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Simple Summary: In order to face the challenges posed by climate change, scientific research should
be directed towards global needs while also keeping into account the need for increased plant
productivity. In this sense, our scientific group from the Biocontrol Research Laboratory BIOREN
(Temuco, Chile) and our collaborators, have been studying the enormous potential to enhance
productivity by using suppressive soils. In this review, we highlight soil-suppressive microbiota
as a natural source of biocontrol agents and we propose a strategy to create microbial assemblages,
where the plant selects its own inoculants (when plants “cry for help”). This approach is based on the
selection of specific taxa during the transition from a conducive to a suppressive soil. We hope that
this strategy leads to generation of personalized bioinoculants to counteract the effects of climate change
and increase agricultural sustainability.

Abstract: Crop migration caused by climatic events has favored the emergence of new soilborne
diseases, resulting in the colonization of new niches (emerging infectious diseases, EIDs). Soilborne
pathogens are extremely persistent in the environment. This is in large part due to their ability to
reside in the soil for a long time, even without a host plant, using survival several strategies. In this
regard, disease-suppressive soils, characterized by a low disease incidence due to the presence of
antagonist microorganisms, can be an excellent opportunity for the study mechanisms of soil-induced
immunity, which can be applied in the development of a new generation of bioinoculants. Therefore,
here we review the main effects of climate change on crops and pathogens, as well as the potential use
of soil-suppressive microbiota as a natural source of biocontrol agents. Based on results of previous
studies, we also propose a strategy for the optimization of microbiota assemblages, selected using a
host-mediated approach. This process involves an increase in and prevalence of specific taxa during
the transition from a conducive to a suppressive soil. This strategy could be used as a model to
engineer microbiota assemblages for pathogen suppression, as well as for the reduction of abiotic
stresses created due to global climate change.

Keywords: suppressive soils; engineering microbiome; biocontrol; food security; sustainability

1. Introduction

Due to global climate change, extreme weather events are becoming more frequent,
resulting in increased alterations in rainfall events and changes to temperature patterns.
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Therefore, one main concern of modern agriculture is how plants can tolerate biotic and
abiotic stresses without an effect on crop yield, and or reduction of world food security [1].
According to FAO, food security is achieved through four components: availability, access,
use, and stability. In this regard, food availability and stability from crops could be at risk
due to changes imparted by global climate change. A particular problem in crops is host–
pathogen interactions, which influences susceptibility to disease, as well as addressing the
distribution of hosts and modifying trade patterns. Moreover, the virulence of pathogens
can increase, as well as their geographical expansion, leading to emerging infectious
diseases (EIDs) [2]. Most EIDs are caused by pathogens that have increased in incidence,
geographical distribution, and/or host range, changed their mode of pathogenesis, or
recently evolved, recently discovered, or newly recognized [3,4]. For example, in the case
of soilborne pathogens, major disease incidence are expected to cause higher vulnerability
of crops due to decreasing resistance to pathogen attacks and migration toward previously
uncolonized niches or regions [4–6]. An example of EIDs includes Enterobacter cloacae,
which, although a human pathogen, has been reported to affect plants such as Allium cepa,
Morus sp., Hylocereus spp. and Macadamia integrifolia, among others [7–10]. Xylella fastidiosa
is a plant pathogen that commonly affects grapes (Vitis vinifera), but has also been found
to attack mulberry leaf [11]. An increased understanding of EIDs is important due to
difficulties in predicting, detecting, and diagnosing soilborne pathogens, many of which
can survive for many years in the absence of host plants by forming resistant structures
such as microsclerotia, sclerotia, chlamydospores, or oospores.

With respect to control, soilborne pathogens have usually been treated using broad-
spectrum fungicides and/or fumigants such as methyl bromide, chloropicrin, and metam
sodium, among others. However, these have gradually been prohibited because of their
negative impacts on human health and the environment [12]. For example, Rivera-Becerril
and colleagues evaluated the effects of a pesticide mixture composed of fenhexamid, folpel,
and deltamethrin on arbuscular mycorrhizal fungi (AMF) in a vineyard and arable soils,
and reported that pesticide application caused a high alteration in the composition of
AMF [13]. Usually, chemical control is ineffective because it fails to diffuse efficiently
downward into the roots where early protection is essential [14]. Cultural methods such as
crop rotation are also applied to reduce disease incidence [15]; however, although effective
in disease suppression, crop rotation has the disadvantage that it decreases the opportunity
to use plants from similar taxonomic families. For example, Gaeumannomyces graminis
(Ggt) is a fungus causing take-all disease in cereals, mainly in wheat (Triticum aestivum),
whose spread is usually prevented by crop rotation. However, this strategy limits the
use of susceptible plants belonging to the same family, such as rye (Secale cereale L.) or
triticale (×Triticosecale, hybrid of wheat and rye). This enhances the probability that
take-all disease incidence will increase in key foods, such as cereals, in the coming years,
thereby affecting food security [16].

Despite the importance of crop rotation for the control of soilborne pathogens, several
reports have shown that the continuous monoculture of a crop can induce specific soil
suppressiveness, offering a unique niche harboring specialized microbial communities
that can help to suppress disease [17–20]. In monocultures of soybean, an increased
abundance of nematode-trapping fungi and nematode endoparasites has been observed in
the rhizosphere and root endosphere of soybean plants, favoring the control of nematode
Heterodera glycines [20]. In this sense, our group identified six suppressive soils against take-
all disease managed by wheat monoculture for more than 10 years [17]. This suppression,
also called “specific suppression”, is limited to a particular pathogen and is mediated by
one or a few specific microorganisms. Moreover, it is potentially transferable to conducive
or non-suppressive soil [14,15,17].

Specific antagonists can occur anywhere. However, they seem to be most domi-
nant in the soil rhizosphere and influenced by the host plant root (known as the root-
associated microbiome or rhizobiome), which is not entirely congruent with the concept
of pathogen suppression [21]. In this regard, we have not found any significant differences
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in pathogen DNA concentration between suppressive and conducive soils, but we did
demonstrate that suppressive soils have low disease incidence even though the pathogen
is present at comparable densities [22]. Similarly, others have reported that higher concen-
trations of Ggt DNA in roots do not translate into higher disease incidence in plants [23].
In contrast, “general suppression” is based on a general antagonistic effect exerted by
the total soil microbial community (biomass) and preexisting soil characteristics against
a broad spectrum of soilborne pathogens [18,24]. In general suppression, antagonistic
effects occur mainly in the bulk soil, being especially effective against pathogens with a
saprotrophic phase (i.e., fungistasis) or influenced by bulk soil chemistry [18]. For example,
the important role that soil bacterial populations play on disease suppression, arising
from different strategies in organic field management, was revealed via multiple statistical
approaches [25]. Therefore, and as illustrated in Figure 1, general suppression is nontrans-
ferable between soils, and this is the main characteristic that differentiates it from specific
suppression [15,26]. Although it is widely accepted that suppressive functions are in a
continuum of responses from general to specific, the former underlies and potentially gives
rise to the latter over time, which is conditioned by cropping practices and soil amend-
ments [18]. However, the specific microorganisms as well as their mechanism involved
in both general and specific soilborne pathogens’ suppression have only recently been
identified, and much remains to be understood.
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Figure 1. Schematic representation of specific (green letters) and general suppressiveness (blue letters). Specific suppression
is limited to a particular pathogen and is mediated by one or a few specific microorganisms. Moreover, it is potentially
transferable to conducive or non-suppressive soil. General suppression occurs as a general antagonistic effect exerted by the
total soil microbial biomass in the bulk soil against a broad spectrum of pathogens (mainly in saprotrophic phase). General
suppression is not transferable between soils.

To date, the human gut is the most studied and characterized microbiome, where
microorganisms forming a symbiotic relation are the result of processes of selection and
evolution [27]. Considering the importance of gut microorganisms, current scientific efforts
are focusing on the manipulation of gut microbiota (engineering microbiome) to enhance
human fitness. In fact, microbiota transplantation between humans has gained popularity
as a promising therapeutic option for some pathologies [28]. In this context, several authors
have considered the root system to be analogous to the human gut, which also has the
ability to recruit and select microorganisms [29]. However, unlike soil microbiota, the
gut microbiota has a more limited number of genera which can survive the acidic or
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anoxic conditions prevailing in the gastrointestinal tract. In this sense, the plant-associated
microbiota is less known, and it is widely variable depending on the crop, as well as the
type of soil and location. Despite the gaps in the knowledge regarding the role that the
plant-associated microbiota play, their participation in the growth, root architecture, time
of flowering, drought resilience, nutrient uptake, and disease suppression is known [30,31].
Moreover, the root microbiota are not static and can change in a diurnal manner [32].
The microbiota, is defined as the total complex of plant-associated microorganisms, their
corresponding interactions, and their genomic machinery [33]. Plants play an active role in
recruiting specific microorganisms from bulk soil and therefore modeling their rhizobiome.
In fact, different plant species or their genotypes, host-specific associated microbiomes,
even grow in the same soil. In addition, from a large portion of microorganisms found in the
bulk soil, only a low amount is associated with the plant rhizosphere [33–39]. These selected
microbiota would have an advantage over external microbiota [40], being a “subset” of the
plant microbiosphere and acting as reservoir of microorganisms [41–43].

In recent years, several fascinating mechanisms involved in specific suppression have
attracted scientific interest, specifically with regard to understanding the dynamics in the
establishment of particular microbiota in their niche in order to decrease the incidence of a
specific soilborne pathogen. Thus, the microbial transition from conducive to specific soil
suppression can be understood as natural host-mediated microbiota engineering (HMME),
whereby the host indirectly selects microbial communities and triggers host traits that
evolve to influence the whole microbiome [44]. This new plant microbiota-manipulating
strategy has recently emerged in order to improve positive interactions with plants [40,45],
where specific strains consistently associated with a particular host can be used to optimize
microbial functions at the individual plant and ecosystem levels [44].

In this review, we discuss the effect of global climate change on emerging infectious
diseases (EIDs), the ecological roles played by microorganisms in suppressive soils for
infectious diseases, the root-associated microbiome and its role in plant health, and existing
methods for natural microbiota engineering, using host-mediated microbiota selection.
Moreover, we discuss the use of an interdisciplinary strategy to optimize microbiota
assemblages by inducing specific suppression from conducive soil. This model is based on
reported antecedents and could be exploited to develop biotechnological strategies based
on the use of natural microbiota to fight soilborne pathogens under the imminent climate
change scenario.

2. Climate Change Effects on Plant Pathogens and Diseases

It is well known that global atmospheric CO2 concentration is increasing resulting
in climate change. This has brought a series of consequences, such as deep changes in
temperature and precipitation patterns [46]. As a consequence of this, the incidence and
distribution of plant pathogens is being significantly altered, causing economic losses and
crop damages worldwide. Moreover, weather and climate variability can directly influence
plant development that lead to higher risk of plant pathogen infection [47]. Regarding
airborne pathogens, several efforts have been undertaken in order to elucidate the effect of
elevated CO2 concentration on plant disease. Interestingly, both beneficial and detrimental
effects have been noted, which may be attributed to alterations in stoma structure, stomal
conductance, and density under variations induced by climate change, landscape, and
plant species [48,49]. This is largely due to the fact that stomata are the entry point for most
foliar pathogens. For example, Eastburn and colleagues assessed the influence of elevated
CO2 concentration (550 ppm) on the ability of three different pathogens (Septoria glycines,
Peronospora manshurica and F. virguliforme) to infect soybean [49]. This study showed
that disease incidence was decreased in P. manshurica and remained without significant
variations in F. virguliforme. However, when these results were compared to those under a
drought period, disease incidence was higher in all cases.

Regarding beneficial effects, the key role of high CO2 (1000 and 3000 ppm) in plant
defense priming through processes that are linked to redox signaling and metabolism
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was highlighted, for example, by producing salicylic acid, SA [50]. This was shown
to decrease sensitivity to infection against Botrytis cinerea and Pseudomonas syringae in
Arabidopsis thaliana and Phaseolus vulgaris plants. Similar results were reported where
elevated CO2 concentration (800 ppm) generally favored SA biosynthesis and signaling,
but repressed the jasmonic acid (JA) pathway, which resulted in lower incidence and
severity of tobacco mosaic virus (TMV) and Pseudomonas syringae in tomato plants [51].
In contrast, the severity of brown spots caused by the fungus Septoria glycines increased
under elevated CO2 (550 ppm) in soybean [49]. Other reports have shown the evolution or
appearance of new EIDs to exemplify detrimental effects. For example, Puccinia graminis or
rust (biotrophic fungi parasitizing cereals) is a significant concern due to the evolution of
new virulent races, which can result in ~100% yield loss on wheat under climate change
scenarios (warmer climate with lower relative humidity) [52]. A similar tendency was
reported for Puccinia striformis (yellow rust fungus), where rust fungi increased their
virulence and dispersion because of wind. In fact, a foreign incursion of yellow rust fungus
in North America, Australia, and Europe has been reported, and this occurred in less than
three years [53,54], as seen in Table 1.

Table 1. Effect of climate change and plant disease incidence.

Climate
Variable Host Incidence Pathogen Location Reference

>CO2

Wheat increase
increase

Fusarium sp.
Septoria tritici

In vitro (Ireland)
In vitro (Ireland) [55]

Rice increase Magnaporthe oryzae Japan [56]
Soybean decrease Peronospora manshurica USA

[49]Soybean increase Septoria glycines USA
neutral Fusarium virguliforme USA

Duke forest decrease Phyllosticta minima
Acer rubrum USA [57]

Barley decrease Erysiphe graminis In vitro (UK) [58]

>CO2 + >T◦
Wheat, barley, oat,

potato, maize increase
Globodera rostochiensis
Meloidogyne chitwoodi
Phytophthora infestans

Finland [59]

Eruca sativa increase Fusarium oxysporum In vitro (Italy) [60]

>T◦

Potato increase
Phytophtora infestans

(first half of plant
growing season)

UK
[61]

decrease
Phytophtora infestans
(second half of plant

growing season)
UK

Wheat increase Puccinia striformis USA, Mexico,
Denmark, Eritrea [53]

Soybean increase Phakopsora pachyrhizi In vitro (USA) [62]
Banana bunchy top

virus (BBTV) increase Pentalotia nigronervosa In vitro (USA) [63,64]

Brasica napus increase Leptosphaeria maculans France [65]
Maize neutral Fusarium culmorum

Germany [66]increase Fusarium oxysporum
decrease Rhizoctonia solani
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Table 1. Cont.

Climate
Variable Host Incidence Pathogen Location Reference

Cereals increase Fusarium nivale

Italy [67]
Wheat, barley increase Bipolaris sorokiniana

Several early crops increase Pythium ultimum
Horticultural crops increase Sclerotinia minor

Sunflower, sorghum,
maize, cotton, soybean,

etc.
increase Macrophomina phaseolina

Lettuce increase Sclerotinia sclerotiorum In vitro (UK) [68]

<Wa

Rice increase Magnaporthe oryzae France [69]
Tomato increase Ralstonia solanaceum In vitro (Japan) [70]

Potato decrease

Streptomyces
turgidiscabies
Streptomyces

europaeiscabiei

In vitro (Norway) [71]

Soybean increase Peronospora manshurica
USA [49]increase Septoria glycines

increase Fusarium virguliforme

In the case of soilborne pathogens, Chitarra et al. [60] showed that elevated CO2 in-
creased the incidence of Fusarium oxysporum. Similarly, the authors suggested that a greater
frequency of extreme events could be particularly beneficial for Phytophthora cinnamomi
infections, boosting their density beyond any possible response capacity of susceptible
hosts [72]. In contrast, other authors found no significant effects of high CO2 (800 ppm)
on disease incidence caused by the soilborne pathogens Rhizoctonia solani and Fusarium
oxysporum, compared with ambient CO2 conditions (450 ppm, [73]). However, in most
studies that evaluated the combined effects of multiple climate change factors on different
pathogens, the effects were detrimental. For example, using data from a global field survey
and a nine-year field experiment, the importance of soils derived from natural ecosystems
as reservoirs for potential fungal plant pathogens was highlighted, denoting temperature
as a major environmental factor involved in the global distribution of fungi [74]. Moreover,
the authors noted that the proportion of potential plant pathogens will increase in most
regions worldwide. Therefore, studies linking disease dynamics under different environ-
mental factors are fundamental to predict the consequences of climate change on plant
disease incidence [75]. This is especially important for key crops needed for food security
(rice, potatoes, maize, cereal, and soybean). In Figure 2, we summarize the main effects of
climate change (increase in CO2, temperature, and precipitation) on plant disease affecting
key crops.

The impact of climate change on increases in plant pests is also of global concern
because a lot of resources are required to control this problem. Zayan [76] indicated that
in the US alone, farmers spent more than USD 11 billion for pest control. Additionally,
they reported that global climate change could cause some plant pests to undergo from
one to five additional lifecycles per season, increasing their ability to overcome plant pest
resistance. In the same way, by 2050, the international trade of crops is expected to be
seriously affected due to new EIDs which will appear more frequently, as reported by FAO,
requiring USD 7 billion per year at that point to deal with this issue. Since the increase in
the use of chemical pesticides in crops is unsustainable, it is necessary to use an ecosystem
approach involving practices that can guarantee minimal pesticide usage. In this sense,
chemical, biological, cultural, and physical methods must be applied together, but in a
rational way. Therefore, a new green revolution is required to achieve future food security,
where new concepts and approaches are needed to achieve a more sustainable development
of agriculture.
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3. Ecological Roles of Microorganisms from Specific Disease-Suppressive Soils

Soil disease suppression has been described for several soilborne plant pathogens,
including bacteria, nematodes, and fungi (Table 2). However, general as well as specific
suppression mechanisms have not been fully defined for most suppressive soils. Currently,
the development of omics-based approaches has allowed us to understand that specific
suppressiveness is caused by specific microorganisms that inhibit the pathogenicity of a
specific soilborne pathogen. These microorganisms were recently defined as a key species
or core microbiome, in turn driving the microbiome composition and its consequent
functionality [77].

Table 2. Microorganisms and abiotic factors involved in soilborne pathogen suppression.

Pathogen Country/Source Soil Plant Suppresser Reference

Fungi

Rhizoctonia solani
Fusarium sp.

Brazil/pasture,
fallow ground, forest Common bean

Abiotic (hydrolysis of
fluorescein diacetate, CO2)

Biotic (total microbial
activity)

[78]

Rhizoctonia solani Egypt Sugar beet

Plant growth promoting
(PGP yeast), Candida valida,

Rhodotorula glutinis,
Trichosporon asahii)

[79]

Rhizoctonia solani India Rice Pseudomonas spp. [80]
Rhizoctonia solani

Pythium aphanidermatum,
Fusarium oxysporum

Belgium Mung bean
PGP rhizobacteria

(Brevibacillus brevis, Bacillus
subtilis)

[81]
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Table 2. Cont.

Pathogen Country/Source Soil Plant Suppresser Reference

Rhizoctonia solani
Macrophomina phaseolina

Fusarium solani
Pakistan Tomatoes

PGP rhizobacteria
(Pseudomonas fluorescens,
Pseudomonas aeruginosa,

Bradyrhizobium japonicum)

[82]

Rhizoctonia solani Germany Sugar beet
Abiotic (pH)

Biotic (Actinomyces, Bacillus,
Pseudomona)

[83]

Rhizoctonia solani Netherlands Sugar beet Proteobacteria, Firmicutes,
Actinobacteria [84]

Fusarium sp. substrate Cucumber

Sludge compost: sewage
sludge (pig manure),

sawdust, matured sludge
compost

[85]

Fusarium sp. substrate Chrysanthemum
Composted sewage sludge
into the Pinus bark-based

substrate
[86]

Fusarium sp. substrate Tomatoes Sewage sludge and yard
wastes [87]

Fusarium spp. China Peanut Intercropping of peanut
with Atractylodes lancea [88]

Pythium ultimum Sweden Wheat Permanent soil cover and a
balanced nutrient [89]

Fusarium oxysporum Algeria Palm groves Soil abiotic factors (i.e., clay
addition to sansy soil) [90]

Fusarium oxysporum Korea Strawberry Actinobacteria [91]

Fusarium oxysporum Brasil Common bean
Pseudomonadaceae,

bacillaceae, solibacteraceae
and cytophagaceae

[19]

Fusarium solani Pakistan Tomatoes

PGP rhizobacteria
(Pseudomonas fluorescens,
Pseudomonas aeruginosa,

Bradyrhizobium japonicum)

[82]

Gaeumannomyces graminis Chile Wheat Soil microbiome [15]
Gaeumannomyces graminis Chile Wheat Endophytic microbiome [17,22]

Gaeumannomyces graminis Australia Wheat Stubble retention and
reduced tillage [92]

Bacteria
Ralstonia solanacearum Japan Tomato Soil bacteria [93]

Xanthomonas oryzae India Rice Pseudomonas spp. [80]
Streptomyces spp. USA Potato Lysobacter, acidobacteria [94]

Nematode

Heterodera avenae UK Oat
Verticillium

chlamydosporium,
Nematophthora gynophila

[95]

Meloidogyne javanica Belgium Mung bean
PGP rhizobacteria
(Brevibacillus brevis,

Bacillus subtilis)
[81]

Meloidogyne javanica Pakistan Tomatoes

PGP rhizobacteria
(Pseudomonas fluorescens,
Pseudomonas aeruginosa,

Bradyrhizobium japonicum)

[82]

Specific suppression could be induced by monoculture practices through the growth
of susceptible crops (host) in coexistence with infective pathogens. For example, Ggt-
suppressive soil occurrence was examined in 16 locations managed by Indigenous “Ma-
puche” communities, using monoculture for more than 10 years [17]. Six of these soils
were confirmed to be suppressive since they reduced take-all disease in wheat plants.
Suppressiveness was lost upon soil sterilization and recovered by adding 1% of natural
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soil, hence confirming the fact that suppressiveness was closely associated with the soil
microbiome community composition. An early study showed that three years of successive
wheat cropping could be sufficient for the induction of specific suppression against take-all
disease [96]. Later, this was confirmed where it was shown that soils with 3–4 years of
wheat monoculture under relatively high pathogen inoculum concentrations were suppres-
sive against take-all disease [23]. In this context, suppressive soils can only occur when
three factors occur simultaneously: (i) a monoculture of a susceptible host, (ii) the presence
of a pathogen, and (iii) an outbreak of disease [97]. Early reports showed the importance of
Pseudomonas fluorescens for biological control of take-all disease [98,99]. In this sense, several
antagonistic molecules produced by P. fluorescens, such as pyolotuerin, phenazine, HCN,
pyrrolnitrin, and 2,4-diacetylphloroglucinol, have been reported [100,101]. However, the
early interest in P. fluorescens as a tool for the biological control of plant pathogens focused
on examining it as a single strain, rather than using a set of microorganisms associated with
the rhizosphere of plants [101]. This biocontrol ability was attributed to the production of
the antibiotic 2,4-diacetylphloroglicinol (2,4-DAPG) [102–104]. Other authors showed that
specific members of Actinobacteria from a soil suppressive of the fungal root pathogen
R. solani are able to inhibit fungal growth [105]. Additionally, it has been reported that
specific members of the Burkholderiaceae family are involved in soil suppressiveness via the
production of volatile sulfurous compounds [106]. Additionally, Streptomyces griseus was
shown to play a fundamental role in the suppressiveness of Fusarium wilt of strawberry,
caused by F. oxysporum f. sp. fragariae, via the secretion of lantipeptides which exhibit
antibiotic activity [107]. These studies revealed that the rhizobiome provides a first line
of defense against the development of soilborne pathogens in periods of monoculture,
and in response to high disease incidence or an “outbreak”, such as induced specific
suppression [19,108].

4. Rhizobiome to the Service of Plant Health, When Plants “Cry for Help”

The rhizobiome or rhizosphere microbiome comprises all microorganisms associated
with plant roots [109]. Many interactions in the plant–soil–microorganisms complex occur
at the rhizobiome level. Indeed, plants can repel or attract (recruit) microbes by using
exudates, exerting a significant effect on the general health, or by managing agronomic
practices [22,110]. An elegant study showed that Bacillus cereus (bacteria implicated in the
biocontrol of a wide range of plant pathogens) is able to induce specific components in
plant root exudates, which are likely involved in biocontrol processes [110]. For a specific
suppression, the “cry for help” concept was suggested, where, at the stage of an outbreak,
plants recruit protective microbiota mainly through the exudation of photo-synthetically
fixed carbon into the rhizobiome, and favoring endosphere colonization [111–113]. The
concept of crying for help has been linked to strigolactone (signaling hormones) produc-
tion, which is involved in the promotion of arbuscular mycorrhizal fungus development
and symbiosis establishment under deficient nutrient conditions [114]. Strigolactones
have also been observed as a consequence of a herbivore attack, which induced plant
volatiles (HIPVs) that contain crucial information for carnivorous insects’ decisions [115].
Recently, four different stages involved in “cry for help” events were proposed and in-
cluded (Figure 3): (i) root immune responses to belowground and aboveground attackers;
(ii) stress-induced changes in root exudation of antimicrobials and semiochemicals (signal
molecules); (iii) impacts of root exudates on root-associated and soil-associated microbiota,
and (iv) mechanisms by which the root-associated and soil-associated microbiomes sup-
press pests and diseases [112]. In relation to the first point, several studies have reported
that plant roots can generate pattern-triggered immunity (PTI), which contribute to host
defense against plant pathogens [116]. Plants have the capacity to recognize potential
pathogens via pattern recognition receptors on the cell surface that have the capacity to
detect pathogen-associated molecular patterns (PAMPs), such as flagella and lipopolysac-
charides, among others, which represent the first-line defense. In this regard, it was
reported that typical defense-related genes such as PR-1 and PR-10 are quickly transcribed
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during the early stages of root infection [117]. The second point is related to second-line
defense, which includes the secretion of several molecules that can act as signals for the
recruitment of beneficial microorganisms, or that can act directly as antimicrobial com-
pounds [112]. A clear example of this was reported in 2008 [118], where the infection
of Arabidopsis plants with the pathogen Pseudomonas syringae triggered the recruitment
of Bacillus subtilis to the roots, which act as biocontrol against P. syringae. Moreover, the
authors reported that the induction of B. subtilis by the roots was due to the secretion of
malic acid, which is a chemoattractant for this strain. This last point is closely related to the
third and fourth stages, since roots have the capacity to affect microbial populations in the
rhizosphere either through the recruitment of beneficial bacteria or by actively repressing
pathogen proliferation [119]. A good example is the pathogenic fungus Ggt, which can be
suppressed in wheat crops via the production of the antibiotic 2,4-diacetylphloroglucinol
by fluorescent Pseudomonas spp. in the rhizosphere [104].

Currently, specific disease suppressiveness is attributed to the role of functional core
microbiota. The core microbiota concept has been defined as the “microbial community
that is systematically associated with a specific host plant, where its functions as micro-
bial genes, is essential for the entire holobiont fitness” [120]. In this regard, Trivedi and
coworkers tested the potential role of core microbiota, physicochemical properties, and
edaphic factors on soil suppression against F. oxysporum [121]. The authors identified
bacteria belonging to the phyla Actinobacteria, Firmicutes, and Acidobacteria as the major
microbial predictors for soil suppressiveness. Similarly, rRNA-based analyses showed that
Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae, and Sphingomonadaceae were
significantly more abundant in the rhizosphere upon Rhizoctonia solani invasion, while
stress-related bacterial genes representing antifungal activities were specifically upreg-
ulated, restricting Rhizoctonia solani growth [122]. As discussed above, plants grown in
suppressive soils are able to recruit beneficial microorganisms from the bulk soil, and
although the entire process of microbial recruitment is not fully elucidated, it is well known
that root exudates have a primary role [17,22,84,123,124]. This is possible due to the fact
that plants are surrounded by a great diversity and number of microorganisms which can
provide several beneficial functions for their plant host [125]. It is thought that the plant
rhizosphere contains 10 to 100 times more microbiota than bulk soil, depending on the
plant species. This is typically referred to as the rhizosphere effect. Host–microbiome inter-
actions are crucial for plant development. There is ample evidence supporting the fact that
rhizosphere microorganisms have a critical role in health, nutrition, productivity, and the
overall condition of the plant [22,39,126–133]. The role played by plant growth-promoting
(PGP) microorganisms (PGPM) on promoting plant protection has been demonstrated
via inoculation with both an individual microorganism and a synthetic mixture of micro-
biomes [29,79,91,113,128,129,134–136]. However, a fundamental challenge for the use of
strategies based on microbial inoculation is that synthetic communities often do not persist
in soil, and their densities decline rapidly as a result of their competition with indigenous
microbiota and adaptation to new environmental conditions [137,138]. Therefore, microbial
selection should consider the origin of the microorganisms, their functionality, and their
preponderance within the complex microbial community, with core microorganisms being
the main targets of search, isolation, and use [139] (Figure 3).
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5. Core Microbiome—“Few but Good”

Plant microbiota are highly diverse, and these microorganisms are strongly connected
with plants, forming complex interactions promoting the productivity and health of the
plant in natural environments of the holobiont [140]. However, not all microorganisms play
functionally important roles in the host’s biology [141,142]. For example, several studies
have reported the presence of a “core microbiota”, a subset of microbial taxa that are
consistently associated with a host taxon in a wide range of environments [44,47,123,143].
In fact, many taxa belonging to the core microbiome are likely heritable to subsequent
generations and/or fruit postharvest [140,143].

The plant core microbiome is composed of key microbial taxa defined as keystone
or microbial hubs, which are critical for plant health based on evolutionary processes that
resulted in the selection and enrichment of microbiota carrying genes with essential func-
tions for holobiont fitness [120,144]. Agler [145] defined the term keystone or microbial
hubs as specific microorganisms strongly interconnected in the microbial network of plants.
However, keystone is differentiated from hub species since the first would be a critical
determinant of colonization of widely occurring microbial taxa, and the second would
apply to only some specific taxa, not overall [145,146]. A complete summary of keystone
taxa in different ecosystems such as grasslands, forests, agricultural lands, Arctic and
Antarctic ecosystems, plant-associated microbiome, or phyllosphere, among others, was
reported by Banerjee et al. [147]. In this sense, Actinobacteria phylum showed high versa-
tility since that was reported as a keystone taxa in grassland, forest, Antarctic and Artic
ecosystems, contaminated soils, aquatic environments, and human gut. For example, the
phyla Actinobacteria and Proteobacteria increased positive interactions and strengthened
the adaptability of microbiome to grassland degradation [148]. Coincidently, members of
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phyla Proteobacteria, Actinobacteria, and Bacteroidetes were dominant in both Antarctic
vascular plants (Deschampsia antarctica and Colobanthus quitensis). However, co-occurrence
network analyses identified 5 (Microbacteriaceae, Pseudomonaceae, Lactobacillaceae, and
Corynebacteriaceae), 23 (Chitinophagaceae and Sphingomonadaceae) and 7 (Rhodospir-
illaceae) putative keystone taxa present in endosphere, phyllosphere, and rhizosphere,
respectively. Thus, niche differentiation in Antarctic vascular plants was evidenced [149].
Another study evaluated the role of a nitrogen-fixing early-colonizer, Alnus nepalensis,
evidencing that keystone taxa were different at different stages of alder growth [150]. Cur-
rently, it is well known that keystone differ to dominant species due to the fact that it might
exert their influence on microbiome functioning irrespective of abundance [147], and may
be attributable to specific functions such as in the case of plant residue decomposition [151],
rhizo deposit stabilization in soil [150], and composted tannery sludge-treated soil [152].

With respect to suppressive soils, a total of 9 and 13 bacterial keystone taxa were iden-
tified from suppressive soils against Ralstonia solanacearum, and three species belonging to
culturable strains of Pseudomonas showed high 16S rRNA gene similarity (98.4–100%) with
keystone taxa [153]. However, another study showed that the keystone microbiome against
Ralstonia solanacearum were comprised of the phyla Actinobacteria and Firmicutes and
that these microbiota likely plan an important role in diminishing disease incidence [154].
Thus, keystone taxa are highly connected taxa that may exhibit unique and critical roles in
organizing the structure of the total microbiome [152].

Microbial hubs are frequently highly connected to other microorganisms inside the
network and exert a strong influence on the structure of microbial communities [155]. Thus,
hub microbiomes contain more specific microorganisms designed only based on their
positions inside a network topology with a specific function, whereas core microorganisms
are those with high potential to organize microbiomes in ways that benefit host plants [138].

Microbial hubs and keystones are strongly affected by biotic and abiotic factors that
influence the microbial community’s composition [156], and it has been reported that high
levels of disturbance and dispersal can interrupt the stabilizing effects of keystone microbial
taxa [146]. Therefore, host plants transmit information to the broader microbial network
and likely vice versa, and microbial hubs could recruit beneficial organisms or prevent the
invasion of pathogens, benefitting the whole system [118,157]. Thus, understanding the
plant microbiome’s core functions and the use of synthetic communities as biological control
systems provides an opportunity to build a sustainable next-generation agriculture [158].
Finally, microbiome engineering and the identification of specific microorganisms involved
in pathogen suppression, such as the core microbiome or microbial hubs, could present a
feasible and suitable strategy to solve multiple current agriculture-associated problems in
an ecofriendly way, impacting agricultural production, and could serve as a basis for other
soilborne pathogens.

6. Exploiting Host-Mediated Microbiota Engineering for Protection of Plants
against Diseases

Host-mediated microbiota engineering (HMME) is a biological strategy that uses the
host phenotype to indirectly select microbiota though cyclic differentiation and propa-
gation [159,160]. HMME is a promising approach to improve host performance by engi-
neering microbial communities for beneficial effects on plant growth and health [44,161].
This strategy enables the selection of a particular microbiome by visualizing phenotypic
changes in host plants after several generations of growing in the same place [132]. Thus,
modifications in host phenotypes are used to manipulate and select those microbiome
functions that impact host fitness [44,162]. While HMME is a novel strategy, it has al-
ready been successfully applied to counteract the effect of abiotic stress, such as drought
stress [160]. This denotes the great potential of the host as a selective marker to engineer
microbiomes that mediate changes in the rhizobiome, improving plant adaptation [160,163].
In the case of biotic stress, specific disease suppression is best exemplified by naturally
induced HMME, where plants recruit specific microorganisms from the rhizobiome that
can provide plant disease protection [17,19]. The study of [164] assessed distinctive mi-
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crobiota assembled by maize roots, through host-mediated selection, and studied the
role of a simplified synthetic bacterial community composed of even strains from the
most dominant phyla: Enterobacter cloacae, Stenotrophomonas maltophilia, Ochrobactrum pitu-
itosum, Herbaspirillum frisingense, P. putida, Curtobacterium pusillum, and Chryseobacterium
indologenes. These authors found that removing E. cloacae led to a complete loss of the
community structure, suggesting an important role of keystone taxa in the inhibition
of Fusarium verticillioides. Later, it was demonstrated in Arabidopsis thaliana that, after a
disease outbreak caused by Hyaloperonospora arabidopsidis, plants were able to assemble
protective microbiota in the rhizobiome, inducing systemic resistance [114]. Interestingly,
the increased abundance of recruited microorganisms provided protection to the next
population of plants growing in the same soil.

Collectively, these studies highlight the ability of plants to recruit specific microbiota
from the rhizobiome with beneficial effects on plant growth and health. Therefore, it
is evident that HMME offers a promising novel approach to attain desired host traits.
While promising, this approach has only been attempted a few times; nevertheless, it is
an extremely powerful technique. In this strategy, microorganisms are forced to co-evolve
together with the host plant through successive generations in order to promote a desirable
host trait in a manner akin to the natural engineering of plant microbiota. Moreover, the
HMME approach applied to both conducive and suppressive states will be very useful to
better understand the interactions between plants, microbes, and soils, as well as for the
selection of microorganisms directly involved in pathogen suppression.

7. The New Generation of Personalized Bioinoculants by Inducing the Host-Mediated
Microbiota Engineering—Perspectives and Future Remarks

An increase in the incidence of plant diseases in agriculture due to climate change
effects is imminent. Therefore, novel strategies must be rapidly implemented to ensure
food security during times of variable climates. One approach to achieve the goal of plant
protection is using HMME taking into account the co-evolutive model of the transition
from conducive to suppressive soil. The natural “choice” of “suitable microbiota” by
the plant would ensure its success in the face of the imminent changing conditions that
are predicted. Moreover, this approach is likely to have much more success than using
randomly combined microbiota pools obtained from the rhizosphere of many plant species.
The very large number of microorganisms in the rhizosphere coupled with the wide
variation in diversity make the construction of microbial pools a daunting task with a low
probability of success.

The natural selection of microbiota over multiple generations can be managed in-
directly (induced) through the existence of three factors: (1) plant model used, (2) abi-
otic/biotic stressor or inducers, and (3) the desired microbiome. Thus, in the case of
soilborne pathogen, this involves continual sowing of plant genotypes (factor 1) against an
infective soilborne pathogen (factor 2) in conducive soil (factor 3) until a soil suppressive is
obtained (horizontal transmission). In this manner, key specialized functional microbiota
(composed of a functional core microbiome and/or microbial hubs) can be identified, and
stable synthetic communities can be assembled in order to mediate plant health. Using this
approach, host plants can be used to recruit and self-identify desirable microorganisms that
could later be used as inoculants to transfer functional core microbiota, or whole microbiota,
in order to obtain healthy plants for subsequent generations (vertical transmission [165],
Figure 4). For example, Cooper et al. (2021) recently showed that HMME strategy can be
used to improve wheat plant growth under drought stress [165]. A further study induced
earlier or later flowering times in Arabidopsis thaliana plants using HMME selection [159].
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microbiota over multiple generations can be induced by continual plant sowing in conducive inoculated soils (horizontal
transmission). Using this approach, host plants can be used to recruit and self-identify desirable microorganisms that could
later be used as inoculants to transfer functional core microbiota, or whole microbiota, in order to obtain healthy plants for
subsequent generations (vertical transmission).

Overall, this strategy for microbiota manipulation, which takes advantage of spe-
cialized niches (microbial hubs, keystone, and/or core microbiome) offered by disease-
suppressive soils, appears to be a promising approach to improve plant health and opens
new research opportunities to optimize microbiota.

On the other hand, from a practical point of view, the identification of a stable mi-
crobial hub or microbial keystone taxa that can tolerate perturbations without affecting
the microbial community’s composition and favoring plant health would be extremely
useful to improve crop production capacity. Moreover, future studies of its implementation
should integrate other environmentally friendly strategies for soilborne disease manage-
ment, such as the use of crop rotation, soil solarization, and biofumigants, among others,
widely reviewed by Panth et al. [166].
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Finally, although the selection of “microbial hubs” or a “microbial keystone” through a
natural selection of successive plant generations is a promising alternative, the application
of advanced modeling techniques to detect key bacteria in humans, which are important
for a particular trait such as disease resistance or disease detection, must be taken into
consideration to be applied in the plant microbiome. In this sense, a mathematical model
such as random forest classification (RFC) coupled with the local interpretable model–
agnostic explanation (LIME) toolbox has been effectively applied to detect specific taxa from
the intestinal and oral microbiome, which served as a predictor for human diseases [167].
In this same way, for more detailed information about mechanistic mathematical models of
the gut microbiota, see the review of Bucci and Xavier [168].

8. Conclusions

The understanding of the plant microbiome and rhizobiome over the last decades has
allowed for the development of integrated approaches to enhance plant fitness. In this
article, we propose that engineering the plant microbiome by host-mediated selection can
be used to enhance plant health, taking, as a model, the co-evolutive process that occurs in
conducive to suppressive soils (multigenerational generation). Using this model, plants
can select their own “personalized” microbiome to counteract the negative effects of a
specific soilborne pathogen. The application of this natural technology that manages the
plant microbiome to control host health will likely lead to the development of the next
generation of bioinoculants.
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