatellite instability
(MSI-H) [46–48]. In TCGA COAD with hypermutated tumors, the
mutation frequency in BRAF (V600E) is approximately 41% [24],
but this frequency is much lower in nonhypermutated tumors. We
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have also validated the gene mutations through the Sanger sequencing
and both whole-exome and RNA sequencing (Supplementary Figure 3).

Recurrent fusion genes in colorectal cancer [49] were not detected in
SRCC samples, but we found several novel fusion genes (Supplemen-
tary Figure 5). However, the functional implications of these fusion
genes are unknown. We found SRCC-specific expression changes for
transcription factors such as HNF4A, ZEB1, and RUNX1 that may
regulate target genes in SRCCs. These target genes are involved in
butyrate and fatty acid metabolism, and PPAR signaling pathway.
Short-chain fatty acids, which include butyrate, are produced in the
human colon by bacterial fermentation and suppressor of colorectal
cancer [50–52]. In addition, peroxisome proliferator-activated receptors
(PPARs) are ligand-activated transcription factors that are bound to
oxidized fatty acids and regulate the differentiation of cells [53,54]. This
means that butyrate and fatty acid metabolism, and PPAR signaling
pathway are related to each other. In SRCCs, butyrate and fatty acid
metabolism, and PPAR signaling pathways were all downregulated.
Thus, our results support the previous reports about tumor suppressive
role of butyrate and fatty acidmetabolism, and PPAR signaling pathway
in colorectal cancer.

Finally, we examined the relationship between clinicopathological
features and genetic abnormalities in SRCCs. Highly upregulated
genes were enriched in the EMT process. We selected four of eight
transcription factors that regulate highly upregulated genes in
SRCCs to measure the mRNA and protein expression levels using
qPCR and Western blotting, respectively (Supplementary Figure 8,
A and B). Although the mRNA expressions of qPCR are similar to
those of RNA-seq, protein expressions are different from those of
mRNA expressions (Supplementary Table 2). There may be several
reasons for discrepancy between mRNA and protein expressions
such as posttranscriptional mechanisms, difference of in vivo proteins
half-lives, and experimental error in measuring the amount of both
mRNA and protein [55]. In addition, MUC2 overexpression is
considered as a major cause of the accumulation of mucin in signet-
ring cells. Four transcription factors (SRF, HNF4A, ZEB1, and RUNX1)
andMUC2 expressions were also validated using public expression data of
SRCCs (GSE79793 [56]), and those gene expressions were corresponded
to our study except for ZEB1 (Supplementary Figure 9B). Our results
provide important insight to the understanding ofmolecular alterations in
SRCCs.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.tranon.2018.04.007.
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