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Abstract

Background

Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of
developing type 2 diabetes (T2D) during midlife and an elevated risk of developing hyperten-
sion and cardiovascular disease. Glucose tolerance reclassification after delivery is recom-
mended, but fewer than 40% of women with GDM are tested. Thus, improved risk
stratification methods are needed, as is a deeper understanding of the pathology underlying
the transition from GDM to T2D. We hypothesize that metabolites during the early postpar-
tum period accurately distinguish risk of progression from GDM to T2D and that metabolite
changes signify underlying pathophysiology for future disease development.

Methods and findings

The study utilized fasting plasma samples collected from a well-characterized prospective
research study of 1,035 women diagnosed with GDM. The cohort included racially/ethnically
diverse pregnant women (aged 20—45 years—33% primiparous, 37% biparous, 30% multip-
arous) who delivered at Kaiser Permanente Northern California hospitals from 2008 to
2011. Participants attended in-person research visits including 2-hour 75-g oral glucose tol-
erance tests (OGTTs) at study baseline (6—9 weeks postpartum) and annually thereafter for
2 years, and we retrieved diabetes diagnoses from electronic medical records for 8 years. In
a nested case—control study design, we collected fasting plasma samples among women
without diabetes at baseline (n = 1,010) to measure metabolites among those who later pro-
gressed to incident T2D or did not develop T2D (non-T2D). We studied 173 incident T2D
cases and 485 controls (pair-matched on BMI, age, and race/ethnicity) to discover metabo-
lites associated with new onset of T2D. Up to 2 years post-baseline, we analyzed samples
from 98 T2D cases with 239 controls to reveal T2D-associated metabolic changes. The
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longitudinal analysis tracked metabolic changes within individuals from baseline to 2 years
of follow-up as the trajectory of T2D progression. By building prediction models, we discov-
ered a distinct metabolic signature in the early postpartum period that predicted future T2D
with a median discriminating power area under the receiver operating characteristic curve of
0.883 (95% CI1 0.820-0.945, p< 0.001). At baseline, the most striking finding was an overall
increase in amino acids (AAs) as well as diacyl-glycerophospholipids and a decrease in
sphingolipids and acyl-alkyl-glycerophospholipids among women with incident T2D. Path-
way analysis revealed up-regulated AA metabolism, arginine/proline metabolism, and
branched-chain AA (BCAA) metabolism at baseline. At follow-up after the onset of T2D, up-
regulation of AAs and down-regulation of sphingolipids and acyl-alkyl-glycerophospholipids
were sustained or strengthened. Notably, longitudinal analyses revealed only 10 metabo-
lites associated with progression to T2D, implicating AA and phospholipid metabolism. A
study limitation is that all of the analyses were performed with the same cohort. It would be
ideal to validate our findings in an independent longitudinal cohort of women with GDM who
had glucose tolerance tested during the early postpartum period.

Conclusions

In this study, we discovered a metabolic signature predicting the transition from GDM to
T2D in the early postpartum period that was superior to clinical parameters (fasting plasma
glucose, 2-hour plasma glucose). The findings suggest that metabolic dysregulation, partic-
ularly AA dysmetabolism, is present years prior to diabetes onset, and is revealed during the
early postpartum period, preceding progression to T2D, among women with GDM.

Trial registration
ClinicalTrials.gov Identifier: NCT01967030.

Author summary

Why was this study done?

» Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk
of developing type 2 diabetes (T2D) later in life, and an estimated 35%-50% of GDM
cases will progress to T2D within 10 years postpartum. Biological pathways and metabo-
lites influencing progression from GDM to T2D have not been elucidated in humans.

o The main goal of the present work is to gain critical insight into the pathology of the
transition from GDM to T2D, particularly metabolic changes involved in this process. A
second goal is to devise more accurate means of identifying who will transition to T2D
among women with GDM.

What did the researchers do and find?

» We carried out a nested case—control study using a GDM prospective cohort of 1,010
women without T2D 6-9 weeks postpartum (study baseline). We performed metabolic
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profiling on fasting blood samples from women at 6-9 weeks postpartum (baseline) and
up to 2 years post-baseline (follow-up).

« We found that significant dysmetabolism in lipids and amino acids in the early postpar-
tum period was associated with future diabetes in women. Longitudinal analysis track-
ing changes in metabolic profiles over the course of diabetes progression revealed 10
specific metabolites that are associated with progression to T2D.

o We identified a small group of metabolites that could predict future T2D with great dis-
criminative power, surpassing current clinical methods.

What do these findings mean?

« A subclinical diabetes-like condition appears to already be present in the early postpar-
tum period in women with previous GDM who later progress to T2D, and dysregulated
amino acid metabolism is tightly associated with disease progression.

o Metabolites other than glucose may provide a simple and accurate alternative approach
to assess risk of future T2D in women with a history of GDM.

Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance that is first recognized
during pregnancy; it occurs in approximately 7%-8% of pregnant women [1], although differ-
ent estimates range up to 20% for milder forms based on the diagnostic criteria [2]. In the vast
majority of cases, women return to normoglycemia post-delivery, but up to 35% may have
impaired glucose tolerance within 2 months post-delivery [3]. Women with a history of GDM
have a 7-fold higher risk of developing type 2 diabetes (T2D) than women without previous
GDM [1,4,5]. In fact, an estimated 35%-50% of GDM cases will progress to T2D within 10
years postpartum [4,6]. These women not only develop T2D at a relatively younger age (e.g.,
<40 years) compared to women in general, but are also more likely to develop non-alcoholic
fatty liver and cardiovascular and renal diseases that may lead to early mortality [7-15]. For
these reasons, it is important to develop an accurate means to predict the future transition
from GDM to T2D after pregnancy, and to gain a better understanding of the distinct patho-
physiology of the metabolic disturbances preceding the progression to T2D and its underlying
causes for the GDM population.

Currently, the recommended test to reclassify glucose tolerance and assess future T2D risk
after GDM pregnancy is the 2-hour 75-g oral glucose tolerance test (OGTT) at 6 to 12 weeks
postpartum followed by subsequent testing for diabetes every 1-3 years via fasting plasma glu-
cose (FPG) and 2-hour OGTT [16]. However, the accuracy of 2-hour 75-g OGTT for predic-
tion of future T2D ranges from 65% to 77% [17-19]. Moreover, adherence to the American
Diabetes Association (ADA) recommendations to undergo the 2-hour OGTT after pregnancy
is generally very low, at approximately 20% [19,20], and in most settings, fewer than 30% of
women with GDM complete the recommended testing for reclassification of glycemia during
the postpartum period [19,21-23]. For these reasons, a more convenient and accurate
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predictive test is needed to assess glucose tolerance and for early prediction of future progres-
sion to overt diabetes following GDM delivery.

Discovery-based metabolomics have recently revealed specific metabolites in addition to
glucose that can facilitate the early prediction of T2D in the general population. For example,
branched-chain amino acids (BCAAs) have been identified as a putative biomarker for future
T2D incidence [24-26]. Our group has previously identified metabolic markers of future T2D
among women with recent GDM [19]. Using clinical variables combined with metabolic bio-
markers, including lipid species, our simple metabolic signature [PCaeC40:5, hexoses, BCAAs,
and SM(OH)C14:1] predicted T2D incidence with an approximate 80% area under the
receiver operating characteristic curve (AUC) in a nested case-control study of 122 matched
pairs (matched on race/ethnicity, age, and BMI) identified from the Study of Women, Infant
Feeding and Type 2 Diabetes after GDM Pregnancy (SWIFT). SWIFT is a prospective cohort
of 1,035 women with GDM tested at 6-9 weeks post-delivery (study baseline) and annually
thereafter for up to 2 years post-baseline for new onset T2D [19]. Another smaller study using
targeted measurements of >300 lipid species (lipidomics) in blood samples collected 12 weeks
post-delivery from 104 women with GDM, 21 of whom developed T2D, showed 84% accuracy
in T2D prediction based on 3 lipids [i.e., PE(P-36:2), PS38:4, CE20:4] in combination with 6
other risk factors (i.e., age, BMI, pregnancy FPG, postpartum FPG, total triglycerides, and total
cholesterol) [27]. In a recent purely lipidomic analysis, we identified a 7-metabolite predictive
signature with a discriminating power of 92% for prediction of incident T2D after GDM
among a subset of Asian and Hispanic matched pairs from the prospective SWIFT cohort [28].
These promising findings warrant further investigation, and suggest that novel metabolite
markers combined with known clinical parameters may provide more accurate early risk pre-
diction for future T2D in the GDM population compared to current testing regimens.

Metabolomics is also a valuable tool to better understand the pathophysiology of the transi-
tion from GDM to T2D. Recently, our team found that short-chain acylcarnitines were associ-
ated with onset of T2D and had a negative impact on pancreatic beta cell function [29]. Other
groups have demonstrated that BCAAs are increased preceding development of T2D among
adults, potentially impairing insulin signaling and pancreatic beta cell function [25,30]. Several
lipid metabolites have also been associated with future T2D risk. We recently showed that a
decrease in specific sphingolipid species was linked with the transition from GDM to subse-
quent onset of T2D, and that reducing sphingolipid biosynthesis in beta cells impaired insulin
secretion, suggesting a causal link between sphingolipids and insulin secretion [19]. Overall,
these and other studies suggest the promise of using metabolomics as an approach to gain
molecular insights into the transition (progression) from GDM to T2D and to identify metab-
olites other than carbohydrates that may contribute to longer-term diabetes risk.

In the present study, targeted metabolomics was used, analyzing fasting plasma samples
from the SWIFT cohort obtained both at study baseline (6-9 weeks postpartum) and during 2
years of follow-up. We hypothesized that quantitative targeted metabolomics performed on
blood samples from women who transition from GDM to T2D will reveal distinct metabolic
changes associated with future T2D and that specific metabolites will have predictive value.

Methods

We used the prospective SWIFT cohort in this study. The SWIFT cohort design, recruitment,
selection criteria, and methodologies were conducted following a prospective study design and
protocol (S1 Text). The bioinformatics and statistical analyses as described below were specifi-
cally developed for this analysis and did not follow an established protocol or analysis plan.
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SWIFT cohort

The SWIFT cohort is a prospective cohort that enrolled 1,035 racially and ethnically diverse
(white, 23%; Asian, 36%; Hispanic, 31%; black, 8%; other, 2%) women (aged 20-45 years) who
were diagnosed with GDM based on the 3-hour 100-g OGTT via Carpenter and Coustan crite-
ria [31] and delivered a singleton, live-born infant after 35 weeks of gestation at a Kaiser Per-
manente Northern California (KPNC) hospital during the period 2008-2011 [32]. In the
SWIFT cohort, 32.8% of participants were primiparous, 36.8% were biparous, and 30.4% were
multiparous. Details of the study recruitment, selection criteria, and methodologies, and other
detailed information have been described previously [32]. Briefly, participants were recruited
from 13 KPNC medical center/office facilities in a 5,000-square-mile KPNC region from 10
September 2008 to 3 December 2011. Weekly, women recently diagnosed with GDM were
added to a tracking system for the study. The selection criteria included women who had no
history of diabetes or other serious health conditions, received standardized prenatal care,
were not using medications affecting glucose tolerance, and were not planning another preg-
nancy or moving out of the area within the next 2 years. After eligibility pre-screening by
authorized staff, around 2—-4 weeks postpartum, potential participants were contacted by
phone to determine their interest in participating in the study. Those who consented were
invited to participate in the study and were scheduled for their baseline study visit at 6-9
weeks postpartum. The SWIFT participants provided written consent for 3 in-person study
visits at baseline (6-9 weeks postpartum) and annually for 2 years postpartum, and consented
to continued clinical surveillance for diagnosis of new onset T2D up to 8.4 years post-baseline
(average surveillance period 2.72 years). Quantitative assessments of lactation intensity and
duration since delivery were obtained via monthly mailed surveys and for the previous 7 days
at in-person research exams. At in-person annual research exams from baseline through 2
years later, participants completed interviewer- and self-administered surveys that gathered
data on sociodemographics, medical and reproductive history, family history of diabetes, sleep
habits, depression (CES-D), and lifestyle behaviors. Trained research staft also obtained
anthropometric measurements (body weight, height, and waist circumference) using cali-
brated research instruments at each in-person study exam. Clinical data were also obtained
from electronic medical records, including laboratory results for the prenatal 3-hour 100-g
OGTT used to diagnose gestational diabetes, pre-pregnancy weight, dates of diabetes diagno-
ses, and other clinical outcomes [32]. At each study visit, plasma samples were collected at the
fasting and 2-hour time points during the 75-g OGTT, and the other assessments were com-
pleted. The plasma samples were analyzed within several weeks for glucose and insulin levels,
and subsequently for selected levels of lipids and lipoproteins, as previously described [33,34],
and aliquots were stored in the SWIFT Biobank. Follow-up assessments to determine T2D sta-
tus were performed via annual study research 2-hour 75-g OGTTs and ongoing review of elec-
tronic medical records to capture clinical diagnoses of diabetes from KPNC clinical laboratory
tests after baseline [3]. T2D diagnosis was based on ADA criteria [35]. The fasting plasma sam-
ples were stored at the KPNC Division of Research Clinic in low-temperature freezers at
—80°C. The study design and all procedures were approved by the KPNC Institutional Review
Board and the Office of Research Ethics at University of Toronto. All the participants provided
written consent for the study.

Metabolomics

The fasting plasma samples collected from 658 participants at baseline (173 incident T2D cases
and 485 controls [pair-matched on BMI, age, and race/ethnicity]) and 337 of the same partici-
pants during 2 years of follow-up (98 T2D cases and 239 controls) were evaluated via
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metabolomics (not all patients delivered follow-up samples). Metabolites associated with T2D
were selected based on a literature review of previous T2D metabolic studies. These metabo-
lites were chosen on the basis of consistency in significance in more than 2 studies
[1,6,19,25,36-42]. The AbsoluteIDQ p180 plate, covering most of the selected metabolites, was
used to assay a total of 188 metabolites using mass-spectrometry-based detection according to
manufacturer instructions (Biocrates Life Sciences, Innsbruck, Austria). Aliquoted samples
were prepared using the AbsoluteIDQ p180 Kit in accordance with the vendor specifications.
In brief, after the addition of 10 pl of the supplied internal standard solution to each well on a
filterspot of the 96-well extraction plate, 10 pl of each serum sample, quality control (QC) sam-
ple, blank, zero sample, or calibration standard was added to the appropriate wells. Chro-
matographic separation and measurement of amino acids (AAs) and biogenic amines was
performed using an Agilent 1290 HPLC stack connected to a SCIEX QTRAP 5500 mass spec-
trometer. An Agilent Eclipse XDB-C18 100 x 3.0 mm, 3.5 pm column was used. All AAs (21),
biogenic amines (21), and hexose utilize either deuterated or 13C stable isotope-labeled inter-
nal standard of the exact analyte or a closely eluting compound of similar class and were ana-
lyzed by LC-MS/MS. Acylcarnitines (40), sphingolipids (15), and glycerophospholipids (90)
were analyzed by flow injection analysis tandem mass spectrometry (FIA-MS/MS) and quanti-
fied by internal standard calibration using an Agilent 1200 HPLC stack connected to a SCIEX
QTRAP 5500 mass spectrometer. Multiple reaction monitoring (MRM) transitions for each
analyte and internal standard were collected over a scheduled retention time window using
tune files and acquisition methods provided in the AbsoluteIDQ p180 Kit. The data were then
imported to the Biocrates software MetIDQ, which validates the plate and calculates the con-
centration values. The median value of all zero samples on the plate was calculated as an
approximation of background noise, i.e., as the limit of detection (LOD). All assays were per-
formed and assessed, without disclosure of group allocation, by the Analytical Facility for Bio-
active Molecules (The Hospital for Sick Children, Toronto, ON, Canada).

Prediction analysis

Analytes with >10% of measurements below LOD were excluded from prediction analysis.
Out of 188 analytes, 132 were subjected to prediction analysis. For these 132 analytes, samples
with values reported as “<LOD” were imputed using the LOD/2 value for each specific ana-
lyte. To build and evaluate the prediction model, we randomly selected 51 future T2D cases
and 51 non-T2D controls as hold-out testing set. The rest of the participants (122 future T2D
cases and 434 non-T2D controls) were used as a training set. The training set was randomly
down-sampled to a case—control balanced set (122 cases versus 122 controls) for generating
prediction models using random forest classification (package randomForest in R program).
The model was further applied to the hold-out testing set to evaluate the prediction perfor-
mance. The process of model generation and evaluation was repeated 100 times (S1A Fig).
The top 30 variable importance (VIP) analytes were recorded at each time. The prediction abil-
ity of each analyte was ranked by the frequency of its appearance in the 100 times’ top 30 VIP
lists. The 20 analytes with the highest ranking, demonstrating the best prediction performance,
were selected as the signature panel. The signature panel was used for model generation and
evaluation following the process in S1A Fig again. Evaluation results in hold-out testing sets,
including sensitivity, specificity, precision, F1-score, AUC, and accuracy, were calculated.
Instead of recording the best model, we reported the performance of all the models in their
hold-out test sets from the 100 repetitions to avoid the potential overfitting and bias. All the
analyses were done in the open-source R program version 3.2.4.
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Metabolomics data analysis in baseline and follow-up cross-sectional
studies

Analytes with >40% of measurements below LOD were excluded from the metabolomics
data analysis, only allowing the most robust analytes from the panel for the analysis; this
reduced the total number of analytes reported in the dataset from 188 analytes to 141 ana-
lytes (baseline data) and 145 analytes (follow-up data) [43]. For these 141 and 145 analytes,
samples with values reported as “<LOD” were imputed using the LOD/2 value for each spe-
cific analyte. Log-transformation was performed. Generalized linear models (GLMs) were
fit, and Type III ANOVA tests were performed in SPSS Statistics version 25 (IBM, Armonk,
NY) to identify analytes that differ between the future T2D cases and non-T2D controls,
adjusting for effects from race/ethnicity, age, and BMI: log2analytes ~ group (disease or
not) + BMI + race/ethnicity + age. The false discovery rate (FDR) was acquired by correct-
ing the p-value by the Benjamini-Hochberg method for multiple comparison, and a cutoff
of 0.05 was used for baseline data analyses. Pearson correlation was used to assess the corre-
lation between metabolites and clinical parameters at baseline. Correlation coefficients (r)
and p-value were calculated.

Pathway analysis

The differentially expressed metabolites with their Human Metabolome Database (HMDB)
accession numbers were subjected to pathway analysis using the Kyoto Encyclopedia of Genes
and Genomes (KEGG; Kanehisa Laboratories, Kyoto, Japan) pathway database, and enrich-
ment analysis using the Small Molecule Pathway Database (SMPDB). Pathway analyses were
carried out on platform MetaboAnalyst 4.0.

Longitudinal analysis

Metabolomics data from 337 samples (98 progressors pair-matched with 239 non-progressors
for age, race/ethnicity, and BMI) measured both at baseline and follow-up were processed.
Individual metabolites with >40% missing values (measurements < LOD) either in baseline
or follow-up data were excluded at both time points, which reduced the total analytes in the
dataset from 188 to 140. Batch correction was performed on baseline and follow-up data
according to the same internal control detected in 2 batches. Log-transformation and normal-
ity test were performed. A mixed effect model was fitted for each individual analyte, and Type
ITII ANOVA tests were performed in SPSS: log2analytes ~ group (progressor versus non-pro-
gressor) + time point (baseline or follow-up) +group x time point + patient ID. Group effects,
time-dependent effects, and their interactions were included as fixed effects, and patient ID
was included as a random effect. The resulting p-values were corrected using the Benjamini—
Hochberg method, and a cutoff of 0.2 was used for the significance.

This study is reported as per the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guideline (S2 Text).

Results
Study cohort overview

In the SWIFT cohort, a total of 1,035 women diagnosed with GDM were recruited during ges-
tation and enrolled into the study at 6 to 9 weeks postpartum (study baseline). Of these, 1,010

women were found to be without T2D based on the results of a 2-hour 75-g OGTT at baseline.
Among the 1,010 women, 959 subsequently completed annual in-person study visits including
research 2-hour OGTTs up to 2 years post-baseline (95% cohort retention) to reclassify glucose
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tolerance, and/or had additional testing of glycemia for clinical diagnosis of new onset T2D in
KPNC electronic health records within 8 years post-baseline. Fasting plasma samples were col-
lected at SWIFT study baseline (2008 to 2011) and at each in-person follow-up study visit at 1
year and 2 years post-baseline (2009 to 2014). As of December 2017, among the 959 women
without T2D at baseline and with follow-up testing, 178 women (18%) had developed incident
T2D after baseline (Fig 1A). In our nested case—control study design, we selected pair-matched
participants based on diabetes status and time of follow-up, with 173 incident T2D cases (5
baseline samples were not available to be measured) and 485 non-T2D controls (658 women
in total) who were profiled for metabolomics in fasting plasma samples previously obtained at
6-9 weeks postpartum (baseline). Further, fasting plasma samples from the follow-up visits in
the same cohort underwent metabolomics analysis (98 T2D cases and 239 nested pair-matched
non-T2D controls) (Fig 1A and 1B). The data analysis was composed of 3 integral parts: (1)
differentiation of baseline metabolite profiles for the subsequent incident T2D cases and non-
T2D controls, to develop a predictive model for future new onset T2D and to delineate meta-
bolic changes associated with the transition from GDM to T2D; (2) cross-sectional analysis of
the follow-up samples concurrent with diabetes case—control status to reveal T2D-associated
metabolic pathways; and (3) longitudinal analysis to shape and present a trajectory of T2D
progression by tracing metabolic changes within individuals (Fig 1C).

Cohort clinical characteristics

Sociodemographic and clinical parameters at baseline are summarized in Table 1. For prenatal
characteristics, there was no significant difference in age, race/ethnicity, or parity between
women who later developed T2D and those who did not. Pre-pregnancy BMI (p < 0.001) and
prenatal 3-hour 100-g OGTT (sum of the 4 z-scores for glucose values; fasting and 1 hour, 2
hours, and 3 hours post-load, p < 0.001) for the incident T2D case group were higher than
those in the matched non-T2D control group, similar to those in the entire cohort of 959
women with the 1- or 2-year follow-up glycemic testing [3]. Compared to the non-T2D con-
trol group, a higher percentage of participants in the incident T2D case group had a family his-
tory of diabetes (p = 0.018) and had been treated with insulin or oral medications during
pregnancy (p < 0.001). At study baseline, compared to controls, women in the incident T2D
group had higher BMI (p = 0.02), FPG, 2-hour plasma glucose (2hPG), fasting insulin, and
2-hour insulin (all p-values < 0.001), and higher fasting triacylglycerol (TAG) (p = 0.005), fast-
ing In triglycerides (p = 0.002), homeostatic model assessment for insulin resistance
(HOMA-IR) (p < 0.001), and percentage of kilocalories as animal fat in dietary intake (p =
0.006), but lower fasting high-density lipoprotein cholesterol (HDL-C) (p = 0.008) and low-
density lipoprotein cholesterol (LDL-C) (p = 0.044). There was no significant difference in
fasting total cholesterol, homeostatic model assessment for beta cell function (HOMA-B),
hypertension percentage, smoker percentage, dietary glycemic index, and physical activity
score at baseline between incident T2D case and non-T2D control groups.

Developing a metabolic signature predicting future T2D

A signature composed of 20 metabolites—hexose, 6 AAs, 6 glycerophospholipids, 2 acylcarni-
tines, 2 sphingolipids, and 3 biogenic amines—was developed (Fig 2A). A prediction model
was generated in each randomly sampled training set using this 20-metabolite signature. The
model was applied to the corresponding hold-out testing set for validation, and its predictive
performance was evaluated by the AUC, sensitivity, specificity, precision, F1-score, and accu-
racy. This process of model generation and evaluation was repeated 100 times (S1A Fig). The
routine clinical parameters FPG and 2hPG were also used for prediction analysis using the
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Fig 1. The Study of Women, Infant Feeding and Type 2 Diabetes after GDM Pregnancy (SWIFT) cohort and study design. (A) SWIFT
prospective cohort: 1,035 women diagnosed with gestational diabetes mellitus (GDM) in 2008-2011 were enrolled at 6-9 weeks postpartum
(baseline). Of the 1,035 participants, 1,010 were confirmed via 2-hour 75-g oral glucose tolerance test to be without diabetes at baseline, underwent
annual 2-hour 75-g OGTTs for 2 years post-baseline, and subsequently had their electronic medical records searched for clinical diagnoses of
diabetes. Up to 8 years post-baseline, a total of 178 (18%) women developed type 2 diabetes (T2D) after baseline. Out of those 178 incident cases, 113
women were diagnosed as having diabetes clinically during the 2 years of in-person follow-up (blood samples of 98 women were available at this
time point). (B) Metabolomics: using Biocrates p180 kits, 188 metabolites were measured in fasting plasma samples from participants at baseline
(173 incident T2D cases and 485 nested pair-matched non-T2D controls) and follow-up (98 T2D cases and 239 nested pair-matched non-T2D
controls). (C) The bioinformatics analysis pipeline includes 3 integral parts: (1) prospective analysis to predict future diabetes and to profile
metabolic changes associated with future T2D onset at baseline, (2) cross-sectional analysis of the follow-up samples to reveal T2D-associated
metabolic pathways, and (3) longitudinal analysis to shape a trajectory of T2D progression.

https://doi.org/10.1371/journal.pmed.1003112.9001

same process. Using the 20-metabolite signature, we achieved the predictive performance
median + SD values AUC 0.88 + 0.03, sensitivity 0.78 + 0.05, specificity 0.80 + 0.07, precision
0.79 £ 0.06, F1-score 0.79 + 0.04, and accuracy 0.79 + 0.04, superior to the traditional clinical
parameters FPG and 2hPG or their combination (Figs 2B and S1B). To avoid any preferential
bias, we chose the training/testing partition with median performance to present the receiver
operating characteristic curve for comparison of models built upon variant parameters (Fig
2C). Using the signature, we achieved AUC 0.883 (95% CI 0.820-0.945, p < 0.001), which is
better than FPG (AUC 0.699, 95% CI 0.597-0.801, p < 0.001), 2hPG (AUC 0.694, 95% CI
0.593-0.795, p < 0.001), and their combination (AUC 0.745, 95% CI 0.649-0.840, p < 0.001).
Interestingly, when clinical parameters (FPG or 2hPG) were added to the 20-metabolite signa-
ture panel, discrimination was not improved using either of the clinical parameters, and only
slightly improved using both (Fig 2D), indicating the significance of using the metabolite sig-
nature to predict diabetes. Taken together, we developed a signature panel predicting future
T2D with AUC 0.88 + 0.03. This suggests that metabolic changes occur before T2D onset,
which allows us to predict diabetes and further explore the metabolic changes associated with
T2D incidence.

Prospective analysis at baseline: Metabolic changes associated with future
T2D

Of 188 metabolites measured, 141 passed data preprocessing and were subjected to bioinfor-
matics analysis. Partial least squares discriminant analysis (PLS-DA) indicated separability
between the future T2D cases and non-T2D controls, and differential metabolic profiles in the
2 groups before disease onset (S2A-S2C Fig). To further delineate the differentially expressed
metabolites between incident T2D case and non-T2D control samples, individual analytes
were subjected to linear regression models, and an ANOVA was performed to evaluate signifi-
cance [44]. These models were adjusted for race/ethnicity, age, and BMI. Thirty-seven metabo-
lites were identified that were differentially expressed between incident T2D cases and non-
T2D controls with statistical significance (FDR < 0.05), including 23 up-regulated and 14
down-regulated metabolites (Fig 3A and 3B; S1 Table). The abundance of metabolites in indi-
vidual participants is presented in the heat map shown in S2D Fig. Hexose was reported to be
increased in incident T2D cases by us and others [19,37,38]. In the current study, at baseline,
hexose was the most significantly increased metabolite (FDR < 0.001), with the non-T2D
group at 5.45 + 0.8 mM and the incident T2D case group at 6.10 £ 0.1 mM (S1 Table). This
suggests that hexose metabolism is the most regulated, and the most strongly associated with
disease onset.

AA metabolism was also altered between incident T2D cases and non-T2D controls. Eleven
AAs (histidine, isoleucine, serine, tyrosine, leucine, methionine, glutamate, lysine, tryptophan,
threonine, and proline) were up-regulated, with only glutamine being down-regulated.
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Table 1. Prenatal and study baseline (6-9 weeks postpartum) characteristics of women with gestational diabetes mellitus in the SWIFT cohort.

Characteristic Incident T2D Non-T2D p-Value
(n=173) (n = 485)

Prenatal characteristics
Age (years), mean (SD) 33.2(5.2) 32.9 (4.5) 0.53
Race/ethnicity, n (%) 0.98

White 29 (16.7) 89 (18.4)

Asian 52(29.9) 144 (29.8)

Black 22 (12.6) 55 (11.4)

Hispanic 69 (39.7) 190 (39.3)

Other 2(1.2) 6(1.24)
Parity, n (%) 0.92

Primiparous (1 birth) 55 (31.6) 161 (33.3)

Biparous (2 births) 65 (37.4) 177 (36.6)

Multiparous (>2 births) 54 (31.0) 146 (30.2)
GDM treatment, n (%) <0.001

Diet only 75 (43.1) 346 (71.5)

Oral medications 80 (46.0) 130 (26.9)

Insulin 19 (10.9) 8(1.7)
Pre-pregnancy BMI (kg/mz), mean (SD) 33.6 (8.3) 31.6 (6.7) <0.001
Sum of prenatal 3-hour 100-g OGTT glucose z-scores, mean (SD) 1.3(3.1) -0.2 (2.5) <0.001
Family history of diabetes, n (%) 104 (59.8) 239 (49.4) 0.018
Baseline characteristics at 6-9 weeks postpartum
BMI (kg/mz), mean (SD) 33.4(7.6) 31.9 (6.4) 0.02
Fasting plasma glucose, mmol/l, mean (SD) 5.6 (0.6) 5.2 (0.4) <0.001
2-hour post-load plasma glucose (75-g OGTT), mmol/l, mean (SD) 7.3 (1.6) 6.0 (1.4) <0.001
Fasting plasma insulin pmol/l, median (IQR) 181.3 (124.3-265.3) 139.6 (96.5-207.7) <0.001
2-hour plasma insulin, pmol/l, median (IQR) 771.6 (502.1-1,074.4) 565.3 (375.0-822.3) <0.001
Fasting plasma triglycerides, mmol/l, median (IQR) 1.3 (0.9-2.1) 1.1 (0.8-1.7) 0.005
Fasting plasma In triglycerides, mmol/l, mean (SD) 0.34 (0.6) 0.19 (0.5) 0.002
Fasting plasma HDL-C, mmol/l, mean (SD) 1.26 (0.3) 1.33(0.4) 0.008
Fasting plasma total cholesterol, mmol/l, mean (SD) 5.1 (0.9) 5.2 (0.9) 0.19
Fasting plasma LDL-C, mmol/l, mean (SD) 3.1(0.8) 3.3(0.8) 0.04
HOMA-IR, median (IQR) 6.6 (4.5-10.1) 4.6 (3.2-7.1) <0.001
HOMA-B, median (IQR) 260 (172-366) 240 (181-345) 0.33
Hypertension, #n (%) 13 (7.5) 25(5.2) 0.30
Smoker, n (%) 5(2.9) 9(1.9) 0.43
Dietary glycemic index, mean (SD) 244.7 (107.7) 238.1(107.1) 0.49
Dietary intake, percentage of kilocalories as animal fat, mean (SD) 27.0 (7.6) 25.0 (8.5) 0.006
Physical activity score, met-hours per week, mean (SD) 51.3 (24.0) 47.3 (20.7) 0.06

Data are presented as the mean (SD) unless otherwise noted.

Chi-square test for categorical variables (n, %), t-test for continuous variables (Mean, SD), and Wilcoxon rank-sum test (Median, IQR).

GDM, gestational diabetes mellitus; HDL-C, high-density lipoprotein cholesterol; HOMA-B, homeostatic model assessment for beta cell function; HOMA-IR,

homeostatic model assessment for insulin resistance; LDL-C, low-density lipoprotein cholesterol; OGTT, oral glucose tolerance test; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003112.t001

Acylcarnitines and biogenic amines (related to AA metabolism) were also affected. Specifically,
increases of the acylcarnitines AC3 (FDR = 0.01), AC10 (FDR = 0.005), and AC16

(FDR < 0.001) were observed before the occurrence of T2D. Spermidine, a biogenic amine,
was found to be increased, while another type of amine, kynurenine, was decreased. In
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Fig 2. Metabolic signature and models to predict future type 2 diabetes. (A) Random forest variable selection identified a set of 20 metabolites with high predictive
power. (B) Box plots showing the distribution of the predictive performance of the metabolic signature and the traditional clinical parameters 2-hour plasma glucose
(2hPG) and fasting plasma glucose (FPG). (C) Receiver operating characteristic (ROC) curve of predictive models generated by metabolic signature and clinical
parameters. (D) Area under the ROC curve (AUC) and its 95% CI, with significance indicated by p-value.

https://doi.org/10.1371/journal.pmed.1003112.g002
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Fig 3. Metabolites and pathways associated with future type 2 diabetes (T2D) at baseline. (A) Volcano plot shows -log10 FDR against log2-fold change of 141
metabolites in incident T2D group versus non-T2D controls. Green denotes down-regulated metabolites, red denotes up-regulated metabolites, and grey denotes
no change. (B) 37 differentially regulated metabolites were associated with incidence of future T2D. Red indicates up-regulation, and green indicates down-
regulation. Significance is shown as -log10 FDR. (C) Correlation analysis of the 37 differential metabolites with clinical parameters at baseline using Pearson
method. Red boxes indicate positive correlation coefficient (r), and blue boxes, negative. (D) Biological pathways associated with future diabetes onset. 2hPG,
2-hour plasma glucose; FDR, false discovery rate; FPG, fasting plasma glucose; HOMA-B, homeostatic model assessment for beta cell function; HOMA-IR,
homeostatic model assessment for insulin resistance; KEGG, Kyoto Encyclopedia of Genes and Genomes.

https://doi.org/10.1371/journal.pmed.1003112.9003
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addition to these metabolites, sphingomyelins were also found to be decreased, which is con-
sistent with the report in our previous study [19]. Similarly, lysophosphatidylcholines
(lysoPCs) were also decreased except for lysoPC26:0. Interestingly, analytes from the glycero-
phospholipids group were detected in both up-regulated and down-regulated sets. The up-reg-
ulated glycerophospholipids were of the PC aa C group (diacyl-glycerophospholipids), and the
down-regulated glycerophospholipids were of the PC ae C group (acyl-alkyl-
glycerophospholipids).

The correlations of the 37 differentially expressed metabolites and clinical parameters
(BML, FPG, 2hPG, fasting insulin, HOMA-IR, and HOMA-B) at study baseline before transi-
tion to T2D are presented in Fig 3C and S2 Table. As expected, hexose was shown to have the
highest correlation with FPG (r = 0.58, p < 0.001). It also correlated with fasting insulin (r =
0.30, p < 0.001) and HOMA-IR (r = 0.36, p < 0.001) but not HOMA-B (r=0.01, p = 0.71). In
contrast, relatively low correlations between metabolites and BMI or 2hPG (-0.20 < r < 0.20)
were detected. The majority of AAs (and derivatives) and the PC aa C group were shown to
positively correlate with fasting insulin, FPG, and HOMA-IR, while the PC ae C group and
sphingolipids were shown to have negative correlations. BCAAs (leucine and isoleucine), glu-
tamate, and tyrosine were positively correlated with fasting insulin (Leu, r = 0.28, p < 0.001;
Ile, r = 0.36, p < 0.001; Glu, r = 0.31, p < 0.001; Tyr, r = 0.23, p < 0.001) and HOMA-IR (Leu,
r=10.28, p < 0.001; Ile, r = 0.37, p < 0.001; Glu, r = 0.32, p < 0.001; Tyr, r = 0.24, p < 0.001).
Acylcarnitine AC3 was also positively correlated with fasting insulin (r = 0.25, p < 0.001) and
HOMA-IR (r = 0.26, p < 0.001).

To further investigate the molecular pathways underlying T2D onset and identify affected
biological pathways, we used KEGG for pathway analysis. The aminoacyl-tRNA biosynthesis
pathway (FDR < 0.001) as well as BCAA biosynthesis (FDR = 0.004) and arginine biosynthesis
(FDR = 0.017) from KEGG were found to be up-regulated in women who transitioned to T2D
during follow-up compared to non-T2D controls (Fig 3D; S3 Table). Interestingly, arginine/
proline metabolism (FDR = 0.024) was also up-regulated (Fig 3D; S3 Table). These findings
suggest hyperactive AA metabolism might play an important role in future diabetes onset.

Cross-sectional analysis at follow-up: Metabolic changes associated with
T2D

Follow-up samples (98 T2D cases out of 173 provided follow-up samples, while 239 pair-
matched non-T2D controls out of 485 provided follow-up samples) were further analyzed
cross-sectionally for identification of T2D-associated metabolites. Similar to what was
observed at baseline, T2D participants were separated from non-T2D participants based upon
differentially expressed metabolic profiles in the PLS-DA score plot, which suggested signifi-
cant metabolic changes in T2D compared to non-T2D participants (S3A-S3C Fig). In particu-
lar, a total of 27 differentially regulated metabolites were identified in the T2D group
compared to the non-T2D group with statistical significance (p < 0.05), including 9 up-regu-
lated and 18 down-regulated metabolites (Fig 4A and 4B; S4 Table). Predictably, hexose, pre-
sumably primarily glucose, was increased, with the highest significance (p < 0.001). This is
consistent with the clinical diagnosis of T2D. Notably, in all of 27 differentially regulated
metabolites, a group of 6 AAs (glutamate, isoleucine, tyrosine, leucine, valine, and alanine), PC
aa C32:1, and AC5 were elevated in the T2D group compared to the non-T2D group (Fig 4A
and 4B; S4 Table). In contrast, another 14 glycerophospholipids, 1 AA (glycine), 1 biogenic
amine (creatinine), and 2 sphingolipids [SM(OH)C22:2 and SM(OH)C14:1] were decreased in
T2D versus non-T2D participants (Fig 4A and 4B; S4 Table). These regulated metabolites,
including carbohydrates (glucose and fructose), lipids (phospholipids and sphingomyelins),
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Database; SMs, sphingolipids.

https://doi.org/10.1371/journal.pmed.1003112.g004
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and AAs (BCAAs, aromatic AAs, and glycine), were reported previously in T2D cohorts (gen-
eral adult population) [38]. Metabolite abundance in individuals demonstrated variance
between participants (S3D Fig).

To gain further insight into the metabolic changes associated with T2D, a KEGG pathway
analysis of all differential metabolites was performed. Similar to our findings at baseline,
KEGG pathway analysis revealed that AA metabolism was profoundly affected. The aminoa-
cyl-tRNA biosynthesis pathway was most enriched in participants with T2D (FDR < 0.001),
along with BCAA biosynthesis and degradation pathways from KEGG (FDR < 0.001 and
FDR = 0.023, respectively) (Fig 4C; S5 Table). More importantly, the glucose-alanine cycle
pathway, in which nitrogen goes into the urea cycle and glucose is made, was up-regulated
(FDR = 0.013) (Fig 4C; S5 Table).

Further, all the differentially regulated metabolites were compared between baseline and
follow-up in Fig 4D. Hexose, which was elevated at baseline showed a greater increase at fol-
low-up (increase by 15%). Most of the AAs maintained the same pattern (increased or
decreased) except for histidine and serine, which were increased at baseline but decreased at
follow-up (Fig 4D). The majority of phospholipids (lysoPCs and the PC ae C group, except for
lysoPC a 26:0, 16:0, and 18:0 and PC ae C38:1) and sphingolipids maintained a decreasing pat-
tern at both time points (Fig 4D). In contrast, phospholipids of the PC aa C group (except for
PC aa C38:1 and C38:6) maintained an upward pattern at both time points. Spermidine and
creatinine maintained their patterns at both time points, while kynurenine was decreased at
baseline but increased at follow-up (Fig 4D). The elevated AC3, AC10, and AC16 at baseline
were normalized at follow-up, but AC5 was increased (Fig 4D). Most differentially regulated
metabolites identified at baseline maintained their changes at follow-up.

Longitudinal analysis: Metabolites in individuals associated with the
transition from GDM to T2D

To further examine metabolite dynamics and illuminate a metabolic path preceding T2D onset,
the dynamic changes of metabolites within each individual were traced. In this longitudinal analy-
sis, we selected 337 participants who had been analyzed both at baseline and follow-up. A total of
98 participants developed T2D during follow-up and were defined as progressors, whereas 239
did not develop T2D, defined as non-progressors (Fig 5A). By using multiple linear regression
models, we identified 10 metabolites that significantly changed over the time course between pro-
gressors and non-progressors (p < 0.05, FDR < 0.2). These 10 metabolites—hexose, 5 AAs, 1 bio-
genic amine, and 3 phospholipids—link metabolic changes to diabetes progression (Fig 5A). The
relative concentration change in each metabolite within each individual was traced, which led to
the formation of a trajectory for each metabolite over time (Fig 5B). Specifically, delta values of
hexose and kynurenine were elevated during the period for diabetes progression, whereas delta
values of the remaining 8 metabolites (histidine, serine, arginine, citrulline, glycine, lysoPC a
C18:0, lysoPC a C18:1, and PC ae C34:2) were decreased (Fig 5B). As shown in longitudinal analy-
sis, these 10 metabolites with changes of delta values were suggested to contribute to T2D progres-
sion (Figs 5B and S4). Far fewer differentially dysregulated metabolites were identified here
compared to in the cross-sectional analysis (baseline and follow-up), suggesting most metabolic
changes at baseline were maintained throughout the T2D progression.

Building a metabolic profile for the transition from GDM to T2D:
Integrating baseline/follow-up cross-sectional and longitudinal analyses

All the differentially expressed metabolites detected in baseline/follow-up cross-sectional and
longitudinal analyses were selected to build an integrative metabolic profile during transition
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Fig 5. Metabolites associated with type 2 diabetes (T2D) progression in longitudinal study. (A) 10 Metabolites significantly differ in progressors versus
non-progressors across T2D development. p-Values < 0.05; p-values were obtained by Type IIIl ANOVA test in a mixed effect model. False discovery rate
(FDR) values < 0.2; FDR values were obtained by correcting p-value by Benjamini-Hochberg method. (B) Delta values (upper panels) and trajectory (lower
panels) of 10 metabolites within all individuals during diabetes progression.

https://doi.org/10.1371/journal.pmed.1003112.9005
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from GDM to new onset T2D (Fig 6A). At both baseline and follow-up, hexose, the majority
of AAs (including BCAAs and aromatic AAs), acylcarnitines (AC3 and AC10), biogenic
amines (spermidine), and diacyl-phosphatidylcholines were increased in T2D (Fig 6A). By
contrast, the levels of glutamine, glycine, sphingolipids, lysoPCs, and acyl-alkyl-phosphatidyl-
cholines are negatively associated with T2D (Fig 6A). Distinct from baseline and follow-up
cross-sectional studies, only 10 metabolites were differentially regulated in the longitudinal
study. The longitudinal analysis revealed that the delta values of hexose and the biogenic
amine kynurenine increased, but histidine, serine, glycine, arginine, and citrulline decreased,
over the transition period (Fig 6A). The delta values of phospholipids lysoPC a C18:0, lysoPC a
C18:1, and PC ae C34:2 also decreased. Analytes in T2D case individuals that were not statisti-
cally changed in the longitudinal analysis must have been different between controls and cases
at baseline (Fig 6A). This suggests that a metabolic dysmetabolism exists at baseline (postpar-
tum) in women with GDM who progress to T2D, including metabolic networks of carbohy-
drates, AAs, acylcarnitines, and lipids (Fig 6B).

Discussion

In the present study, targeted metabolomics employing a panel of analytes, many of which had
previously been associated with diabetes risk [1,6,19,25,36-42], was used to assess metabolic
changes in a well-characterized and racially and ethnically diverse prospective cohort of
women with GDM who were tested in the early postpartum period (6 to 9 weeks) and followed
up for up to 8.4 years for future onset of T2D (12% developed T2D within 2 years). We discov-
ered a distinct metabolic signature in the early postpartum period that predicted future T2D
with predictive power AUC 0.883 (95% CI 0.820-0.945, p < 0.001). To further explicate the
pathophysiology of the transition from GDM to T2D, we performed both cross-sectional and
longitudinal analyses. At baseline, the most striking finding was an upregulated AA metabo-
lism, arginine/proline metabolism, and BCAA metabolism. At follow-up, the up-regulation of
AAs was sustained or strengthened in those who developed T2D. Longitudinal analyses
revealed only 10 metabolites that were associated with progression to T2D, implicating AA
metabolism.

The present study provides insight into the potential utility of a metabolic signature in the
early diagnosis of T2D in women with previous GDM. Employing machine learning, we iden-
tified 20 metabolites (spanning 3 major metabolite groups including carbohydrates, proteins,
and lipids) predicting the transition to incident T2D after GDM. We performed an additional
analysis taking into account disease development time from baseline using Cox regression.
Comparing this to the logistic regression model, we found that changed metabolites from both
models largely overlapped (56 Table), suggesting variance in disease development time had lit-
tle impact on the significant metabolites. In regard to the prediction power of the signature, we
found it to be more robust than the 77% achieved with previous predictive decision tree
modeling conducted with a smaller subset of the SWIFT cohort [19]. The predictive power of
the metabolic signature was also superior to well-known clinical diagnostics, including FPG,
2-hour post-load glucose from the 75-g OGTT (accuracy approximately 71%), HOMA-IR,
family history of diabetes, and type of prenatal GDM treatment. We also achieved higher dis-
criminating power than other published metabolomics-based diagnostic studies [19,27,28,41,
45,46]. Of potential significance, the metabolite predictive signatures reported here do not rely
on accompanying clinical parameters [27,41]. Although clinical parameters such as FPG,
2hPG, and HOMA-IR at baseline were significantly different between the incident T2D case
and non-T2D control groups in the present study, they did not yield an improvement in the
prediction power when added to our metabolite-based model.
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Metabolic profiling here revealed several metabolic pathways and specific metabolites asso-
ciated with the development of and progression to T2D among women with previous GDM
pregnancy. Hexose, which represents the sum of all 6-carbon monosaccharides including glu-
cose and fructose, was the only metabolite with a significant increase in all 3 analyses (baseline,
follow-up, and longitudinal). The association between hexose and future T2D risk was highly
significant (FDR < 0.001) at baseline, consistent with several other prospective cohort studies
[19,41,47-49]. Hexose was also significantly increased, as expected, in women who developed
T2D within 2 years of follow-up [24,50]. More importantly, while women who subsequently
developed T2D already had higher hexose levels at baseline, their levels further increased over
the observation period compared to those who remained normoglycemic (Fig 5B). However, it
is not surprising that hexoses (likely glucose) are elevated, since diabetes and its severity are
defined by the level of circulating glucose. Although there is constant interplay between nutri-
ent metabolism pathways, carbohydrate metabolism takes precedence over protein and fat in
terms of energy generation under most circumstances. The perturbations in circulating hex-
oses may indicate problems with carbohydrate metabolism but may also point to an underly-
ing problem with AA or lipid metabolism.

BCAAs (isoleucine, leucine, and valine) and aromatic AAs are reported to positively associ-
ate with insulin resistance, future development of T2D (incident), and existing T2D (preva-
lent) [24,25,41,51-55]. In line with these studies, we found that the elevation of BCAAs and
tyrosine together was associated with subsequent onset of overt diabetes at baseline and exist-
ing T2D at follow-up (Fig 6A). The fact that BCAAs are elevated is likely suggestive of
increased absorption or production in the gut microbiome, or reduced utilization/breakdown/
degradation. In addition to elevated BCAAs, and more importantly, there was a positive asso-
ciation between a broad spectrum of AAs and T2D risk, possibly suggesting that AA catabo-
lism was attenuated. Glucagon regulates AA catabolism, and disruption of glucagon receptor
(GCGR) signaling is associated with an increase in circulating AAs [56-58]. Therefore, our
finding of an overall increase in circulating AAs is consistent with aberrant GCGR signaling,
which has been reported in T2D patients previously [59].

The complex relationships among phospholipids and sphingomyelin metabolites and dia-
betes risk have not been extensively studied. In the present study, at both baseline and follow-
up, 6 diacyl-glycerophospholipids (the PC aa C group) were positively associated with T2D,
while 11 acyl-alkyl-glycerophospholipids (the PC ae C group) were inversely related with T2D
risk (Fig 6A). Several sphingomyelins were also shown to be negatively associated with diabetes
risk (Fig 6A). In a case-cohort study in the framework of the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC)-Potsdam, replicated in KORA, some diacyl-phosphati-
dylcholines were indeed shown to be associated with higher risk of T2D, while sphingomyelins
and 1 acyl-alkyl-phosphatidylcholine (C18:2) were associated with lower risk [41]. More
importantly, in a subset of the Hyperglycemia and Pregnancy Adverse Outcome (HAPO)
study, disturbed lipid metabolism in particular classes of phospholipids and lysophospholipids
were detected prior to hyperglycemia at 2 years postpartum in diabetes risk groups (GDM in
previous pregnancy and glucose value higher than normal but below GDM criteria) [60]. Our
study, with a significantly larger number of analytes measured in a large population, strongly
supports the notion that an inverse association between PC aa and PC ae groups and T2D
exists. It also suggests a pathway preference for glycerophospholipid metabolism versus ether
lipid metabolism in progression to T2D [41,61]. Interestingly, in contrast to the finding of an
inverse association between sphingomyelin metabolism and T2D incidence (Fig 6A) in our
study and others [19,28,41], some studies showed sphingomyelins were up-regulated in T2D
patients, or positively associated with future T2D [62,63]. Thus, the role of sphingomyelins in
T2D incidence among different populations needs to be further explored.
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In the present study, we also performed longitudinal profiling of 337 individuals, tracking
changes in metabolic profiles over the course of diabetes progression. This analysis provides
insight into molecular changes that occur during transition from a normoglycemic state to a
T2D state. Using a longitudinal panel analysis, 10 metabolites were identified to be signifi-
cantly dysregulated during T2D progression (Fig 5A). Kynurenine and the kynurenine-trypto-
phan metabolism pathway, as implicated here, as well as valine, have been suggested to play an
important role in obesity, insulin resistance, and diabetes [64-70]. The downward patterns of
histidine, serine, citrulline, and glycine observed suggest AA disposal and proteinogenic pro-
cesses are attenuated in diabetes progression. This could result in the overall increased circu-
lating A A levels. Interestingly, except for these 10 significantly changed metabolites, most were
unchanged in the longitudinal analysis (Fig 6A), in contrast with cross-sectional studies of
baseline and follow-up time points. The patterns observed in these metabolites, seen as early as
9 weeks postpartum, may indicate the presence of a subclinical dysmetabolism preceding dia-
betes at baseline, which is supported by our previous epidemiological studies [3,71].

The present study has 3 main strengths. First, a well-characterized prospective cohort with-
out T2D at 6-9 weeks postpartum (study baseline) was studied. Among these women, over
90% completed annual in-person study visits including research 2-hour OGTTs up to 2 years
post-baseline and/or had additional testing of glycemia for clinical diagnosis of new onset T2D
in KPNC electronic health records within 8 years post-baseline. Fasting plasma samples were
collected at SWIFT baseline and at each in-person follow-up study visit up to 2 years post-
baseline. Second, the cohort was racially and ethnically diverse, therefore minimizing bias
caused by confounders of race/ethnicity. Third, we performed cross-sectional analyses at both
baseline and follow-up. More importantly, we performed longitudinal analysis, tracing meta-
bolic changes within individuals, and profiling diabetes progression in each case.

One potential limitation of our study is that all the analyses were performed within the
same cohort, although we have samples from the same participants at different time points
(baseline and follow-up). In the predictive model build-up, we partitioned the entire group of
participants into training (70%) and testing (30%) groups. By using the training set for build-
ing the predictive model, which was afterwards validated in the testing set, we minimized the
possibility of overfitting. It would be ideal to have an independent cohort in which to validate
our biomarker signature and other findings, but this is beyond the scope of this current study.
Another limitation is that we could not exclude all potential confounding effects since some
were not recorded in the database.

In closing, we observed that women with recent GDM who subsequently progress to T2D
indeed have a subclinical dysmetabolism preceding diabetes at 2 months postpartum, when most
have returned to normoglycemia. During the transition from GDM to new onset T2D, while glu-
cose levels progressively increase, the underlying mechanism may include defects in the metabo-
lism of AAs and phospholipids, further worsening insulin resistance and hyperglycemia. Those
changes in AA and lipid metabolism from the early postpartum period are likely not the conse-
quence of T2D development but may be causally involved in disease onset and progression.

Supporting information

S1 Fig. Generation of predictive models. (A) Workflow of building predictive model. (B) Per-
formance of predictive models (metabolic signature, fasting plasma glucose [FPG], 2-hour
plasma glucose [2hPG]) indicated by mean, median, and standard deviation (SD).

(TIF)

S2 Fig. Metabolites associated with future type 2 diabetes (T2D). (A) Partial least squares
discriminant analysis (PLS-DA) of metabolites at baseline. (B) The cross-validation analysis of
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PLS-DA. (C) The permutation test of PLS-DA. (D) Abundance of altered metabolites at base-
line in incident T2D and non-T2D groups. Rows are metabolites grouped based on hierarchi-
cal clustering, and columns are individuals (incident T2D cases are in red on the left and
controls are in green on the right). Values were log transformed and scaled.

(TIF)

S3 Fig. Metabolites associated with type 2 diabetes (T2D). (A) Partial least squares discrimi-
nant analysis (PLS-DA) of metabolites at follow-up. (B) The cross-validation analysis of
PLS-DA. (C) The permutation test of PLS-DA. (D) Abundance of altered metabolites at fol-
low-up in T2D and non-T2D control groups. Rows are metabolites grouped based on hierar-
chical clustering, and columns are individuals (T2D cases are in red on the right and controls
are in blue on the left). Values were log transformed and scaled.

(TIF)

$4 Fig. Longitudinal study showing 10 metabolite changes during T2D progression. Dot
plots showing relative abundance of 10 differential metabolites in individuals in longitudinal
analysis at baseline and follow-up. Red indicates progressors and blue indicates non-progres-
sors. The lines represent a mean trajectory of designated metabolites over time.

(TIF)
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