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Quantum synchronization of two 
mechanical oscillators in coupled 
optomechanical systems with Kerr 
nonlinearity
Guo-jian Qiao1,2, Hui-xia Gao1,2, Hao-di Liu   1,2 & X. X. Yi1

We investigate the quantum synchronization phenomena of two mechanical oscillators of different 
frequencies in two optomechanical systems under periodically modulating cavity detunings or driving 
amplitudes, which can interact mutually through an optical fiber or a phonon tunneling. The cavities are 
filled with Kerr-type nonlinear medium. It is found that, no matter which the coupling and periodically 
modulation we choose, both of the quantum synchronization of nonlinear optomechanical system 
are more appealing than the linear optomechanical system. It is easier to observe greatly enhanced 
quantum synchronization with Kerr nonlinearity. In addition, the different influences on the quantum 
synchronization between the two coupling ways and the two modulating ways are compared and 
discussed.

Spontaneous synchronization is one of the most ordinary and valuable phenomena in classical physics, which 
was firstly noticed by Huygens in the experiments of the oscillations of two pendulum clocks with a common 
support1. In the last decade, synchronization has been widely applied in various fields, e.g., neuron networks2–4, 
chemical reactions5, heart cells6, fireflies7, hyperbolic systems8. The reason for spontaneous synchronization 
effect drawing much attention recently is the searching for similar phenomena in quantum regimes. Mari et al. 
proposed a concept of complete synchronization and phase synchronization for quantum system and gave an 
effective synchronization measurement scheme in the continuous variable (CV) system9. Subsequently, this work 
attracted extensive attention in many physical systems of quantum synchronization, such as optomechanics10,11, 
cavity quantum electrodynamics12,13, atomic ensembles14–16, Van der Pol (VdP) oscillators13,17–20, Bose-Einstein 
condensation21, superconducting circuit systems22,23. Moreover, relevant experiments verified the theoretical pre-
dictions successfully and a lot of new researches based on application have emerged recently24–27.

In Mari’s work, two coupled photomechanical devices was chosen to study the quantum synchronization, 
since linear optomechanics which explores the coupling between photons and phonons via radiation pressure, 
have made great progress recently. To realize perfect quantum synchronization in optomechanical system, the 
existing researches mainly focus on the different ways of coupling between two subsystems: the two mechanical 
oscillators directly coupled by phonons9,28 or the two cavity modes coupled through an optical fiber28,29. Cavity 
mode and external field can also be modulated by periodic function to achieve better quantum synchroniza-
tion30–32. But the form of systematic Hamiltonian and cavity mode is unchanged essentially, only through different 
ways of coupling, as well as to the coupling effect of periodic modulation to implement the energy transmission 
between the subsystems28,31. However, the nonlinearity of the optomechanical interaction of the quantum level is 
also important. In an optomechanical system, nonlinear interaction such as parametric amplifications and optical 
Kerr effect and nonlinear optical effects in materials are widely concerned33–35. Meanwhile, high-order optom-
echanically induced transparency effects is also proposed on account of the intrinsic nonlinear optomechanical 
interactions, such as photon-phonon polariton pairs and sideband generations36–41. Recent works studied the 
physics of the nonlinear interaction in weakly driven systems in theory and we can realize quantum nonlinearity 
into optomechanical systems by the method of a nonlinear optical medium or a nonlinear mechanical oscillator 
experimentally42. Hence, one will naturally ask, are the behaviors of the quantum synchronization the same in 
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linear and nonlinear optomechanical system? Does the Kerr nonlinearity can be used as a resource for perfect 
quantum synchronization?

To shed light on these questions, in this work we study the quantum synchronization phenomenon of two 
mechanical oscillators of different frequencies in two optomechanical systems with the cavities filled by Kerr-type 
medium. The coupling between the two subsystems can be either directly a phonon tunneling or indirectly an 
optical fiber. The cavity detunings and the driving amplitudes can be alternatively periodically modulated. The 
enhancement of Kerr nonlinearity to the quantum synchronization are investigated in both the two coupling 
ways and the two modulation ways. In addition, we also compare and discuss the different effects on the quantum 
synchronization between the two different coupling ways (indirectly coupled mechanical oscillators through an 
optical fiber and directly coupled mechanical oscillators by phonon tunneling) and the two modulating ways 
(periodical modulation on cavity detunings and driving amplitudes).

Model and Main Equations
The system we choose to study the quantum synchronization is modeled by two coupled optomechanical devices. 
Each optomechanical device consists of a mechanical oscillator coupled with a Fabry-Pérot cavity filled with 
Kerr-type nonlinear medium (see Fig. 1) and driven by a time-periodic modulated filed. The coupling between 
the two devices can be realized by the interaction of the two mechanical oscillator through a phonon tunneling 
term of intensity μ10 or the coupling between the two cavity mode through an optical fiber. Then the Hamiltonian 
of the whole system takes the form (ℏ = 1)
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In this expression, aj and †aj  are the creation and annihilation operators for the optical field, qj and pj are 
dimensionless position and momentum operators of the j-th mechanical oscillator respectively43,44. ωj are the 
mechanical frequencies, Δj are the optical detunings which can be modulated with a common frequency ΩC and 
amplitude ηC. χj are Kerr coupling coefficients, g is the optomechanical coupling constant. The driving fields with 
intensity E are modulated with frequency ΩD and amplitude ηD. The coupling between the two optomechnical 
system is chosen as either the interaction between the two mechanical oscillators through a phonon tunneling 
term of intensity μ, or the cavity modes coupled through an optical fiber with strength λ. Considering the 

Figure 1.  Schematic illustration of two coupled nonlinear optomechanical system. The switches denote that 
the coupling between the two systems is either the two mechanical oscillators interacting mutually through a 
phonon tunneling or the two cavity modes coupled through an optical fiber.
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dissipation of the system, the quantum Langevin equations in the Heisenberg picture of our model can be derived 
as30,45–47

ω

ω γ μ ξ

κ η χ

η λ κ

=

= − − + + +

= − − Δ + Ω − + +

+ + Ω − +

−

−







†

† †{ }

q p

p q p ga a q

a i t i a a a a a iga q

E t i a a

,

,

[1 cos( )] ( )

[1 cos( )] 2 , (2)

j j j

j j j j j j j j

j j C C j j j j j j j j

D D j j
in

3

3

where κ and γ are the optical and mechanical damping rates, respectively (κ and γ are assumed to be equal in 
both systems for simplicity). ain is the radiation vacuum input noise obeying standard correlation relations 
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, where 
nb = 1/exp(ℏωj/kBT − 1) is the mean phonon number of the mechanical bath which gauges the temperature T of 
the system48–50.

To solve the “classical” (mean values) and “quantum” parts (fluctuations) of Eq. (2) separately, we adopt the 
mean-field approximation29,51–53 by decomposing every operator as its average value plus a small fluctuation, i.e.
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Substituting (3) into Eq. (2), we obtain the following “classical” equations for average values
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and the “quantum” equations for fluctuations
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where we’ve ignored the second and the higher orde2r small terms. Taking the transformations of optical field operators 
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Eq. (5) can be writen as

= +u Mu n, (6)

with the fluctuation vector u = (δq1, δp1, δx1, δy1, δq2, δp2, δx2, δy2)Τ, the noise vector n = (0, ξ1, κ, κ, 0, ξ2, κ, κ)Τ 
and the time-dependent matrix
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As proposed by Mari et al.9, through a figure of merit
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2 1 2 , the synchronization 
level of the two mechanical oscillators in the two optomechanical system can be gauged. The Heisenberg principle 
set the value of Sq ranging from 0 to 1 (complete synchronization)9. With the mean-field treatment above, this 
generalized synchronization can be extended from the classical to the quantum regime by excluding the mean 
value of the conjugate quantities simultaneously, i.e. taking the changes of variables:
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Therefore, the mean values of quantum errors 〈δq1 − δq2〉 and 〈δp1 − δp2〉 arising from the noise terms can be 
used to measure the quantum synchronization as29,30
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if we define the mean values of the quantum fluctuations by a 8 × 8 covariance matrix
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where the matrix elements of V and its evolution can be derived by time integration of its dynamical 
equation30,51,52,54,55
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From Eq. (5), we can find that, unlike the linear cases28–31, the large nonlinearity intensity χj can suppress the 

oscillations of the two cavity as well as the photon exchange between them, and indirectly “frozen” the oscillation 
of the positions and the momentums of two mechanical oscillators. In this situation, Sq can directly reaches its 
maximal values in a very short time since the oscillations of the two mechanical oscillators are both suppressed. 
For small nonlinear intensities, the nonlinear terms in Eqs (5), (6) and (14) can also modify the evolution of Sq 
and improve the quantum synchronization. Combine with the different modulations and couplings, we next 
discuss the influence of the Kerr nonlinearity on evolution of Sq in more detail via the Numerical simulation of 
Eqs (5), (6) and (14).

Numerical Results and Discussion
To examine the effects of Kerr nonlinearity, different time modulations and different couplings on the quan-
tum synchronization, we numerically calculate the dynamics of the mean values of the fluctuations. We mainly 
discuss the quantum synchronization of nonlinear optomechanical system (since its classical synchronization 
measured by Sc are nearly perfect in the following cases, it will not be presented here). Beyond the quantum linear 
system by periodically modulating cavity detunings or driving amplitudes30,45,52,56, the Kerr nonlinearity brings 
out some new phenomena as we adjusting the nonlinear strength χj. The value of χj are restrict to small values, 
since the strong nonlinearity will greatly restrain the oscillation of the mechanical oscillators inspite of a perfect 
quantum synchronization can be expected. Next, we will discuss the effect of Kerr nonlinearity on the quantum 
synchronization in different types of periodical modulation (periodically modulating cavity detunings or driving 
amplitudes) and different couplings (indirectly coupled mechanical oscillators through an optical fiber or directly 
coupled mechanical oscillators by phonon tunnel).

Modulation on cavity detunings (ηD = 0, ηC ≠ 0).  We first consider the case of modulating the cavity 
detunings (ηC = 0.5, ΩC = 1) and leave the driving fields unchanged. For simplicity, χ1 and χ2 are assumed to be 
equal, i.e. χ1 = χ2 = χ, and ω1 = Δ1 and ω2 = Δ2 can be slightly different.

As shown in Fig. 2(a), no matter how the two optomechanical system are coupled (directly or indirectly), the 
quantum synchronization can be continually enhanced by the increasing of the nonlinear intensity χ. Moreover, 
for direct coupling and χ less than 0.00045, the directly coupling coefficients μ can significantly influence the 
degree of quantum synchronization. In contrast, the indirect coupling coefficients λ is more stable for the quan-
tum synchronization. For χ ≥ 0.00045, Sq can reach 0.8 or larger for any kind of coupling (directly or indirectly). 
This proves that the Kerr nonlinearity can significant improve the quantum synchronization. Note that the 
dependence of Sq on χ(>0.00045) with different coupling types and intensities are similar, we choose χ = 0.00045 
to study the dependence of Sq on the directly coupling coefficient μ and indirectly coupling coefficient λ [see 
Fig. 2(b)]. It is easy to be found that the quantum synchronization can be slightly enhanced for appropriate values 
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of μ and λ (μ is more significant). The same coupling intensity exist some differences for different coupling types 
as the coupling coefficient changes. However, both of them have good quantum synchronization effects (Sq > 0.8).

Besides, the modulation frequency ΩC and modulation amplitude ηC also play important roles in quantum 
synchronization. As shown in Fig. 3, the quantum synchronization is better for small ηC (1~2) and ΩC (0.1~0.9). 
While it becomes unstable and worse for greater ηC (2~3) and ΩC (0.9~2.45). For the same coupling intensity, 
indirect coupling is better than direct coupling for quantum synchronization. This means that suitable modula-
tions on cavity detunings are also needed for a good quantum synchronization. Since the nonlinearity brought by 
the Kerr medium is unstable, the values of the quantum synchronization with larger external disturbances will 
become chaotic. For small amplitude and frequency modulation, Sq can easily reaches 0.85 for both of the two 
coupling ways, which is better than the optimal values of the corresponding linear systems that are modulated30,31. 
Of course, we can continue to increase the nonlinear intensity to further improve quantum synchronization [see 
Fig. 2(a)]. However, a too-large value of nonlinear strength will suppress the oscillating amplitudes of the two 
mechanical oscillators which is clearly not what we wanted. In practical applications, the perfect synchronization 
need its degree greater than 0.9. After some numerical simulations, we find that χ = 0.0006 can be chosen as an 
optimal value of the nonlinearity intensity (Sq > 0.9, amplitudes of the oscillations of q and p  are both greater than 
100).

In order to investigate the dynamics of the system in synchronization, we further examine the evolution of the 
mean values position (q) and momentum (p ) of the two oscillators with ΩC = 1 and ηC = 1. The mean values 
position q1(t) and q2(t) as well as the mean values momentum p1(t) and p2(t) are found to be oscillating with 
exactly the same phases in the stable state as shown in Fig. 3(b) [Fig. 4(b)] and Fig. 3(c) [Fig. 4(c)]. Meanwhile, 
two corresponding limit-cycle trajectories of the two mechanical oscillators in phase space are illustrated in the 
inset of Fig. 4(a) [Fig. 5(a)]. As shown in Fig. 4(d) [Fig. 5(d)], the system will reaches a steady state in the end and 
Sq tends to a stable value. (the initial covariance matrix is randomly generated and unnormalized since we are only 
interested in the steady state). This means that, with the existence of Kerr nonlinearity, the degree of quantum 
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Figure 2.  (a) Mean values of the measure of quantum synchronization Sq versus Kerr coupling coefficients χ 
with ηC = 1, ΩC = 1 and different coupling intensities (red solid line for μ = 0.048, λ = 0, the blue dotted line 
for μ = 0.03, λ = 0, green solid line for μ = 0, λ = 0.03, yellow dashed line for μ = 0, λ = 0.01) (b) Mean values 
of Sq versus the phonon tunneling intensity μ (red dashed line) and the coupling constant of cavity modes λ 
(blue solid line) with χ = 0.00045. Other parameters are chosen as Δ1 = 1, Δ2 = 1.005, ωj = Δj, g1 = g2 = 0.005, 
E = 100.

Figure 3.  (a) Mean values of quantum synchronization Sq measures versus modulation frequency ΩC with 
ηC = 1. (b) Mean values of quantum synchronization Sq measures modulation amplitude ηC with ΩC = 1.0. The 
other parameters are the same as in Fig. 2.
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Figure 4.  (a) The evolution of the mean values q(t) and p(t) of the two mechanical oscillators position and 
momentum (blue and red lines) with directly coupling. (b) Time evolution of the mean value q1(t) (red solid 
line) and q2(t) (blue dashed line). (c) Time evolution of the mean value p1(t) (red solid line) and p2(t) (blue 
dashed line). (d) Time evolution of Sq(t). Here we set ΩC = 1, ηC = 1, μ = 0.03, λ = 0 and the other parameters 
are the same as in Fig. 2.

Figure 5.  (a) The evolution of the mean values q(t) and p(t) of the two mechanical oscillators position and 
momentum (blue and red lines) with indirectly coupling. (b) Time evolution of the mean value q1(t) (red solid 
line) and q2(t) (blue dashed line). (c) Time evolution of the mean value p1(t) (red solid line) and p2(t) (blue 
dashed line). (d) Time evolution of Sq(t). Here we set ΩC = 1, ηC = 1, μ = 0, λ = 0.03 and the other parameters 
are the same as in Fig. 2.
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synchronization between two mechanical oscillators with different frequencies can also be enhanced by periodi-
cally modulating cavity detunings with appropriate parameters.

Modulation on driving amplitudes (ηC = 0, ηD ≠ 0).  Alternatively, we can periodically modulate the 
amplitudes of driving fields to investigate the nonlinear effect on quantum synchronization. As shown in Fig. 6(a), 
similar with the case of cavity detuning modulations, the quantum synchronization can be continually enhanced 
with the increase of nonlinear intensity χ, its degree can be influenced significantly by the directly coupling coef-
ficients μ with χ ≤ 0.00045, and the indirect coupling λ has little effect on the quantum synchronization in a 
certain nonlinear intensity. While, different with the case of cavity detuning modulations, Sq can reach a steady 
value more rapidly as χ increases under the directly coupling, and the quantum synchronization is always better 
under direct than indirect coupling for the same coupling strength in most of the range (3.0~4.5) of χ. For the 
fixed nonlinear strength χ = 0.00045, quantum synchronization is more sensitive for the direct coupling μ when 
it goes from 0.01 to 0.05. For larger μ, there is no significant change in the quantum synchronization of the system 
[see Fig. 6(b)]. Besides, unlike the stability of the quantum synchronization on the field frequency and amplitude 
under cavity detuning modulations, the quantum synchronization will fluctuate within a range (0.68~0.86) as the 
modulation frequency increasing [see Fig. 7(a)], and the nonlinear system is more sensitive to the modulation 
intensity of the field. When the amplitude of the modulation field is not great, the quantum synchronization effect 
is also better for the two types of coupling [see Fig. 7(b)]. Therefore, we set ΩD = 2.7, ηD = 0.5, the corresponding 
optimal values are .~S 0 86q . A large driving field strength will destroy the quantum synchronization of the 
system.

The degrees of different coupling ways under modulation of driving fields can be intuitively shown by the 
dynamics of mean values position and momentum of each mechanical oscillator. we set ΩC = 1 and ηC = 1 to 
compare with the situation under the modulation of cavity detuning. As shown in Fig. 8(b) [Fig. 9(b)] and 
Fig. 8(c) [Fig. 9(c)], when the system is stable, p1 and p2 are the same phase, but the amplitude is different. And p  
and q have similar variations from Fig. 8(a) [Fig. 9(a)], the evolution of phase diagram is two limit-cycle trajecto-
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Figure 6.  (a) Mean values of quantum synchronization Sq measures versus second-order nonlinear optical 
detunings χ with ηD = 0.5, ΩD = 1 and different coupling (The red line μ = 0.048, λ = 0, the blue line 
μ = 0.03, λ = 0, the green line μ = 0, λ = 0.03, the yellow line μ = 0, λ = 0.01) (b) Mean values of quantum 
synchronization Sq measures versus a phonon tunneling term of intensity μ (red dashed line) and the coupling 
constant of cavity modes λ (green solid line). Some parameters are Δ1 = 1, Δ2 = 1.005, ωj = Δj, g1 = g2 = 0.005, 
E = 100.

Figure 7.  (a) Mean values of quantum synchronization Sq measures versus modulation frequency ΩD 
with ηD = 0.5. (The red line μ = 0.03, λ = 0, the blue line μ = 0, λ = 0.03). (b) Mean values of quantum 
synchronization Sq measures modulation amplitude ηD with ΩD = 1.0. (The red line μ = 0.03, λ = 0, the blue line 
μ = 0, λ = 0.03) and the other parameters are the same as in Fig. 6.
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Figure 8.  (a) The evolution of the mean values q(t) and p(t) of the two mechanical oscillators position and 
momentum (blue and red lines). (b) Time evolution of the mean value p1(t) (red solid line) and p2(t) (blue 
dashed line). (c) Time evolution of the mean value q1(t) (red solid line) and q2(t) (blue dashed line). (d) Time 
evolution of Sq(t). Here we set ΩD = 1, ηD = 0.5, μ = 0.03, λ = 0 and the other parameters are the same as in 
Fig. 6.

Figure 9.  (a) The evolution of the mean values q(t) and p(t) of the two mechanical oscillators position and 
momentum (blue and red lines). (b) Time evolution of the mean value q1(t) (red solid line) and q2(t) (blue 
dashed line). (c) Time evolution of the mean value p1(t) (red solid line) and p2(t)(blue dashed line). (d) Time 
evolution of Sq(t). Here we set ΩD = 1, ηD = 0.5, μ = 0, λ = 0.03 and the other parameters are the same as in 
Fig. 6.
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ries, which are slight difference and from Fig. 8(d) [Fig. 9(d)], we can see that the system reaches a steady state in 
the end and Sq tends to a stable value over time. It is easy to find that the degree of quantum synchronization is 
better under direct than indirect coupling with the same nonlinear strength, modulation frequency and ampli-
tude. Nevertheless, the nonlinearity and the periodical modulation on driving field can always enhance the quan-
tum synchronization.

Comparison of two modulations.  Now let’s compare the types of quantum synchronization in the non-
linear optomechanical system with the two different ways of periodical driving. Comparing Figs 3 and 7, we find 
that small amplitude or frequency of the periodic modulation has a better effect on quantum synchronization and 
the system is more stable under a certain nonlinear intensity. However, when the amplitude or frequency of the 
periodic modulation is large, quantum synchronization has different changes in the two different modulation. 
Simultaneously, quantum synchronization has a slight enhancement (a large change) through indirect coupling 
(direct coupling) as the coupling coefficient λ (μ) increases and when the nonlinear intensity χ exceeds a certain 
value, the quantum synchronization is not affected by the coupling coefficient μ or λ (see Figs 2 and 6). According 
to the above analysis, we find that dynamics of the nonlinear system is correspondingly more sensitive to the 
change of the modulation of driving fields amplitude and the direct coupling mode.

Conclusions
In summary, we have studied the quantum synchronization phenomenon of mechanical oscillators of different 
frequencies in nonlinear optomechanical system by periodically modulating the cavity detunings or the driv-
ing field in two different ways of coupling. After detailed analysis and comparing to the former studies30,31, we 
find that the coupled optomechanical systems with Kerr nonlinearity under appropriate modulations on cavity 
detunings or driving amplitudes has better degrees of quantum synchronization than the linear one, and it is also 
easier to enhance the quantum synchronization effect and realize good quantum synchronization effect (Sq > 0.8) 
for two different ways of coupling (direct coupling and indirect coupling). Nevertheless, the direct coupling μ 
and indirect coupling λ coefficient have different effects on quantum synchronization: the former haves a large 
adjustment range and the latter is more stable. The two different modulation ways can also lead to different behav-
iors of quantum synchronization with the same parameters. The dynamics of the system is more sensitive to the 
modulation of driving fields amplitude. In any way, the quantum synchronization can be improved by increasing 
the nonlinear intensity and the value of Sq can be approximated to 1. Therefore, we believe that the study of Kerr 
nonlinearity and its effect on the quantum synchronization may have a further promoting effect on quantum 
communication and quantum control.
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