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Genetic and non‑genetic factors 
associated with the phenotype 
of exceptional longevity & normal 
cognition
Bin Han1, Huashuai Chen2,3, Yao Yao7, Xiaomin Liu4,5, Chao Nie4,5, Junxia Min6, Yi Zeng2,7* & 
Michael W. Lutz8*

In this study, we split 2156 individuals from the Chinese Longitudinal Healthy Longevity Survey 
(CLHLS) data into two groups, establishing a phenotype of exceptional longevity & normal cognition 
versus cognitive impairment. We conducted a genome‑wide association study (GWAS) to identify 
significant genetic variants and biological pathways that are associated with cognitive impairment and 
used these results to construct polygenic risk scores. We elucidated the important and robust factors, 
both genetic and non‑genetic, in predicting the phenotype, using several machine learning models. 
The GWAS identified 28 significant SNPs at p‑value < 3× 10

−5 significance level and we pinpointed 
four genes, ESR1, PHB, RYR3, GRIK2, that are associated with the phenotype though immunological 
systems, brain function, metabolic pathways, inflammation and diet in the CLHLS cohort. Using both 
genetic and non‑genetic factors, four machine learning models have close prediction results for the 
phenotype measured in Area Under the Curve: random forest (0.782), XGBoost (0.781), support vector 
machine with linear kernel (0.780), and ℓ

2
 penalized logistic regression (0.780). The top four important 

and congruent features in predicting the phenotype identified by these four models are: polygenic risk 
score, sex, age, and education.

Cognitive Impairment (CI) is defined as the loss of ability in cognitive functions, such as remembering, learning, 
and concentrating, which negatively impacts affected individuals’ daily  activities1. In the stage of mild cognitive 
impairment (MCI), affected individuals start to experience memory issues without seriously hindering their 
abilities to execute daily activities. In the stage of severe cognitive impairment, which is referred as  dementia2, 
individuals tend to lose basic functionalities of comprehending, memorizing, or even talking and writing. Many 
diseases are associated with the development of CI, such as Alzheimer’s Disease (AD), Vascular Dementia, Par-
kinson’s Disease (PD), Progressive Supranuclear Palsy, and Lewy Body  Disease3.

Aging is one of the major risk factors for the development and onset of  CI4,5. As forecast in the world 
population aging  report6, the population aged 60 years or above is expected to grow by 56% between 2015 
and 2030. By 2050, that population is projected to be 2.1 billion globally. The increasing aging population size, 
with correspondingly increasing prevalence of CI, imposes great burdens at the levels of individuals, families, 
and  communities7–9. Thus, it is vitally important to study factors that are associated with CI and to investigate 
potential therapeutic or lifestyle interventions, for the sake of improving the quality of life or delaying the onset 
of CI and reducing economic costs.

There have been many previous studies on the pertinent factors associated with cognitive impairment. For 
example, using discovery and multiple replication cohorts, Davies et al.5 identified several significant genetic 
loci that are associated with CI, such as rs2075650 and rs115566 located in TOMM40 and rs429358 located in 
the APOE region. Lv et al.10 probed the association between the rate of cognitive decline and the mortality rate. 
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They concluded that faster cognitive decline rate is associated with higher mortality rate, specifically among 
individuals aged between 65-79 years old and cognitively normal individuals, regardless of their initial cogni-
tive abilities. With respect to the analysis on non-genetic factors, Casanova et al.11 constructed a random forest 
model to investigate important predictors for cognitive trajectories, identifying education, age, and gender, 
as top predictors. Many other studies have also analyzed the genetic and non-genetic contributors to CI in 
community-based  cohorts4,12,13.

Nevertheless, there are few studies that analyze the effects from both genetic and non-genetic factors on CI 
to our knowledge. Consequently, the primary goal of our research is to investigate which factors, both genetic 
and non-genetic, are significantly associated with cognitive impairment, in contrast to intact cognition in late 
life. Specifically, we approached the problem from the following two original perspectives:

• We conducted GWAS using the approach of splitting individuals into two groups, considering a phenotype 
of exceptional longevity & normal cognition. The work by Perez-Gracia et al.14 demonstrated that the selec-
tion of individuals with exceptionally characteristic, clinically-related phenotypes, referred to as extreme 
phenotypes, can promote efficiency in identifying important factors at the molecular level. Additionally, 
 Estep15 proposed a similar definition of long-living individuals with intact cognition as the extreme phe-
notype. Consequently, we split the samples into two groups: (1) participants with the exceptional longev-
ity & normal cognition phenotype—aged 90 or above with normal cognition. (2) individuals that were 
cognitively impaired without age restrictions. The goal here is trying to raise the contrast between the two 
groups and help identify significant protective effects from the group with exceptional longevity & normal 
cognition and risk effects from the cognitively impaired group. Note that the definition of exceptional 
longevity (age ≥ 90 years) can differ in different population and social contexts.

• Machine learning has been widely used for prediction tasks. There has been previous work on applying 
machine learning techniques to identify the important predictors of cognitive trajectories by Casanova et al.11 
as mentioned above. In our analysis, we considered several machine learning models to predict CI and iden-
tify significant factors using feature importance plots. Different from Casanova et al.’s work where they only 
worked with random forest models, we considered multiple machine learning models to reduce potential 
bias from using just one model as model choices have potential impacts on the results. We also introduced 
genetic effects in the form of Polygenic Risk Scores (PRS) and considered more non-genetic variables.

Results
Summary statistics. The non-genetic factors from the CLHLS survey include socioeconomic characteris-
tics, health status, and living habits referring to previous  studies4,10,16. Specifically, socioeconomic factors include: 
age, sex, education, occupation, co-residence, and marital status. Living-habit factors include: staple food (major 
food source), fruits intake, vegetables intake, current smoker, former smoker, current drinker, former drinker, 
and exercise currently. Health status factors include whether participants  have hypertension, diabetes, heart 
diseases, cardiovascular diseases, and respiratory diseases. Except for age, education, occupation, marital status, 
and staple food, other factors are binary features taking on yes/no answers. Please refer to Table 1 for sum-
mary statistics of non-genetic factors. In terms of our study sample, Table 2 displayed the counts of individuals 
stratified by sex and age groups (5-year intervals), conditioned on cognitive status. We noticed that there are 
more female participants than male counterparts and there are more cognitively impaired participants than 
cognitively normal ones. Almost half of the individuals are within the 100–105 age group. Additionally, we ran 
univariate tests (T-test and Chi-square tests of Independence) on variables to check if there are differences in 
the mean values or if there is any association existing between the two cognitive groups and the variables. Please 
refer to Table 2 in the Supplemental material. 

GWAS result. We present the set of significant SNPs in Table 3 using 3× 10−5 as the p-value threshold. The 
table contains 28 significant and independent SNPs associated with CI, with 14 SNPs having odds ratios greater 
than one and 14 less than one. Out of all the significant SNPs, rs13198061 in gene ESR1, rs56368572 in CTNND2, 
rs954303 near RNU4-58P and rs939432 in gene RYR3 have p-values less than 1× 10−5 and odds ratio less than 
1, indicating that those SNPs are associated with potential protective effects of preventing cognitive impair-
ment. The SNPs in ESR1 and RYR3 are of specific interest as they have been extensively studied and found to be 
involved with immunologic processes and brain functions, which are previously reported to be associated with 
cognitive impairment and decline. Regarding to the significant SNPs that have odds ratios greater than 1, indi-
cating that they are related with progressive effects towards cognitive impairment, we found out that rs935129 
in RP11-81K2.1 and PHB, rs6726046 in DGKD and AC0129221.4, and rs13028996 in SAG are significant at the 
level less than 1× 10−5 . We also completed the GWAS including years of education as a covariate and report the 
results in Table 1 in the Supplemental Material.

Polygenic risk score. As mentioned in the introduction, our primary focus is on the identification of 
statistically significant factors, both genetic and non-genetic, that are associated with CI. However, correction 
for multiple testing in GWAS might undermine the power of association analysis to identify small effect-size 
variants that have biological or clinical importance. Additionally, genetically complex diseases typically involve 
numerous small effect-size genetic factors. Therefore, to select significant SNPs from GWAS and construct PRS, 
we tested three different p-values, from a relatively stringent one to a comparably relaxed one. Then we used PRS 
to predict cognitive status (binary response variable—impaired or intact cognition) using Area Under the Curve 
(AUC) as the measurement. The three p-values are 1× 10−5 , 2× 10−5 , and 3× 10−5 and the corresponding 
number of SNPs are 7, 19, and 28 respectively.
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As shown in Fig. 1, the average AUC from fivefold cross validation noticeably increases as p-value threshold 
increases. Specifically, the PRS from two relatively smaller thresholds ( 1× 10−5 , 2× 10−5 ) have average AUC 
equal to 0.631 and 0.706 respectively. The PRS from the largest p-value threshold ( 3× 10−5 ) has the best per-
formance, with average AUC of 0.742. It demonstrates that an overly stringent p-value threshold might overlook 
some genetic effects, which are small at SNP level but large at aggregated individual level and could enhance 
the predictive power. Therefore, for the machine learning models, we included the PRS based on SNPs using 
3× 10−5 as the threshold, as it has the best performance.

The association between the PRS and the phenotypes in the replication cohort was not significant ( p = 0.49 ). 
However, higher scores of the PRS were associated with cognitive impairment relative to the extreme phenotype 
(age ≥ 90 years and no cognitive impairment) (OR = 1.05, 95% CI 0.92–1.20). Female sex was significantly associ-
ated with the extreme phenotype relative to cognitive impairment ( p = 0.0023 , OR = 0.61, 95% CI 0.45–0.84).

Machine learning models. Using both genetic and non-genetic factors, four out of five machine learning 
models we examined—ℓ2 penalized logistic regression, support vector machine (SVM) with linear kernel, ran-
dom forest, and XGBoost have similar performances, with average AUCs from fivefold cross-validation around 

Table 1.  Summary statistics of non-genetic factors. Data are provided as count (percentage), unless specified 
in the feature column. From variable “Co-residence” to “Respiratory”, all the features take binary values of 
either Yes or No. Their count values sum individuals with Yes response.

Feature Male (N = 533) Female (N = 1623) Total (N = 2156)

Age (years), mean (SD) 100.0 (3.55) 101.7 (3.54) 101.3 (3.62)

Education (years), mean (SD) 2.9 (3.9) 0.3 (1.3) 0.9 (2.49)

Occupation

White-Collar 64 (0.12) 16 (0.01) 80 (0.04)

Other 469 (0.88) 1607 (0.99) 2076 (0.96)

Marital status

Single 450 (0.84) 1598 (0.98) 2048 (0.95)

Partnered 83 (0.16) 25 (0.02) 108 (0.05)

Staple food

Corn 13 (0.02) 54 (0.03) 67 (0.03)

Rice 295 (0.55) 859 (0.53) 1154 (0.53)

Wheat 129 (0.24) 467 (0.28) 596 (0.28)

Other 96 (0.18) 243 (0.15) 339 (0.16)

Co-residence 449 (0.85) 1370 (0.84) 1819 (0.84)

Fruit intake 73 (0.14) 188 (0.12) 261 (0.12)

Vegetables intake 433 (0.81) 1324 (0.82) 1757 (0.81)

Current smoker 93 (0.17) 78 (0.05) 171 (0.08)

Former smoker 221 (0.41) 159 (0.10) 380 (0.18)

Current drinker 103 (0.19) 133 (0.08) 236 (0.11)

Former drinker 205 (0.38) 211 (0.13) 416 (0.19)

Exercise currently 141 (0.26) 185 (0.11) 326 (0.15)

Hypertension 88 (0.17) 286 (0.18) 374 (0.17)

Diabetes 6 (0.01) 12 (0.01) 18 (0.01)

Heart 53 (0.1) 131 (0.08) 184 (0.09)

Cardiovascular disease 29 (0.05) 79 (0.05) 108 (0.05)

Respiratory 77 (0.14) 140 (0.09) 217 (0.10)

Table 2.  Study sample stratified by age groups and sex, conditioned on cognitive status. The age groups are 
inclusive on the right bounds and exclusive on the left bounds.

Age groups

Cognitively 
impaired

Cognitively 
normal

Female Male Female Male

90–95 9 6 12 21

95–100 191 78 156 122

100–105 615 115 316 142

105–110 189 26 95 18

110+ 26 2 14 3
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Table 3.  Information of significant SNPs from GWAS using 3× 10
−5 as the p-value threshold. The nearest 

genes are either the genes that contain the variants (overlapping) or the nearest upstream/downstream gene to 
the variants. * indicates overlapping gene. Distances to the nearest upstream/downstream genes are listed in 
the parenthesis, measured in bp distance.

SNP Chr. Position Nearest gene A1 A2 MAF p Odds ratio Lower-95CI
Upper-
95CI

Odds ratio < 1

rs13198061 6 152,306,894 ESR1* T C 0.051 1.4× 10
−6 0.49 0.37 0.66

rs939432 15 33,986,294 RYR3* C A 0.274 2.1× 10
−6 0.71 0.61 0.82

rs954303 16 59,581,776 RNU4-58P (7606) A G 0.155 2.2× 10
−6 0.66 0.55 0.78

rs56368572 5 11,300,912 CTNND2* T C 0.094 8.7× 10
−6 0.62 0.50 0.77

rs4816332 21 30,201,706 N6AMT1 (42807) C T 0.400 1.0× 10
−5 0.74 0.65 0.85

rs1030695 4 130,318,150 RP11-419L4.1 (91973) T A 0.299 1.1× 10
−5 0.73 0.64 0.84

rs1293144 20 52,917,208 PFDN4 (72617) T G 0.371 1.3× 10
−5 0.75 0.66 0.85

rs62001981 15 25,279,909 RP11-701H24.10* & 
PWAR6* T C 0.196 1.8× 10

−5 0.70 0.60 0.82

rs9404070 6 101,463,320 GRIK2 (383344) G A 0.415 2.0× 10
−5 0.76 0.67 0.86

rs76299633 13 40,727,639 LINC00332 (28307) G A 0.119 2.0× 10
−5 0.66 0.55 0.80

rs9676032 18 48,297,450 MRO (27124) T A 0.131 2.1× 10
−5 0.67 0.56 0.81

rs28673399 4 71,371,765 AMTN (12492) G A 0.448 2.2× 10
−5 0.76 0.67 0.86

rs10500293 19 46,431,638 NOVA2 (5354) G A 0.440 2.7× 10
−5 0.77 0.68 0.87

rs72627042 3 23,906,287 UBE2E1* T C 0.058 2.8× 10
−5 0.55 0.41 0.72

Odds ratio > 1

rs13028996 2 234,246,225 SAG* C T 0.466 1.1× 10
−6 1.38 1.21 1.57

rs6726046 2 234,287,221 DGKD* & AC019221.4* A G 0.375 1.5× 10
−6 1.37 1.21 1.56

rs935129 17 47,486,016 RP11-81K2.1* & PHB* A G 0.387 8.3× 10
−6 1.35 1.18 1.53

rs2792251 1 164,541,977 PBX1* G A 0.136 1.1× 10
−5 1.53 1.27 1.85

rs6547617 2 85,655,402 SH2D6* A T 0.406 1.1× 10
−5 1.35 1.18 1.55

rs10037430 5 180,569,007 OR2V2 (12936) C T 0.069 1.2× 10
−5 1.93 1.44 2.59

rs7710849 5 82,220,225 RP11-78C3.1 (3287) T A 0.052 1.3× 10
−5 2.04 1.48 2.80

rs79669991 22 43,936,861 - A G 0.253 1.5× 10
−5 1.39 1.20 1.61

rs2418761 10 107,295,345 RNU6-463P (822) C T 0.110 1.5× 10
−5 1.57 1.28 1.93

rs7927292 11 44,730,158 RP11-45A12.2 (10784) A C 0.082 2.0× 10
−5 1.71 1.34 2.18

rs741171 16 6,652,854 RP11-420N3.2* & RBFOX1* G A 0.206 2.3× 10
−5 1.41 1.21 1.66

rs57164734 11 44,773,258 TSPAN18* G C 0.089 2.3× 10
−5 1.66 1.31 2.11

rs2528812 7 22,446,110 STEAP1B (12953) C T 0.420 2.4× 10
−5 1.32 1.16 1.50

rs4934715 10 35,364,992 CUL2* T G 0.306 2.8× 10
−5 1.35 1.17 1.55

Figure 1.  Average AUC from fivefold cross validation using PRS to predict the cognitive impairment. The 
p-value threshold increases from 1× 10

−5 in panel (a) to 2× 10
−5 in panel (b) and to 3× 10

−5 in panel (c).
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0.780. CART has relatively lower prediction performance, with average AUC equal to 0.738. We generated the 
feature importance plots from the four best performing models and the result are listed in Table 4. Interest-
ingly, all models identified PRS (based on SNPs extracted from GWAS using 3× 10−5 as the p-value threshold), 
education, age, and sex to be important factors, with slightly different orders. It demonstrates that those fac-
tors are important and robust in predicting CI. Additionally, simple linear models, including logistic regression 
and SVM with linear kernel, are consistent on the factor “Vegetables Intake”, while complex models, including 
random forest and XGBoost, considered intricate interactions among features and agreed on the factors “Staple 
Food” and “Exercise Currently”.

Pathway analysis. Results of the gene to function pathway analysis are shown in Table 5. Two pathways 
were significant at the p ≤ 0.05 level after adjustment for multiple comparisons, one is an immunological sig-
nature, the other a signature based on a highly conserved transcription factor motif. Two genes are common to 
these pathways: ESR1 and RYR3. 

Discussion
Our study investigated the effects of genetic and non-genetic factors on cognitive impairment. We approached 
the problem with two novel aspects compared with prior studies. First, we adopted the approach of stratifying 
individuals with a phenotype of exceptional longevity & normal cognition and contrasted them with cognitively 
impaired patients using GWAS, aiming to identify significant genetic variants that have progressive effects 
towards or protective effects from CI. Considering that our data has the world’s largest sample size of Chinese 
centenarians and considering the historical background of China, this approach would help us identify stronger 
biological mechanisms. Our study identified numerous significant SNPs in GWAS and pinpointed the cor-
responding genes that have coherent and inter-connected biological interpretations through immunological 
systems, brain functions, metabolic pathways, and diets. Second, we used machine learning techniques to pre-
dict cognitive impairment using both genetic and non-genetic factors, which have not been well characterized 
by prior studies. The four best performing models consistently identified four important factors for predicting 
cognitive impairment: PRS, sex, age, and education. In addition, the two simple models agreed on factor “Veg-
etables Intake”. The two complex models in addition agreed on two factors: “Exercise Currently” and “Staple 
Food”, considering convoluted interactive effects among factors.

The PRS is identified as the most important factor from all four models. It is not surprising to see the results 
because of two reasons. First, genetic pre-disposition affects the onset and severity of CI. Second, as mentioned 
in section M5, our study considered individuals with the phenotype of exceptional longevity & normal cogni-
tion, contrasted with the cognitively impaired individuals, which could potentially identify moderate or strong 
genetic effects. Age is expected to be significant as ageing is strongly associated with CI. Although the PRS was 
not significantly associated with the phenotype in the replication cohort, the direction of the effect indicated that 
this score reflects an increased risk for CI as described in the analysis of the CLHLS data. The effect size of the 
PRS was also consistent with the effect sizes reported for Alzheimer’s disease genetic  associations17,18. Replication 
in an independent daatset is critical for genetic studies including development and testing of PRS. The CLHLS is 
a unique resource in terms of the number of centenarians and long-lived individuals which makes identification 
of a suitable replication cohort challenging. The advantages of the ROSMAP cohort for replication are the long 
follow up peroid with repeated cognitive testing, up to 24 years (mean = 5.6 years, SD = 4.9), consistent definition 
of the phenotype with the CLHLS study and the large number of individuals with the extreme phenotype (579). 

Table 4.  Model performances and important features from the best four predictive models. Model 
performances are almost identical and four importance factors are congruent among the models—PRS, 
education, age, and sex.

Model Performance (AUC) Top six important features (descending in importance)

ℓ2 Penalized Logistic Regression 0.780 PRS, education, age, sex, vegetables intake, former smoker

SVM—linear kernel 0.780 PRS, education, age, sex, co-residence, vegetables intake

Random forest 0.782 PRS, age, education, staple food, sex, exercise currently

XGBoost 0.781 PRS, education, staple food, sex, age, exercise currently

Table 5.  Results of the gene to function pathway analysis. Link 1: http://www.gsea-msigd b.org/gsea/msigd b/
cards /GSE12 392_WT_VS_IFNB_KO_CD8A_POS_SPLEE N_DC_DN Link 2: http://www.gsea-msigd b.org/
gsea/msigd b/cards /AACTT T_UNKNO WN “adjP” refers to adjustment for multiple comparisons.

Category GeneSet N Genes N Overlap P adjP Genes Link

Immunologic signatures GSE12392_WT_VS_IFNB_KO _CD8A_
POS_SPLEEN_DC_DN 200 4 4.59× 10

−6 0.022 RYR3:PHB:GRIK2:ESR1 Link1

Transcription factor targets AAC TTT _UNKNOWN 1928 7 6.09× 10
−5 0.037 PBX1:RYR3:RBFOX1:DGKD: 

UBE2E1:CTNND2:ESR1 Link2

http://www.gsea-msigdb.org/gsea/msigdb/cards/GSE12392_WT_VS_IFNB_KO_CD8A_POS_SPLEEN_DC_DN
http://www.gsea-msigdb.org/gsea/msigdb/cards/GSE12392_WT_VS_IFNB_KO_CD8A_POS_SPLEEN_DC_DN
http://www.gsea-msigdb.org/gsea/msigdb/cards/AACTTT_UNKNOWN
http://www.gsea-msigdb.org/gsea/msigdb/cards/AACTTT_UNKNOWN
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Reasons for lack of replication of the PRS association with the phenotype are likely associated with the lack of 
power to detect a statistically-significant effect. However, it is also possible that adding additional SNPs to the 
PRS would improve the prediction performance, especially for coverage of individuals with different genetic 
ancestry. Replication in other cohorts to confirm the usage of the PRS to predict CI relative to aging to 90+ years 
with intact cognition is warranted.

Prior studies have extensively and consistently shown that sex is an important factor related with longevity, 
cognitive impairment/decline, and the development of Alzheimer Disease. Au et al.19 conducted meta-analysis 
including 56 studies and showed that there was a higher prevalence, but not incidence, of non-amnestic MCI 
among women than among men. A similar conclusion has been arrived by Li and  Singh20: elderly women dis-
played faster rate of cognitive decline and more severe cognitive deterioration than elderly men. Additionally, 
closely related with our study population, An et al.21 inspected the cognitive patterns among the middle-aged 
and elder Chinese people, specifically considering sex differentiation. They reported that females tend to have 
verbal memory advantages over their male counterparts independent of age. On the other hand, males tend to 
have more intact cognition in general, with better functions in attention, execution, and processing speed. The 
disparities in cognition exhibited between the two sex groups have not been fully disclosed, but are considered to 
be the aftermath of differences in years of educations among that generation of the elderly Chinese  population19,21.

Several studies have shown that education is an important factor in affecting the development of  CI4,12,22. These 
studies consistently concluded that higher education (or longer years in education) helps maintain the cognitive 
functions through cognitive practice, thus reducing the risks of developing CI. Additionally, education has also 
been extensively studied and widely  accepted23–25 as an important factor associated with Alzheimer Disease 
(AD). Similar to the conclusion in CI literature, higher educational levels are associated with lower risk of AD.

As shown in Table 4, simple linear models agreed on “Vegetables Intake” as an important factor. In addition, 
random forest and XGBoost identified “Staple Food” and “Exercise Currently” as important factors, considering 
intricate interactions among factors. “Vegetables” and “Staple Food” can be related with an individual’s type of 
diet. The finding that the staple food is an important factor is interesting, specifically considering the environ-
ment of China where our study is based. China is generally divided into Southern and Northern areas according 
to some geographical division. Consequently, the living habits, including the main source of food, are usually 
different between the two regions, which might have an impact on the starch and diet-related biology. In general, 
there are some studies that have shown that cognitive decline/cognitive aging is associated with the individual’s 
diet. For example, two  studies26,27 have shown that Dietary Approach to Stop Hypertension (DASH) and Mediter-
ranean diet is associated with slower rates of cognitive aging. The study by Samieri et al.28 concluded that diets 
involving fish in-take may slow down the rate of cognitive aging as well. Another  study29 demonstrated that dif-
ferent types of nutrition in the diet can modify the potential risk of developing cognitive impairment in the future.

In addition to the general studies of the relationship between diet and cognitive decline, there are some spe-
cific works that investigate the association between cognitive abilities and diet among Chinese elderly people, 
which is move relevant to our study. Two research  studies30,31 have consistently shown that a healthier diet, such 
as diets with more nuts, vegetables, and fruits, could help decrease the risks of cognitive impairment. Similarly, 
the study by Wang et al.32 arrived at the conclusion that Chinese diets that lack of legume and animal oil might 
increase the prevalence of mild cognitive impairment. Additionally, it is recognized that Chinese diets are abun-
dant in carbohydrates, mainly starch and sucrose from sources such as rice. The study by Qin et al.33 has shown 
that a wheat-based diverse diet that consists of similar components as the Mediterranean diet could slower the 
rate of cognitive decline.

Active physical exercise is also found to be important in predicting CI from the two complex models. How-
ever, prior human and animal studies investigating the relationship between physical exercise and cognitive func-
tions are not always  consistent34. Some displayed strong positive associations while other showed minimum or 
no relationships. For example, Baker et al. studied the effects of aerobic exercises on cognition using randomized 
and clinically controlled trials. They demonstrated the sex-specific effects that aerobic exercises help improve 
executive control process for older  women35. The study from Laurin et al. also showed that physical exercises are 
associated with lower risk of CI, dementia and Alzheimer Disease, compared with individuals with no  exercises36. 
Similarly, Geda et al. conducted a population-based case-control study and concluded that moderate exercise in 
midlife or latelife, no matter what frequency of the exercise, is associated with reduction in odds of developing 
mild cognitive impairment (MCI)37. However, there are studies that did not identify significant relationships 
between CI and physical exercise. Young et al. concluded that with their collected randomized controlled trials 
(RCTs), there is no evidence of cognitive benefits among cognitively healthy elderly people from cardiorespira-
tory  exercises38.

Four genes identified in the pathway analysis (ESR1, PHB, RYR3, GRIK2) constitute part of an immunologic 
signature in the MSigDB  database39 that was identified as significantly associated with the cognitive impair-
ment phenotype. Both the individual genes that comprise this signature, and innate and adaptive immunity as 
biological processes have been associated with cognitive impairment and cognitive  aging40–46. Polymorphisms 
in estrogen receptor genes (ESR1 and ESR2) have been associated with risk of developing cognitive impairment 
and in turn may play a role in cognitive  aging42,47. These polymorphisms have been demonstrated to have an 
impact in both  men42 and  women42,48. Moreover, interactions between ESR1 and the APOE gene for AD risk have 
also been  reported49,50. Some of the ESR1 polymorphisms associated with Alzheimer’s disease and mild cogni-
tive impairment are low-frequency (MAF<2%)51. The specific ESR1 SNP detected as associated with cognitive 
impairment in our study is not in linkage disequilibrium with the SNPs reported in Yaffe et al. (r2 ≤ 0.014) and 
are greater than 100 kB distant from these SNPs, therefore likely represent a different association signal. Genetic 
alterations in the estrogen metabolic pathway have been reported to be associated with risk of Alzheimer’s Disease 
in a study of a southern Chinese  population52 and association of ESR1 with one-year cognitive decline in healthy 
oldest-old individuals has also been  cited53.
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The RYR3 gene codes for the ryanodine receptor that functions to release calcium from intracellular storage 
for use in cellular signaling and biochemical processes. RYR3 is an isoform of the ryanodine receptor that is 
expressed in specific regions of mammalian brain that are involved in the development of cognitive dysfunction 
and Alzheimer’s disease, e.g. the  hippocampus54. Sustained calcium dysregulation contributes to neurodegenera-
tion and cognitive  impairment55,56 and ryanodine receptor levels change during the  lifespan57,58 and are altered 
in mild cognitive impairment and Alzheimer’s  disease59.

The other two genes in the signature, GRIK2 and PHB have literature support for roles in cognitive aging 
and longevity. GRIK2 belongs to the kainate family of glutamate receptors that function as ligand-activated ion 
channels. This gene is highly expressed in brain and mutations in the gene have been associated with cortical 
development, autism and  schizophrenia60–62. Interestingly, a large (6036 cases) genome-wide association study 
identified SNPs near GRIK2 as showing suggestive levels of association with longevity (OR = 1.2, p = 5.09e−8

)63. PHB, or prohibitin, is characterized as playing a role in human cellular senescence and tumor suppression 
and in model organisms, as a modulator of  longevity64. Prohibitins modulate mitochondrial fusion and have 
a role in forming protein and lipid  scaffolds65,66. Caenorhabditis elegans studies have shown that prohibitins 
moderate fat metabolism and energy production and in turn influence  aging64. In a mouse model, mutations in 
PHB2 (one of the two homologous PHB proteins) triggered massive neurodegeneration with accumulation of 
abnormal mitochondria and hyperphosphorylated  tau67. Interestingly, in a C. elegans model, mutations in PHB 
were strongly associated with genotype-dependent responses to dietary  restriction68.

The immunologic signature based on gene set enrichment for the genes in the predictive risk score represents 
a small subset (4 out of 200) of genes that are downregulated in CD8A+ splenic dendritic cells in a mouse model 
where interferon beta 1 (IFNB1) is knocked  out69. IFNB1, along with other type 1 interferons link the innate and 
adaptive arms of the immune system. The involvement of genes representing several metabolic and signaling 
functions and, specifically, the role for dendritic cells that comprise the biochemical basis for the immunologic 
signature, contribute to a possible role for association with the cognitive aging phenotype utilized in our study. 
Dendritic cells capture antigens, which are transported to the lymphatic system. Mechanistically, identification of 
this signature in the context of our study, that examined cognitive resilience in nonagenarians and centenarians, is 
of interest because of the likely involvement of the immune system and immune response to exogenous antigens. 
In the mouse model associated with the signature identified in our study, the absence of IFNB1 constitutes an 
“exceptional phenotype” for a model where a critical factor needed for T cell stimulation is removed. Over the 
course of a lifetime, an individual is exposed to numerous bacterial, viral and parasitic infections. Of particular 
relevance to our study from the perspective of examining environmental and genetic factors that contribute to 
long-term cognitive resilience, low but constitutive production of IFNB1 was shown to be necessary to maintain 
dendritic cells in a state that is responsive to antigens associated with these  infections69. Dendritic cells that can 
capture and process antigens under noninflammatory conditions are considered to acquire tolerogenic proper-
ties (e.g. induction of tolerance) which may have strong relevance for understanding the genetic backgrounds 
associated with cognitive  resilience69. The overall immunologic gene signature is complex with components 
including members of gene families of transcription factors, cell differentiation markers and homeodomain 
proteins. Biochemical linkages between the 4 genes in the signature identified in our study likely represent 
several underlying physiological processes involved in immune function and not a single biochemical pathway 
that involves signaling between these genes.

The design of our study is to compare individuals who live to an advanced age, 90+ years with individuals 
who develop cognitive impairment in middle to late life. Cognitive impairment can result from several pathologi-
cal processes including Alzheimer’s disease, vascular dementia, cerebrovascular disease, Lewy body dementia, 
frontotemporal dementia and mixed dementia. The CLHLS survey does not include clinical diagnoses that dif-
ferentiate these causes and therefore cognitive impairment is equivalent to all cause dementia for the purposes 
of our study. Alzheimer’s disease pathology is likely a major cause of many of the dementia cases in our study, 
accounting for 60 to 80% of dementia  cases70.

Genome-wide association studies (GWAS) and development of predictive risk scores for AD are active areas 
of research. The study by Kunkel et al.71 identified 25 genetic loci associated with AD with many loci supported 
by earlier GWAS  studies72,73. Mapping genes to the SNPs identified in the GWAS study enumerated a list of genes 
that have been investigated through pathway analysis, fine mapping, gene-based association analysis. AD risk-
genes include APOE, PICALM, BIN1, CR1 and TREM2; these risk genes and loci are often presented as a Man-
hattan  plot71. Our study did not identify any of the AD risk genes as associated with the cognitive phenotype, 
however the phenotypes in the studies are different in terms of cognitive impairment instead of diagnosed AD 
and a comparison group of individuals resistant to cognitive impairment until late life ( > 90 years) in comparison 
to cognitively normal individuals, typically aged 50–80. Interestingly, there was considerable overlap between 
the biochemical pathways identified in our study and the biochemical pathways associated with AD, notably 
immune system and  inflammation71,74–77. Calcium regulation is biological process involved with  AD78–80 and the 
RYR3 gene identified in our study is a key molecule involved in this  process81. Lipid metabolism is a key pathway 
identified through pathway analysis of AD  GWAS71 and ESR1 polymorphisms have been shown to impact this 
 pathway82, including lipid metabolism in the  brain83,84.

The predictive risk score (PRS) developed for this study predicted cognitive impairment with AUCs approxi-
mately 0.74. This level is similar to a risk score used to predict MCI vs. controls that had an AUC of 0.67. For 
pathologically-confirmed AD cases, as compared with clinical diagnosis, a PRS score demonstrated an AUC 
of 0.8485, among the best performance for predictive biomarkers for AD that included imaging, biofluid and 
cerebrospinal fluid based measures.

Studying genetic and non-genetic factors that contribute to the absence or delayed onset of cognitive impair-
ment in resilient individuals may inform lifestyle and therapeutic opportunities for intervention. The biological 
mechanisms involved in cognitive resilience are complex and our study supports roles for several key metabolic 
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pathways and genes. Strengths of this study include a large cohort comprised of elderly individuals where a 
substantial proportion demonstrated resilience to cognitive impairment with ages greater than 90 years and con-
sideration of both genetic and environmental factors. Our study also has some limitations. Although the CLHLS 
cohort contains a large number of centenarians, the sample size is still relatively small for GWAS. Moreover, 
replication in an independent cohort would be essential to increase the statistical rigor of the genetic associa-
tion results. Unfortunately, there is no equivalent dataset of individuals of similar ancestry where the dataset 
is enriched for centenarians and long-lived individuals, essential for our study design. In recognition of these 
limitations, we have interpreted the biological and gene-specific results in context of prior studies and also used 
a polygenic risk score to provide a single composite measure of risk from numerous small effect size genetic 
variants. These steps improve the likelihood for replication. The study represents one of few studies conducted 
in Han Chinese in contrast to numerous genetic studies of individuals of European ancestry. Future studies are 
needed to examine whether the results of our study will translate to individuals of other ancestries.

Methods
M1. Chinese longitudinal healthy longevity survey (CLHLS). We worked with the Chinese Longi-
tudinal Healthy Longevity Survey (CLHLS) Series, which are publicly available from National Archive of Com-
puterized Data on Aging (NACDA)86. The survey data provides information about physical and mental health 
status, socioeconomic status, demographics of participants aged 65 and above from 22 provinces in China. The 
first wave of survey started in 1998, followed with six more waves conducted in 2000, 2002, 2005, 2008–2009, 
2011–2012, and 2014. Genotype data is available for 4477 participants with coverage over 7,000,000 SNPs after 
imputation.

The CLHLS has the world’s largest sample size of centenarians to  date87. Unlike the population structure of 
western countries, consisting of people with different ancestries, the population structure in China is comparably 
homogeneous, with fewer immigrants from other parts of the world. Additionally, even though China has 55 
minority groups, Han Chinese (the Han group) accounts for 92% of the total population. To obtain homogeneous 
genetic information, the surveys only included Han Chinese. A study by Xu and  Jin88 has shown that the average 
differences in genetics among European population ( Fst = 0.009 ) was much higher than that among the Han 
Chinese population ( Fst = 0.002 ), based on Human Genome Diversity Panel data. Consequently, the nature of 
the CLHLS data is less likely to be affected by the population stratification than western cohorts.

We utilized the information from the last survey that each individual participated in before he/she was lost-
to-follow-up or deceased. For example, if the participant was deceased in the 2005 survey wave, then we used the 
survey information from 2002 wave. As the final step, we matched participants from the survey with the 4477 
individuals who have available genotypes. Since not all participants in the survey have DNA information and not 
all individuals with genotypes were engaged in the survey, out of 4477 individuals, we ended up having 2243 indi-
viduals as our sample. Notice that the final sample has 2165 individuals due to the selection of individuals with a 
phenotype of exceptional longevity & normal cognition. The composition of the study sample is shown in Fig. 2.

M2. Genetic data and quality controls. The participants were genotyped using the Illumina HumanOm-
niZhongHua-8 BeadChips, which was built by selecting optimized tag SNP content from the 1000 Genomes Pro-
ject and the three HapMap  phases87. To further increase genome coverage, imputation analysis was performed to 
infer the genotypes of all SNPs (MAF ≥ 0.01) using IMPUTE software version  289 and the 1000 Genomes Project 
integrated phase 1 release as reference panel. SNPs with a quality score (Rsq) of < 0.9 were discarded before 
analysis. Gene dosages from SNPs that were directly genotyped were used when available, otherwise imputed 
dosages were used. Therefore, missing values were possible for the directly genotyped SNPs. For SNPs with a 
substantial frequency of missing data, we used a proxy SNP in the PRS as detailed in M8. More details of the 
genotyping are articulated in the study by Zeng et al.87.

Genotype data prior to quality control consists of 4477 individuals and 7,443,066 SNPs. We imposed quality 
controls on the set of genetic data using PLINK (v1.9)90. The maximum per-SNP missing (–geno), Hardy–Wein-
berg disequilibrium p-value (–hwe), and maximum per-person missing (–mind) are set to default values, which 
are 0.1, 0.0001, and 0.05 respectively. The minimum minor allele frequency (–maf) is set to 0.05. Post quality 
control, 4,611,702 SNPs were available for analysis. All the subsequent analyses, such as regional stratification 
using PCA, frequency calculation, and GWAS, are all based on the genetic data that passed the quality controls.

M3. Non‑genetic data imputation and outcome assessment. We used Mini-Mental State Exam 
(MMSE) score to measure the outcome—individuals’ cognitive functions. The questions used to calculate 
MMSE in the Chinese version were carefully designed based on international  standards91. Both  internal91 and 
 external92 assessments have been conducted and ensured the quality and validity of the questionnaire. The maxi-
mum MMSE score is 30. If a person scores 18 or above, he/she is scored as cognitively normal; otherwise, cog-
nitively impaired. We chose 18 as the cutoff value based on several prior  studies4,12 on cognitive impairment. 
For each participant in the survey, we calculated MMSE from each survey wave that he/she participated in, 
until the participant was lost-to-follow-up or passed away. If participants were not able to answer the survey 
questions—except for the question about number of years of education, we treated the answers as “Wrong” with 
corresponding 0 score.

There are missing values in some non-genetic factors. Count of missing values are listed in the Table 6, from 
which we could see that the missing rates are generally low. We imputed the missing values using the Multi-
variate Imputation by Chained Equations (MICE)  Package93 in R (v3.6.2)94. The imputations were done using 
CART (Classification and Regression Tree) to account for different types of the factors and potentially complex 
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relationships among the factors. The item and individual missing rates were checked, as well as the distribution 
of imputed values, to ensure the quality of imputation.

M4. Regional stratification using PCA. It is traditionally thought that China has two major regions—
Northern and Southern China, based on geographical division, where people maintain different living habits 
under the influences of climates and natural resources. Empirically, the study by Xu et al.95 have examined and 
showed internal differences between the Han Chinese population in Southern and Northern areas. Zeng et al.87 
worked with the same CLHLS data sets and confirmed that the top two eigenvectors are sufficient to adjust the 
population stratification. Therefore, to account for the potential variations in population characteristics from 
two regions, we conducted Principle Component Analysis (PCA) and extracted the top two eigenvectors cor-

Figure 2.  Composition of the study sample. The numbers in the parenthesis are the sample size for each survey 
cohort.

Table 6.  Count of missing values of non-genetic variables. Variables that do not have missing values are not 
listed.

Variable Count of missing value (%)

Education 10 (0.44%)

Occupation 126 (5.61%)

Marital status 11 (0.49%)

Co-residence 9 (0.40%)

Staple food 1 (0.04%)

Fruit intake 4 (0.18%)

Vegetables intake 5 (0.22%)

Current smoker 4 (0.18%)

Former smoke 1 (0.04%)

Current drinker 10 (0.45%)

Former drinker 2 (0.09%)

Exercise currently 19 (0.85%)

Hypertension 76 (3.39%)

Diabetes 87 (3.88%)

Heart 71 (3.17%)

Cardiovascular disease 75 (3.34%)

Respiratory 63 (2.81%)
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responding to the first and second largest eigenvalues. The two eigenvectors are further used as covariates in the 
GWAS.

M5. Selection of exceptional longevity & normal cognition phenotype. The 2156 individuals 
from the sample were split into two groups for GWAS. The first group includes individuals that were aged 90 or 
above, but were still cognitively intact. We designate this group of people as individuals with the phenotype of 
exceptional longevity & normal cognition. The other group consists of individuals that are cognitively impaired 
without any age constraint. The term “extreme phenotype” comes from the study by Perez-Graia et al.14. They 
concluded that samples with extreme phenotype have abundant genetic information about risk or protective 
effects from SNPs. Considering the nature of the CLHLS cohort and the goal of our research, emphasizing 
participants with the phenotype of exceptional longevity & normal cognition can potentially help us identify 
biological mechanisms with strong effects on cognition. In contrast with previous GWAS studies on individuals 
from western countries, the historical events that happened in China in the twentieth century are drastically dif-
ferent, imposing some external effects on participants from  CLHLS91. Therefore, the long-lived people in China 
might have enriched genetic backgrounds that interact with the non-genetic factors, such as environmental fac-
tors, to provide protective effects on CI, considering the brutal and harsh environments they have suffered from 
and survived in the past, such as national and civil wars, revolutions, and starvation.

M6. Genome‑wide association study. The GWAS analysis was performed using logistic regression 
using PLINK(v1.9), conditioning on sex and the two eigenvectors extracted from the PCA. Both genetic vari-
ants and environmental factors have been shown to contribute to educational  attainment96. Studies have also 
demonstrated that genetic variants linked to education also predict  longevity97. Since the study design centers 
on the GWAS identifying genetic factors associated with cognitive impairment while analysis of environmental 
factors, including educational attainment is considered in the second phase, we included age, sex and population 
stratification as covariates in the GWAS and not educational attainment. This also removed the potential multi-
ple confounding between cognitive measures, educational attainment and longevity at the level of the GWAS and 
is consistent with covariate adjustment in a recent large-scale study of genetic loci influencing general cognitive 
 function98.

Chagnon et al.99 discussed two general approaches of how to choose the p-value threshold in order to identify 
the significant SNPs: (1) If the goal is to identify SNPs with stronger statistical power, then it is suggested that a 
more stringent p-value threshold be selected, which usually gives less than 100 SNPs. (2) On the other hand, if 
the scientific question is approached as a prediction problem where strong prediction power is desired, we should 
not ignore less significant SNPs with larger p-values. Aggregating the small contributions from each SNP could 
enhance the prediction results. Under this circumstance, researchers usually proceed with a relaxed threshold 
which generates hundreds more SNPs than a stringent p-value.

Even though our approach is prediction-based, our primary focus is on the investigation of statistically 
important genetic and non-genetic factors in affecting CI. Therefore, we used 100 as the checkpoint for the num-
ber of significant SNPs from GWAS. We experimented with three p-value thresholds—1× 10−5 , 2× 10−5 , and 
3× 10−5 , which gave us 15, 41, and 76 significant SNPs respectively. Using thresholds of 4× 10−5 and 5× 10−5 
gave us 120 and 170 SNPs correspondingly, which are more than the checkpoint 100 so we stopped at 3× 10−5 . 
Those are preliminary SNPs with potentially high linkage disequilibrium. We used the –clump command in 
PLINK (default setting on three parameters: –clump-p2 0.01, –clump-r2 0.5, –clump-kb 250) 
to clump them into smaller subsets of independent SNPs. The numbers of clumped SNPs are 7, 19, and 28 cor-
responding to the three p-values. All the analyses, including constructing the PRS and machine learning models 
and biological pathway analysis, were based on the clumped sets of SNPs.

M7. Missing dosage replacement. To account for substantial missing values for SNPs directly geno-
typed, we replaced the missing values with the dosage values from proxy SNPs using the following approach:

• For those SNPs not in the dbSNP database, such that they do not have any reference number (“rs” number), 
we use Kaviar (v160204-Public)100 software to map the location with the corresponding reference number. 
We used the hg19(GRCh37) coordinate system.

• For each significant SNP, we looked up proxy SNPs using LDlink (v4.1.0)101. The reference panel was the 
population of Han Chinese in Beijing, China. All the proxy SNPs were checked to be on the same chromo-
some as the original SNP. Additionally, as discussed by Chagnon et al.99, proxy SNPs with R2

≥ 0.8 are 
considered to be very good proxies. Therefore, we only include proxies with R2

≥ 0.8.
  For each significant SNP, we created two reference panels. The first panel, “all_panel”, contains all the 

proxy SNPs for each target SNP. Those proxy SNPs are listed in descending order in terms of R2 , so that 
when we replaced missing dosage values, we always checked the proxy with largest R2 first. The second panel, 
“reverse_panel”, contains proxies that have different minor alleles from the target SNPs, adjusting the minor 
allele for the proxies accordingly. For instance, if the minor/major allele of the original SNP is A/T, while 
the proxy SNP has T/A, then we put this proxy SNP into the reverse panel. Note that the “reverse_panel” is a 
subset of the “all_panel”. When replacing the missing dosage value, if the proxy SNP is in the “reverse_panel”, 
instead of directly using the dosage value from the proxy SNP, we adjust the dosage to the allele count.

• For each individual and for each significant SNP where the dosage value is missing, we replaced it with the 
dosage value from the best (highest R2 ) and available (existing in our genome data) proxy SNP. If the best 
available proxy is in the “reverse_panel”, then we used (2-dosage value).
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• All remaining missing dosage values were set to zero. The underlying assumption for this is that we expect 
that most of the population have at least one copy of the major allele, which is best estimated by the 0 dosage 
value.

M8. PRS construction. PRS can be viewed as a simple model used to predict the risk for genetically com-
plex diseases. PRS is calculated by aggregating SNP-level information from GWAS to “account for the pheno-
typic variation observed in complex traits, by assuming an additive, non-multiplicative, effect of multiple vari-
ants with variable effect sizes” (Ibanez et al. 2019)102. This aggregated information has stronger predictive power 
for complex diseases than individual genetic variants, notably when effect sizes are small to moderate. With the 
beta coefficient of each significant  SNPi and the corresponding dosage value for each individual, we constructed 
a PRS for each individual j using the formula:

where βi is the beta coefficient for SNPi and dosageij is the corresponding number of effect alleles from the 
individual j. The PRS can be viewed as the summation of genetic effects that each participant possesses, associ-
ated with the underlying probability of developing CI. Then, PRS was used as a single predictor to predict the 
likelihood of CI. We constructed PRS using three different p-value thresholds and assessed their performances 
correspondingly. We applied fivefold cross validation to evaluate the PRS’s performance. The entire data was 
split into fivefolds. We evaluated the performance of PRS five times for each of the fivefolds, using Area Under 
the Curve (AUC) and reported the average of the results.

The PRS derived from the CLHLS GWAS analysis was tested for association with the equivalent phenotype 
in an independent cohort, the Rush ROSMAP (Religious Order Study/Memory and Aging Project). Participants 
came from two community-based longitudinal cohort studies of diverse participants, the Religious Orders Study 
(ROS)18, the Rush Memory and Aging Project (MAP)103. The studies were approved by the Institutional Review 
Board of Rush University Medical Center. Participants were enrolled without known dementia and each partici-
pant signed an informed consent and agreed to annual clinical evaluations. The ROS and MAP participants were 
predominantly white Americans. Importantly, both studies were conducted by the same team of investigators 
and share a large common core of testing batteries and uniform structured clinical evaluations. This makes it 
possible for a combined analysis. The same phenotype definition, based on survival to age 90 years with intact 
cognition versus cognitive impairment at any age was used, based on the MMSE scores obtained for the partici-
pants. Descriptive statistics for the cohort are included in Supplementary Table 3.

M9. Machine learning models. In addition to PRS, we considered machine learning models to predict 
the phenotype—binary cognitive status, using both genetic and non-genetic factors and to identify important 
predictive factors by assessing feature importance. We examined five machine learning models—ℓ2 penalized 
logistic regression, classification and regression tree (CART), support vector machine (SVM), random forest, 
and boosted decision trees (XGBoost implementation). Five models were utilized so that we were able to com-
pare their prediction performances and evaluate feature importance, which could potentially reduce the bias 
from simply assessing one model and help us pinpoint important factors that are robust and congruent from 
different models.

• ℓ2 Penalized Logistic Regression an ℓ2 penalty term is applied to the sum of squared coefficients from logistic 
regression to present over-fitting.

• Classification and Regression Tree (CART)104: the algorithm constructs binary decision trees by splitting input 
features on certain values that maximizes information gain at each note. It stops when a criterion is satisfied. 
We controlled the depth of the tree to prevent over-fitting.

• Support Vector Machine (SVM)105 the algorithm generates a hyperplane to separate binary response variables 
by maximizing the total distances between the hyperplane and all data points. We assessed linear kernel, 
polynomial kernel, and radial basis kernel. The model with linear kernel is simple but had the best perfor-
mance in our case.

• Random Forest106 random forest is an ensemble of multiple decision trees. The implementation we used 
takes the poll of predictions from individual trees as the final predictive result. Random forest is considered 
a complex model that possess strong predictive power.

• Boosted Decision Trees107 an algorithm that combines weak tree classifiers into a strong classifier using boost-
ing approach. The implementation we applied is  XGBoost108. The model is considered complex.

To be consistent with the process of assessing the PRS’s performances, we applied a fivefold cross validation 
procedure on the entire data to select the best hyper-parameters. One fold was used as the validation set and 
the other four folds were involved in parameter tuning and model constructing. We repeated the process until 
each one of the fivefolds was used as the validation set once. Then we constructed the final model on the entire 
data using the best parameters and calculated the feature importance. According to the official documentation 
from scikit-learn  package109, the incorporated feature_importance function might inflate the importance 
of numerical variables using impurity-based measurement. Therefore, we adopted the suggested permuta-
tion_importance, though we did not notice significant differences between the two approaches. All the 
modeling procedures were conducted in Python (v3.7)110 with publicly available packages.

PRSj =

n∑

i=1

βi ∗ dosageij
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Note that we used the entire data as training set, without constructing a holdout test set. This step is taken 
to minimize the loss of power for statistical analysis considering our sample size. Since we carefully tuned 
hyper-parameters in the cross-validation process to protect against over-fitting, we think that the final model 
constructed on the entire data is generalizable.

M10. Functional mapping and biological signature analysis. Functional annotation of the GWAS 
results was performed using the SNPnexus (v4.0)  platform111–114 designed for annotation and interpretation of 
sets of SNPs derived from GWAS. SNPnexus maps SNPs in genomic loci to genes using positional mapping 
based on maximum distances between SNPs and genes. Biological function of the genes was annotated based on 
the Genetic Association Database and through literature searches. Biological signature analysis was carried out 
with the GENE2FUNC (v1.3.6) algorithm implemented in Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA, v1.3.5)115. Of the 31 input genes, 21 were identified with a unique  Entrez116 
identification number and all genes with an Entrez identification number (35,142) were used as the background 
gene set for the hypergeometric test. The Molecular Signatures Database  database39,117 (v7.0, August 2019) was 
used for the set of potential biological signatures. The Benjamini-Hochberg method was used as a correction for 
multiple testing with a maximum adjusted p-value of 0.05 for gene-set enrichment tests.

Ethical approval. The Research Ethics Committees of Duke University and Peking University granted 
approval for the Protection of Human Subjects for the Chinese Longitudinal Healthy Longevity Survey, includ-
ing collection of DNA samples used for the present study. The survey respondents who contributed their DNA 
samples gave informed consent before participation. All of the GWAS experiments and methods of analyses in 
the present study were performed in accordance with relevant guidelines and regulations. The Religious Order 
Study and the Rush Memory and Aging Project were approved by an Intuitional Review Board of Rush Univer-
sity Medical Center. All subjects signed an informed consent, an Anatomic Gift Act, and a repository consent 
to allow their biospecimens and data to be used for ancillary studies. Conduct of the studies was performed in 
accordance with relevant guidelines/regulations set forth by the Rush University Medical Center.

Data availability
The Chinese Longitudinal Healthy Longevity Survey (CLHLS) data are publicly available from National Archive 
of Computerized Data on Aging (NACDA). The genetic data can be obtained by requesting from the correspond-
ing author Dr. Yi Zeng. Data on the ROSMAP studies can be requested at www.radc.rush.edu.
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