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Abstract

Disordered protein-protein interactions (PPIs), those involving a folded protein and an intrin-

sically disordered protein (IDP), are prevalent in the cell, including important signaling and

regulatory pathways. IDPs do not adopt a single dominant structure in isolation but often

become ordered upon binding. To aid understanding of the molecular mechanisms of disor-

dered PPIs, it is crucial to obtain the tertiary structure of the PPIs. However, experimental

methods have difficulty in solving disordered PPIs and existing protein-protein and protein-

peptide docking methods are not able to model them. Here we present a novel computa-

tional method, IDP-LZerD, which models the conformation of a disordered PPI by consider-

ing the biophysical binding mechanism of an IDP to a structured protein, whereby a local

segment of the IDP initiates the interaction and subsequently the remaining IDP regions

explore and coalesce around the initial binding site. On a dataset of 22 disordered PPIs with

IDPs up to 69 amino acids, successful predictions were made for 21 bound and 18 unbound

receptors. The successful modeling provides additional support for biophysical principles.

Moreover, the new technique significantly expands the capability of protein structure model-

ing and provides crucial insights into the molecular mechanisms of disordered PPIs.

Author summary

A substantial fraction of the proteins encoded in genomes are intrinsically disordered pro-

teins (IDPs), which lack a single stable structure in the native state. IDPs serve many func-

tions including mediating protein-protein interactions (PPIs). Such disordered PPIs are

prevalent in important regulatory pathways, including many interactions of the tumor

suppressor protein p53. To elucidate the molecular mechanisms of disordered PPIs,

obtaining tertiary structure information is essential; however, they are difficult to study

with experimental techniques and existing computational protein-protein and protein-

peptide modeling methods are unable to model disordered PPIs. Here we present a novel

computational method for modeling the structure of disordered PPIs, which is the first of
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this sort. The method, IDP-LZerD, is designed to follow a known biophysical picture of

the mechanism of how IDPs interact with structured proteins. IDP-LZerD successfully

modeled the majority of disordered PPIs tested. This technique opens up new possibilities

for structural studies of IDPs and their interactions.

Introduction

Intrinsically disordered proteins (IDP), which have evolved to not adopt a stable structure

under physiological conditions, are a departure from the traditional paradigm of structured

proteins [1]. After initial recognition of their critical biological functions in the 1990s [1], IDPs

quickly gained attention as they were found to be abundant in genomes across all three king-

doms [2]. IDPs are known to be involved in many molecular recognition events. Particularly,

it is estimated that 15–45% of protein-protein interactions (PPIs) are formed with IDPs [3]. A

well-known example is the p53 tumor suppressor, which contains disordered regions that

interact with dozens of partner proteins [4]. Due to the abundance and characteristic features

of IDPs in PPI networks, including many critical signaling pathways, fully understanding the

molecular mechanisms of PPI networks requires consideration of the role of interactions with

IDPs.

The binding mechanism of an IDP to a structured target protein, i.e. a disordered PPI, has

drawn much interest in the context of binding rate constants, because disordered PPIs achieve

high specificity and high dissociation rate constant simultaneously, which is an ideal character-

istic for signaling pathways but difficult to realize with interactions of structured proteins [5].

It is generally accepted that binding precedes global folding of the IDP, although secondary

structures in local regions may form before the interaction. In the model called the dock-and-

coalesce [5], a small segment of the IDP, which may be folded into secondary structure prior

to binding, forms the initial contact with the ordered partner, followed by coalescence of the

rest of the IDP into the bound conformation. This mechanism imparts both thermodynamic

and kinetic advantages. Forming a binding interface out of segments leads to a large interface

with fewer amino acids than a structured protein [2, 6] and the binding affinity is accumulated

from the affinities of each segment [5]. This allows IDPs to have high binding specificity, but

the loss of entropy upon binding imparted by the flexibility makes the interaction reversible

[7]. From a kinetic perspective, sequential binding of individual segments will have a much

higher rate constant than a hypothetical situation in which a pre-organized IDP simulta-

neously makes all contacts with the ordered protein [5]. A computational method based on the

dock-and-coalesce model was successful in predicting the binding rate constants of disordered

PPIs [8].

Experimental structure determination of disordered PPIs using techniques such as X-ray

crystallography and nuclear magnetic resonance (NMR) is challenging due to the flexible

nature of IDPs and their tendency to form weak, transient interactions [9]. Indeed, not all

IDPs form a single, stable structure when bound. Examples of these so-called “fuzzy” com-

plexes are cataloged in FuzDB [10, 11]. Along a similar line, pE-DB contains ensembles of con-

formations that can be adopted by an IDP [12]. Nevertheless, many proteins annotated as

disordered in DisProt [13] do adopt a bound structure that can be experimentally determined.

For PPIs of structured proteins, experimental structure methods can often be comple-

mented by computational modeling of protein complexes (docking) [14]. However, current

rigid-body and flexible docking methods (which allow small conformational changes at the

docking interface) are not able to model disordered PPI prediction, because the required rigid
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structures are not available for IDPs. Among existing protein modeling techniques, peptide-

protein docking methods would be the most similar to disordered PPI prediction. Approaches

to peptide-protein complex modeling include template-based modeling (TBM) [15, 16],

molecular dynamics (MD) [17–19], small molecule docking [20, 21], protein-protein docking

with flexibility [22–26], and coarse-grained docking [27]. The characteristics of the docking

and MD methods are compared in Table 1. Several of the methods require knowledge of the

binding site as input. Information about the binding site can be obtained experimentally or by

using computational prediction of peptide binding sites [28–30] or protein binding sites [31,

32]. More fundamentally, existing methods were developed and tested for binding short pep-

tides of 2–16 residues, which is far shorter than the 10–70 residue IDPs that participate in dis-

ordered PPIs [2], although some programs are able to accept peptides up to 30 residues in

their web servers. To predict the tertiary structure of a disordered PPI, a method must solve

two interdependent problems: the tertiary structure of the input sequence of the disordered

protein and its binding location on the receptor protein. This is a difficult task as the confor-

mational space to be explored for an IDP is enormous and grows with its length. Currently, no

existing methods can dock a long disordered protein to its receptor protein. A totally new

approach is required for predicting the structure of a disordered PPI involving commonly

observed long IDPs.

In this work, we describe the development of a novel computational method named IDP-L-

ZerD, which is able to model for the first time the docked structure of long IDPs (15–69 amino

acids). IDP-LZerD applies the biophysical principles of the dock-and-coalesce mechanism of

IDP binding to model the structures of long IDPs. In the “dock” phase, small segments of the

IDP are modeled in various conformations and docked globally to the ordered protein. Model-

ing and docking small segments is not only faster and easier but also consistent with the bio-

physical mechanism of small segments of the IDP binding sequentially. In the “coalesce”

phase, the docked segments of neighboring regions of the IDP are found and combined into a

complete structure of the disordered PPI. We found that correct bound conformations of the

IDP were selected using scores evaluating docking with the receptor, which corresponds to the

biophysical model that the conformation of an IDP is stabilized and determined by contacts

with its receptor. In addition, the combination of the docking scores of multiple segments is

analogous to the accumulation of the binding affinities of multiple segments [5]. Overall, we

show that IDP-LZerD is able to yield docking models of a practical quality in a number of

bound and unbound structures of PPIs involving long IDPs.

Table 1. Existing peptide-protein complex modeling methods.

Method Category Availability Requires binding site Initial peptide conformation Tested (max) amino acidsa

Hetenyi et al. [20] Docking No No TINKER [33] 4

Liu et al. [22] Docking No Yes Bound conformation 16

Rosetta FlexPepDock ab-initio [23, 24] Docking Yes Yes Predicted fragments 15 (30)

HADDOCK [25] Docking Yes Yes α-helix, extended, polyproline 15

pepATTRACT [26] Docking Yes No α-helix, extended, polyproline 15

CABS-DOCK [27] Docking Yes No Random 15 (30)

MdockPeP [21] Docking No No Sequence-based search 15

DynaDock [17] MD No Yes Bound conformation 16

Dagliyan et al. [18] MD No No Bound conformation 13

AnchorDock [19] MD No No Extended/MD 15

a: Tested is the longest peptide in the published test set and max is the maximum length allowed by the web server.

https://doi.org/10.1371/journal.pcbi.1005485.t001
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Results

The steps of IDP-LZerD are outlined in Fig 1. The binding mechanism of a disordered PPI is

well described by a dock-and-coalesce model, in which a small segment of the IDP makes ini-

tial contact with the ordered protein, forming a seed for the rest of the IDP to explore the con-

formational space and coalesce into the final bound conformation [5]. In a disordered PPI, the

interface of the IDP is typically formed by one or a few continuous segments [6], and the

bound structure of the IDP is often correctly predicted using sequence-based secondary struc-

ture prediction [34]. Based on these biological insights, conformations for 9-residue sequence

windows of the IDP sequence are predicted from their sequences and their predicted second-

ary structure (Step 1). These fragment structures are then docked to a receptor with a rigid-

body protein-protein docking method, LZerD [35–37] (Step 2). Finally, the docked fragments

are assembled into a full-length IDP complex, called a path (Step 3), and refined to construct

final models of the disordered PPI (Step 4). Steps 1 and 2 correspond to the “dock” phase of

dock-and-coalesce, finding potential seed contacts between an IDP segment and the ordered

protein, while Steps 3 and 4 correspond to “coalesce”, the formation of all of the contacts that

stabilize the complex between the IDP and the ordered protein. In this manner, the challeng-

ing problem of simultaneously predicting the IDP structure and its binding conformation is

divided into feasible sub-problems. The method was trained on fourteen complexes (Table 2)

and tested on eight complexes (Table 3). For all complexes, both bound and unbound receptor

structures available in the PDB [38] were used. A bound case is where a target IDP is docked

to the IDP-bound form of a receptor protein while in an unbound case the IDP is docked to a

structure of a receptor that was determined without its ligand IDP. Due to conformational

changes upon binding, predicting the docking pose using an unbound receptor protein is in

general more difficult. The training set was used to train weights of scoring functions and eval-

uate the performance at each step while the test set was used to evaluate the performance at the

end. Accuracy is measured using the CAPRI criteria of fnat, I-RMSD, and L-RMSD, detailed in

S1 Table [39]. fnat is the fraction of native residue-residue contacts shown in the model,

I-RMSD is the root mean square deviation (RMSD) of the interface residues, and L-RMSD is

the RMSD of the bound ligand after superimposition using the receptor. Each step and results

are further discussed below.

Fig 1. IDP-LZerD consists of four steps. 1. fragment structure prediction, 2. fragment docking, 3. path assembly, and 4. refinement. Steps 1 and 2

correspond to “dock” and Steps 3 and 4 correspond to “coalesce.”

https://doi.org/10.1371/journal.pcbi.1005485.g001
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Table 2. Disordered protein complex data set.

Disordered protein name Receptor protein name Bound Unbound DisProt ID or

ref.Receptor PDB

ID

Ligand

chain

L Receptor PDB

ID

Pocket RMSD

(Å)

P53, transactivation domain MDM2, N-terminal domain 1ycrA B 15 1z1mAa 2.93 DP00086

Myelin basic protein MHC class II antigen DRA/

DRB5

1fv1AB C 20 4ah2ABb 0.91 DP00237

eIF4E-binding protein 1 eukaryotic initiation factor

4E

1wkwA B 20 1ipbA 0.78 DP00028

Protein kinase inhibitor α PKA C-α 2cpkE I 20 1j3hA 4.57 DP00015

c-Myb Cbp/p300, KIX domain 1sb0A B 25 4i9oAc 2.80 [40]

Cibulot α-actin-1 1sqkA B 25 1ijjA 0.79 [41]

Bcl2-associated Antagonist of cell

Death (BAD)

Bcl2-like protein 1 (Bcl2-L-

1)

2bzwA B 27 1pq0A 3.00 DP00563

Regulatory protein SIR3 DNA-binding protein RAP1 3owtAB C 27 3cz6ABd 1.30 DP00533

hSARA, SMAD2-binding domain hSMAD2 1devA B 41 1khxA 3.94 DP00141

Cbp/p300-interacting transactivator 2

(CITED2)

Cbp/p300, TAZ1 domain 1p4qBe A 44 1l3eBe 5.11 DP00356

Transcription factor 7-like 2 (TCF7L2) β-catenin 1jpwA D 45 2z6hA 0.98 DP00175

Hypoxia-inducible factor 1-α (Hif-1α) Cbp/p300, TAZ1 domain 1l8cA B 51 1u2nA 2.87 DP00262

Nucleoporin NUP2 Importin subunit α 2c1tA C 51 1bk5Af 1.44 DP00222

Synaptosomal-associated protein 25,

SNARE domain

Botulinum neurotoxin type

A (BoNT/A)

1xtgA B 59 1xtfA 4.24 DP00068

a: removed residues 1 to 24;
b: removed chain B engineered residues -30 to 0;
c: removed the stabilizing small molecule KI1 (1-4-[4-chloro-3-(trifluoromethyl)phenyl]-4-hydroxypiperidin-1-yl-3-sulfanylpropan-1-one);
d: superimposed 2 copies of 3cz6A onto 3owtAB;
e: both chains A and B of 1p4q are disordered, so to create an unbound receptor for 1p4qA from 1l3eBA, we removed chain A, which has a different

sequence than 1p4qA;
f: removed homodimer.

https://doi.org/10.1371/journal.pcbi.1005485.t002

Table 3. Disordered protein complex test set.

Disordered protein name Receptor protein name Bound Unbound DisProt ID or

ref.Receptor PDB

ID

Ligand

chain

L Receptor PDB

ID

Pocket RMSD

(Å)

Peroxisomal targeting signal 1

receptor

PEX14 2w84A B 20 5aonAa 1.19 DP00472

CDK inhibitor 1 Proliferating cell nuclear

antigen

1axcA B 22 1vymA 1.86 DP00016

Alpha trans-inducing protein Transcriptional coactivator

PC4

2pheAB C 26 1pcfAB 1.87 DP00087

Protease A inhibitor 3 Proteinase A 1g0vA B 31 1fmxA 3.80 DP00179

Nuclear factor erythroid 2-related

factor 2

Keap1 3wn7A B 35 1x2jA 0.90 DP00968

Protein phosphatase 1 regulatory

subunit 12A

PP-1B 1s70A B 39 4ut2A 0.92 DP00218

Protein phosphatase inhibitor 2 PP-1G 2o8gA I 40 1jk7A 1.45 DP00815

Outer membrane virulence protein

YopE

YopE chaperone SycE 1l2wAB I 69 1jyaAB 1.27 [42]

a: template-based model using MODELLER [43] (5aonA was used as the template, which has 46.9% sequence identity to 2w84A).

https://doi.org/10.1371/journal.pcbi.1005485.t003
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Secondary structure prediction

Secondary structure was predicted for each IDP using JPRED [44], Porter [45], SSPro [46],

and PSIPRED [47]. The secondary structure predictions were reasonably accurate (Table 4). If

the predictions are considered correct when any of the four methods predicts the correct sec-

ondary structure, the accuracy is 86%. For 57% of residues, all four methods predicted the cor-

rect secondary structure. Even in the minority of cases where none of the methods predicted

the correct secondary structure, fragments of all three secondary structure classes were created

(described below in Methods).

IDP fragment structure prediction

The full sequence of a target disordered protein was divided into 9-residue windows with a

3-residue overlap. Fragment structures of each window were predicted using Rosetta Fragment

Picker (RFP) [49], which predicts structures based on the sequence profile [50] and predicted

secondary structure [44–47]. RFP was configured to output 30 fragments for a window.

Increasing the number of fragments chosen did not yield structures of a substantially lower

root mean square deviation (RMSD) to the native structure (S1 Fig). Fragment structure was

predicted reasonably accurately: on average the largest backbone RMSD of 30 conformations

for a window was 1.8 Å for the training set, 1.6 Å for the test set, and 1.8 Å overall (S2 Table).

Docking fragments to receptor

For a sequence window, each of the 30 fragment structures was docked with the receptor pro-

tein using LZerD [35–37]. LZerD is a shape-based, rigid-body docking method with the

advantage of a soft representation of the surface shape of a protein that accounts for some con-

formational change upon binding. Docked fragment poses were clustered and the top 4,500

cluster centers were selected (see Methods). Ranking was performed using the sum of the Z-

scores of two scoring functions, DFIRE [51] and ITScorePro [52], named DI score. DI score

was shown to perform better in docking pose selection than the individual scores (S3 Table).

The docking accuracy of fragments is summarized in the “All docked” columns in S2 Table.

For bound cases, on average the worst (largest) of the minimum L-RMSD from all the win-

dows in a target was 3.7 Å and 4.1 Å for the training and the testing set, respectively. For

unbound cases, the values were slightly worse, 4.4 Å and 4.3 Å for the training and the testing

set, respectively. Fragment structure and docking accuracy was further tested on an additional

independent test set of 11 cases of 9-residue IDP complexes found in the database of

Table 4. Secondary structure prediction accuracy.

Method Accuracy

JPred 66.4%

Porter 81.2%

PSIPRED 69.7%

SSpro 75.4%

All 57.0%

Best 86.1%

Accuracy: percentage of all residues correctly predicted. Secondary structure classes were assigned using

DSSP [48]. DSSP classes GHI are considered H, EB are considered E, and all others are considered C. All:

all four methods predict the correct class. Best: at least one of the four methods predicts the correct class.

Computed using 1ycrB, 1fv1C, 1wkwB, 2cpkI, 1sb0B, 1sqkB, 2bzwB, 3owtC, 1devB, 1l8cB, and 1xtgB.

https://doi.org/10.1371/journal.pcbi.1005485.t004
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eukaryotic linear motifs (ELMs) [53] (Table 5). The results are shown in Table 6. The average

fragment RMSD is 1.4 Å and the average minimum docked RMSD is 3.2 Å for both bound

and unbound cases (Table 6), which are better than the results shown in S2 Table.

Selection of docked fragments was successful for most of the training set complexes, with

an average RMSD of 5.4 Å for bound and 6.5 Å for unbound (“Selected docked” columns in

S2 Table). On the testing set, the results are similar, 5.7 Å and 6.3 Å for bound and unbound

cases. Exceptions included 2clt and 1bk5, where poor selection of docked fragments prevented

successful modeling in the subsequent steps. On the additional ELM-derived dataset, results

were 4.9 Å for bound and 4.7 Å for unbound (Table 6), which are again comparable to the

results on the testing and training datasets.

Table 5. 9-residue IDR complex test set selected from ELM.

Disordered protein name Receptor protein

name

Bound Unbound DisProt ID ELM ID

Receptor PDB

ID

Ligand

chain

First

res

Receptor PDB

ID

Cyclin-dependent kinase inhibitor 1B CDK2/Cyclin A 1jsuAB C 25 2c5nAB DP00018 -

34 DP00018 -

43 DP00018 -

52 DP00018 ELMI000069

PIFtide Protein kinase Akt-2 1o6lA A 469 1gzkA DP00304 ELMI001633

Glycogen synthase kinase-3 β Protein kinase Akt-2 1o6lA C 4 1gzkA DP00385 -

Protein phosphatase 1 regulatory

subunit 12A

PP-1B 1s70A B 1 4ut2A DP00218 -

10 DP00218 ELMI002747

22 DP00218 -

31 DP00218 ELMI001397

Peroxisomal targeting signal 1 receptor PEX14 2w84A B 101 5aonAa DP00472 ELMI002213

a: template-based model using MODELLER [43] (5aonA was used as the template, which has 46.9% sequence identity to 2w84A).

https://doi.org/10.1371/journal.pcbi.1005485.t005

Table 6. Fragment modeling and docking accuracy for 9-residue IDR complexes from ELM.

Bound PDB ID First res Minimum RMSD (Å) Unbound PDB ID Minimum RMSD (Å)

Fragments All docked Selected docked All docked Selected docked

1jsuAB 25 1.8 3.5 3.5 2c5nAB 3.2 3.2

1jsuAB 34 1.4 2.8 9.5 2c5nAB 3.2 9.2

1jsuAB 43 0.5 1.6 1.9 2c5nAB 1.6 2.6

1jsuAB 52 0.6 1.6 3.1 2c5nAB 3.1 3.1

1o6lA 4 2.1 3.9 3.9 1gzkA 3.6 4.6

1o6lA 469 2.9 5.1 5.7 1gzkA 5.5 5.5

1s70A 1 1.3 3.5 9.1 4ut2A 3.5 8.3

1s70A 10 0.4 3.1 3.1 4ut2A 2.6 2.6

1s70A 22 2.4 3.6 7.5 4ut2A 3.3 5.8

1s70A 31 1.6 3.8 4.1 4ut2A 3.3 4.5

2w84A 101 0.4 2.8 2.8 5aonA 2.0 2.0

Average 1.4 3.2 4.9 3.2 4.7

First res.: The first amino acid position of the 9-residue long fragments in the protein. Fragments: minimum backbone RMSD of predicted fragments to

native. All docked: minimum L-RMSD of all docked fragments (has a lower bound of the fragment RMSD). Selected docked: minimum L-RMSD of top 4,500

fragments by DI score (Z(DFIRE) + Z(ITScorePro)).

https://doi.org/10.1371/journal.pcbi.1005485.t006
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Interestingly, as shown in Fig 2, evaluating docking fit with DI score often identified frag-

ments of a low RMSD. To understand the general trend, for each sequence window we com-

pared the fragment RMSD distributions of the 30 fragment structures from RFP and the top

30 docked fragments by DI score. Out of 144 windows from the 28 cases in the training set, for

83 (57.6%) windows the top 30 by DI score are either better (p<0.05 by the Mann-Whitney U

test) or contained five or more fragments with an RMSD better than 3.5 Å (considered because

there were cases where all 30 fragments from RFP were below 3.5 Å RMSD and no further

improvement is possible by the DI score choice). This indicates that the DI score is detecting

the increased binding affinity of the correct conformation when bound in the correct location,

analogous to induced fit upon binding.

Combining docked fragments

Docked fragments from each window were combined to form full-length IDP complexes,

referred to as paths. First, we performed a pre-filtering of docked fragment pairs, which

removes physically improbable pairs by considering mutual distances and angles; then, paths

were assembled using an extend-and-cluster strategy (see Methods). This procedure effectively

reduced the search space from as many as 1041 to the order of 105 paths regardless of the length

of the IDP (S2 Fig). Overall, the combination process successfully produced low RMSD paths.

Out of the fourteen IDPs in the training set, for eleven bound and eight unbound receptors,

paths with a 6.0 Å or lower RMSD were constructed (“Clustered paths” in S2 Table). Results

were slightly worse for the testing set, an RMSD of below 6 Å was obtained for three bound

and three unbound cases out of the eight IDPs.

Path scoring and selection

For a complex, up to 1000 paths were chosen for further refinement. Paths were scored

using a linear combination of four terms (Path Score): the energy score, representing the

docking scores of fragments across all windows; the overlap score, evaluating how well the

Fig 2. Correlation between the docking score (DI) and the RMSD of the fragments. Data for sequence windows 1 and 2

of 4i9o. Green: top 30 docked fragments by DI score.

https://doi.org/10.1371/journal.pcbi.1005485.g002
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neighboring docked fragments fit into a continuous path; the cluster size, accounting for

the consensus of docking poses; and the receptor score, which measures docking site con-

sensus. Path Score selected more hits than any of the individual score components (S4

Table). On average, the minimum RMSD of selected paths was 6.7 Å for bound and 8.0 Å
for unbound in the training set and 7.5 Å and 8.2 Å for bound and unbound in the testing

set (S2 Table).

As in the situation in the docked fragment selection (Fig 2), it was observed that Path Score

selected many models with IDPs of correct conformation (RMSD under 6.0 Å; Fig 3). Out of

the fourteen pairs of targets in the training set, in ten/eleven cases for bound/unbound at least

one of the top 10 models by Path Score has a correct IDP conformation. For the testing set, in

four out of eight cases for both bound and unbound Path Score selected a correct IDP confor-

mation within the top 10. These are again interesting results because Path Score mainly evalu-

ates the binding affinity of a target IDP and its receptor, but also identifies IDPs of the correct

conformation. Thus, in accordance with the biophysical mechanism, the binding affinity of

the IDP is accumulated from the binding affinities of the individual segments and the confor-

mation of IDPs is determined by binding.

Fig 3. Selection of correct IDP conformation with Path Score. Hits: number of models with IDP RMSD < 6 Å in top 10 by Path Score. Blue: bound;

red: unbound. Top: training complexes; bottom: testing complexes.

https://doi.org/10.1371/journal.pcbi.1005485.g003
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Refinement

Selected paths underwent structure refinement using constrained molecular dynamics, which

connects neighboring fragments in a path and relaxes the overall IDP structure. An initial

structure of a path was created by averaging the positions of the overlapping atoms (Fig 4A,

purple). Multiple rounds of minimization were performed using tapering harmonic restraints

to prevent excessive movement of fragments.

Refinement improved the protein-like nature of the combined fragments in a path. Before

refinement, only 50.4 (48.2)% of ligand Cα-Cα distances were between 3.75 and 4.0 Å in the

training (testing) set, which was improved to 92.3 (95.8)% by the refinement (S3A Fig) with a

small cost of deterioration of ligand RMSD (L-RMSD) for about half of the cases (S3B Fig). In

parentheses, results for the testing set are shown. Refinement improved both L-RMSD and

rank for some models, including the first hit for Bcl2-like protein 1 (Bcl2-L-1) and its antago-

nist (BAD; PDB ID 2bzw; Fig 4A). Originally, the path was ranked at 14 with a L-RMSD of

4.40 Å, which improved to rank 1 with L-RMSD 3.75 Å by the refinement.

Model re-scoring and selection

Finally, refined models were re-ranked and selected using a composite score of DFIRE [51],

ITScorePro [52], a molecular mechanics score [54], and GOAP [55] (Model Score). Model

Score selected hits at a higher rank than the single scores (S5 Table).

Model Score has moderate overall correlation to L-RMSD but often selected acceptable

models with low scores (Fig 5, left panel) and successfully identified hits in many cases as we

discuss in the next section. RMSD of IDPs only and L-RMSD of docked models only correlate

for models with an L-RMSD less than 10 Å (Fig 5, right panel).

Overall modeling performance

Tables 7 and 8 summarize prediction results on the training and testing sets, respectively, list-

ing the rank of the first acceptable model (RFH) (the criteria for an acceptable model are

shown in S1 Table) and fnat. On the training set (Table 7), IDP-LZerD produced at least one

hit within the top 1000 models for thirteen bound and eleven unbound targets, and Model

Score ranked hits within the top 10 for ten bound and five unbound cases. Notably, the rank 1

model was a hit for four complexes (three bound, one unbound). There was only one complex

where no hits were produced for both bound and unbound (2c1t/1bk5). On the testing set

(Table 8), IDP-LZerD produced at least one hit within 1000 models for almost all of the targets:

all eight bound and seven unbound targets, and one top 1 hit for both bound and unbound.

Fig 4. Complex between Bcl2-L-1 and BAD. (A): A model of the bound structure (2bzw) before (purple) and

after (orange) refinement vs. native (green). (B): Unbound (1pq0); blue-to-red (N-terminus on the left): native

BAD; rainbow: top 7 models of BAD.

https://doi.org/10.1371/journal.pcbi.1005485.g004
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These fractions of top 1000 hits are higher than on the training set. Hits were ranked in the top

10 for two bound and three unbound cases. The fraction of top 10 hits (2/8, 25%, for bound

cases) is lower than for the result observed on the training set (10/14, 71%), while higher for

unbound cases (3/8, 37.5%) than the training set (5/14, 35.7%).

Interestingly, for most of the cases in both training and testing set results, the acceptable

models have a high fnat, much higher than the 0.1 minimum for an acceptable model defined

by CAPRI (S1 Table). A high fnat indicates that binding positions of IDPs are well reproduced

in the models.

We also evaluated predictions in terms of the fraction of correctly placed ligand residues of

the top 10 models (BF10). Unsurprisingly, the fraction is high for cases with hits ranked in the

top 10. What is more interesting is that there are cases where targets that do not have any hits

Fig 5. L-RMSD vs Model Score and IDP RMSD. Inc: incorrect; Acc: acceptable; Med: medium. PDB ID:

2bzw.

https://doi.org/10.1371/journal.pcbi.1005485.g005

Table 7. Summary of modeling performance on training set.

Bound Unbound

PDB ID L RFH RFH-B fnat BF10 PDB ID RFH RFH-B fnat BF10

1ycrA 15 1 (1) 1 (1) 0.42 1.00 1z1mA 6 (320) 6 (316) 0.13 0.85

1fv1AB 20 6 6 0.31 0.85 4ah2AB 1 1 0.40 0.90

1wkwA 20 16 15 0.39 0.45 1ipbA 53 53 0.24 0.60

2cpkE 20 4 (4) 3 (3) 0.56 1.00 1j3hA 15 15 0.17 0.35

1sb0A 25 3 3 0.32 1.00 4i9oA 136 134 0.18 0.40

1sqkA 25 14 14 0.36 0.24 1ijjA 9 (63) 9 (63) 0.55 0.92

2bzwA 27 1 (1) 1 (1) 0.49 1.00 1pq0A - - - 0.22

3owtAB 27 6 5 0.33 0.90 3cz6AB 52 50 0.13 0.35

1devA 41 2 2 0.60 0.80 1khxA 16 16 0.22 0.59

1p4qB 44 5 5 0.27 0.82 1l3eB 3 3 0.25 0.86

1jpwA 45 1 (17) 1 (17) 0.38 0.92 2z6hA 2 2 0.23 0.83

1l8cA 51 33 (121) 32 (118) 0.26 0.57 1u2nA 16 16 0.32 0.71

2c1tA 51 - - - 0.06 1bk5A - - - 0.06

1xtgA 59 5 3 0.17 0.61 1xtfA - - - 0.24

RFH: rank of first acceptable (medium) hit; RFH-B: rank of first acceptable (medium) hit pre-filtered with BindML (S4 Fig); fnat: fraction of native contacts for

the first acceptable hit. BF10: in top 10, highest fraction of ligand Cα atoms with L-RMSD � 10 Å. Acceptable and medium defined in S1 Table.

https://doi.org/10.1371/journal.pcbi.1005485.t007
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within the top 10 nevertheless have substantial BF10, which indicate largely correct models are

ranked high. Such targets include 1wkw, 1l8c, 2o8g, and 1l2w from the bound targets and

1ipb, 4i9o, 1khx, and 1u2n from the unbound targets.

Fig 6 shows examples of four bound and four unbound complexes with acceptable or better

top 10 hits. The four bound cases shown, 1ycr, 2cpk, 3owt, and 1xtg, include two medium

quality hits, with RMSD at the interface (I-RMSD) below 2.0 Å (1ycr and 2cpk), and the IDPs

range in length from 15 to 59 amino acids. The four unbound cases, 4ah2, 1ijj, 1l3e, and 1jya,

have IDPs between 20 and 69 amino acids. In all these examples, binding sites of the receptor

proteins were accurately identified and overall docking structures were well predicted; often,

even the pitch of the helices was reproduced. These examples demonstrate that IDP-LZerD

can successfully select and combine docked fragments to produce accurate top 10 models for

IDPs, even for cases with well over 30 amino acids.

Using interface residue prediction

We also tested if binding residue predictions of receptor proteins is useful to improve model

selection (Table 7). We used BindML [56], which predicts binding site residues from their

mutation patterns. Models were first filtered by the agreement of binding residues to the

BindML prediction (S4 Fig); then, the selected models were ranked by Model Score. Using

BindML prediction (Table 7; RFH-B) did not make a large difference but slightly improved the

model selection performance for 10 cases without worsening any cases.

Influence of secondary structure prediction accuracy on final model

quality

In this section we evaluated the impact of secondary structure prediction on the quality of final

models in two ways. First, in S5 Fig we examined how the accuracy of the secondary structure

of residues influenced the accuracy of the residue position (Cα RMSD) in the models. In the

figure, for example, “HC” indicates cases where the native residue is helix and the modeled res-

idue is coil. It turned out that correctly predicted helix residues (class “HH”) have lower mean

Cα RMSD, e.g. are more accurate, than other classes (one-way ANOVA p = 1 × 10−35 and

Tukey’s range test).

Next, in S6 Fig, we addressed the influence of the secondary structure prediction agreement

on the Cα RMSD of residues. The X-axis shows the number of secondary structure prediction

Table 8. Summary of performance on test set.

Bound Unbound

PDB ID L RFH fnat BF10 PDB ID RFH fnat BF10

2w84A 20 3 (35) 0.54 0.90 5aonA 6 (40) 0.19 0.30

1axcA 22 104 0.18 0.28 1vymA 81 0.17 0.39

2pheAB 26 11 0.25 0.23 1pcfAB 15 0.29 0.23

1g0vA 31 1 (1) 0.65 1.00 1fmxA 1 (4) 0.29 1.00

3wn7A 35 111 0.15 0.00 1x2jA 343 0.28 0.13

1s70A 39 252 0.31 0.33 4ut2A - - 0.08

2o8gA 40 17 0.32 0.60 1jk7A 37 0.19 0.35

1l2wAB 69 321 0.25 0.70 1jyaAB 2 0.21 0.74

RFH: rank of first acceptable (medium) hit; fnat: fraction of native contacts for the first acceptable hit. BF10: in top 10, highest fraction of ligand Cα atoms with

L-RMSD� 10 Å. Acceptable and medium defined in S1 Table.

https://doi.org/10.1371/journal.pcbi.1005485.t008
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Fig 6. Examples of successful bound and unbound cases. Green: native IDP; orange: modeled IDP. a-d:

bound cases; e-h: unbound cases. a: Rank 1 model of MDM2 with bound P53 (PDB ID: 1ycr). fnat 0.42, I-RMSD

1.48 Å, L-RMSD 3.60 Å (medium quality). b: Rank 4 model of PKA C-αwith bound protein kinase inhibitor α (2cpk).

fnat 0.56, I-RMSD 1.95 Å, L-RMSD 4.41 Å (medium quality). c: Rank 6 model of RAP1 with bound SIR3 (3owt). fnat

0.33, I-RMSD 3.30 Å, L-RMSD 6.02 Å. d: Rank 5 model of BoNT/A with bound SNAP-25 (1xtg). fnat 0.17, I-RMSD

3.79 Å, L-RMSD 9.22 Å. e: Rank 1 model of DRA/DRB5 with unbound myelin basic protein (4ah2). fnat 0.39,
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methods that agree (e.g. consensus) on the correct secondary structure of residues and the Y-

axis is the Cα RMSD of residues in the models. Residues where none of the four secondary

structure prediction methods predict the correct secondary structure (consensus 0) have

higher (worse) mean Cα RMSD than other residues (one-way ANOVA p = 1 × 10−11 and

Tukey’s range test). Thus, we see some influence of the accuracy of predicted secondary struc-

ture to the quality of the final model with statistical significance, but as seen from the figures,

difference was not very large. In IDP-LZerD, the fragment generation procedure creates frag-

ments of all three secondary structure classes even if none of the methods predict the correct

class to minimize the impact of incorrect secondary structure prediction.

Comparison with existing methods

To further examine performance of IDP-LZerD, we compared modeling results with other

methods. While no other methods are designed to model complexes involving long IDPs,

some peptide-protein modeling software can use relatively long peptides. We compared

IDP-LZerD with CABS-dock [27] and pepATTRACT [26], because as seen in Table 1, these

two do not require the binding site as input and the programs are available for us to run. The

CABS-dock web server outputs 10 docking models for a peptide up to 30 amino acids while

the pepATTRACT web server outputs 50 docking models and does not explicitly limit the

length of the peptide. The performance was compared on the eleven bound and unbound

complexes with IDPs up to 30 amino acids in Tables 2 and 3.

Within the top 10, CABS-dock had hits for six bound cases and four unbound cases,

pepATTRACT had hits for three bound cases and one unbound case, and IDP-LZerD had hits

for seven bound and four unbound cases (Table 9). The longest IDP successfully modeled by

I-RMSD 2.46 Å, L-RMSD 5.83 Å. f: Rank 9 model of α-actin-1 with unbound Cibulot (1ijj). fnat 0.55, I-RMSD 2.51 Å,

L-RMSD 5.15 Å. g: Rank 3 model of Cbp/p300 with unbound CITED2 (1l3e). fnat 0.25, I-RMSD 6.31 Å, L-RMSD

7.43 Å. h: Rank 2 model of SycE with unbound YopE (1jya). fnat 0.21, I-RMSD 5.44 Å, L-RMSD 9.97 Å.

https://doi.org/10.1371/journal.pcbi.1005485.g006

Table 9. Performance comparison of IDP-LZerD to CABS-dock and pepATTRACT on� 30 amino acid IDPs.

Bound Top 10 hits Unbound Top 10 hits

PDB ID L CABS-dock pepATTRACT IDP-LZerD PDB ID CABS-dock pepATTRACT IDP-LZerD

1ycrA 15 4 7/4** 5/4** 1z1mA 4 - 2

1fv1AB 20 2 1 1 4ah2AB 1 2 7

1wkwA 20 - - - 1ipbA - - -

2cpkE 20 2 - 1/1** 1j3hA - - -

2w84A 20 3/1** - 2 5aonA 6/1** - 1

1axcA 22 - 1 - 1vymA - - -

1sb0A 25 1 - 3 4i9oA - - -

1sqkA 25 - - - 1ijjA - - 1

2pheAB 26 1 - - 1pcfAB 2 - -

2bzwA 27 - n/a 7/5** 1pq0A - n/a -

3owtAB 27 - - 1 3cz6AB - - -

Total hits 6/1** 3/1** 7/3** 4/1** 1 4

Table only includes complexes with IDPs up to 30 amino acids because the CABS-dock web server has a maximum length of 30 residues. n/a indicates that

pepATTRACT did not run due to missing receptor residues.—indicates no hits in the top 10.

** indicates medium-quality hits. For example, 5/4** indicates that out of the top 10 models, 5 acceptable models were produced, among which 4 of them

had medium quality. The CABS-dock web server outputs 10 models and pepATTRACT outputs 50 models (results are shown for the first 10).

https://doi.org/10.1371/journal.pcbi.1005485.t009
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CABS-dock was 26 amino acids and the longest IDP successfully modeled by pepATTRACT

was 22 amino acids. In contrast, IDP-LZerD had top 10 hits for the longest IDPs in this table

(27 amino acids; Table 9) in addition to even longer IDPs in the full dataset (Tables 7 and 8).

Therefore, overall IDP-LZerD showed better performance than the two methods compared.

In addition, we compared the performance of IDP-LZerD to the previously published

results of MD-based peptide-protein modeling methods [17–19]. The protein-peptide com-

plexes used in their literature range from 2–15 amino acids. Among their datasets, we ran

IDP-LZerD on all cases with 11 or more amino acids and unbound receptors, for a total of

eight cases (S6 Table). IDP-LZerD produced acceptable models in the top 10 for five out of

eight cases with a sixth case having an acceptable model at rank 306 (Table 10). For the two

cases with no hits, 2am9 and 1b9k, paths with 5 Å RMSD were created in Step 3 (Fig 1) but not

selected for refinement. IDP-LZerD and AnchorDock produced the same number of hits, but

the models produced by AnchorDock have a lower RMSD. The results indicate an advantage

of MD over coarse-grained approach for short peptides. They also suggest a potential improve-

ment of IDP-LZerD by employing MD for the initial fragment-docking step, although it

would take significantly more computational time than the current procedure.

Case studies

In addition to the other successful cases, we chose four cases to discuss, which illustrate the use-

fulness of IDP-LZerD models. In some disordered PPIs, the IDP forms secondary structure in

the bound form that is not seen in isolation. The interaction between β-catenin and Transcrip-

tion factor 7-like 2 (TCF7L2), which is involved in the Wnt signal transduction pathway, is

such an example. In isolation, TCF7L2 exhibits circular dichroism spectra consistent with 96%

random coil and 4% β-sheet, indicating that it is intrinsically disordered [57]. In contrast, the

crystal structure of the complex (1jpw) shows a C-terminal helix (residues 40–50), which was

correctly predicted by the secondary structure methods and many models by IDP-LZerD. For

both bound (1jpw) and unbound (2z6h) receptors, the overall complex was well-modeled

(RMSD at the interface, I-RMSD: 2.85 Å for bound and 4.50 Å for unbound) with the structure

and location of the C-terminal helix and hotspot residue Leu48 (full atom L-RMSD 1.43 Å) pre-

dicted very well in the bound case (Fig 7A). Interestingly, among 1000 docking models gener-

ated, Leu48 was the most frequent contact in both the bound and unbound cases, appearing in

Table 10. Performance of IDP-LZerD on� 11 amino acid protein-peptide complexes from MD test sets.

Unbound Anchordocka Dagliyanb IDP-LZerD

PDB ID L Rank RMSD (Å) fnat RMSD (Å) Rank RMSD (Å) fnat

2am9 15 14 2.2 0.81 n/a - - -

1jbe 15 3 1.5 0.82 10.5 1 (83) 8.9 (6.2) 0.23 (0.64)

2j2i 14 - - - n/a 9 (42) 8.2 (4.7) 0.13 (0.31)

1oot 12 3 1.7 0.77 n/a 1 (295) 7.5 (3.6) 0.30 (0.70)

2aa2 12 1 2.0 0.81 n/a 306 5.0 0.28

1i7g 12 4 2.2 0.73 n/a 1 (11) 6.0 (4.39) 0.28 (0.39)

1b9k 12 - - - n/a - - -

1rwz 11 6 1.3 0.74 5.77 3 6.9 0.26

a: Values from Table 2 in [19];
b: values from Table 1 in [18].

For IDP-LZerD, results are shown for the first acceptable (medium) hit. Dash (-) indicates no hits; n/a indicates that the complex was not part of the dataset.

All RMSD values are for ligand backbone atoms.

https://doi.org/10.1371/journal.pcbi.1005485.t010
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Fig 7. Biological case studies. A: β-catenin in complex with TCF7L2. Green: native TCF7L2; orange: rank 1

model of TCF7L2; fnat 0.38, I-RMSD 2.85 Å, L-RMSD 7.94 Å. PDB ID: 1jpw. B-E: Human and mouse Cbp/

p300 TAZ1 domain in complex with CITED2 and Hif-1α. Green/cyan: native CITED2/Hif-1α; orange/yellow:

model CITED2/Hif-1α. Ball and stick: LPXL motif. B-C: Human TAZ1 and CITED2. B: bound (1p4qB); rank 5

model; fnat 0.27, I-RMSD: 4.2 Å, L-RMSD: 7.6 Å. C: unbound (1l3eB); rank 9 model; fnat 0.17, I-RMSD: 7.1 Å,

L-RMSD: 9.6 Å. D-E: Mouse TAZ1 and Hif-1α. D: bound (1l8cA); rank 16 model; fnat 0.05, I-RMSD 11.7 Å,

L-RMSD 20.1 Å. E: unbound (1u2nA); rank 9 model; fnat 0.20, I-RMSD 6.4 Å, L-RMSD 10.4 Å. F: Unbound

complex between BoNT/A and sn2. Green: native sn2; orange: rank 1 model of sn2; fnat 0.00, I-RMSD 15.7 Å,

L-RMSD 38.2 Å. Receptor PDB ID 1xtfA (unbound).

https://doi.org/10.1371/journal.pcbi.1005485.g007
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956 models for bound and 944 models for unbound, compared to an average of 685 and 696,

respectively (S7 Fig). There are two more experimentally verified hotspot residues in the IDP,

Glu17 and Asp16 [57]. Glu17 was in contact with the receptor in both bound and unbound

cases in more than the average number of models, but Asp16 did not stand out (S7 Fig).

The next examples are complexes between CREB-binding protein (Cbp)/p300 TAZ1

domain and its disordered regulator proteins, hypoxia inducible factor 1-α (HIF-1α) and its

competitive inhibitor, Cbp/p300-interacting transactivator 2 (CITED2). HIF-1α and CITED2

are different lengths, have only 12.5% sequence identity, and bind differently to the Cbp/p300

TAZ1 domain (in Fig 7B, the N-terminus of CITED2 is at the bottom right while in panel D

the N-terminus of HIF-1α is at the bottom left. The TAZ1 domain is shown in the same orien-

tation in all panels). Nevertheless, the IDPs share a conserved binding motif (LPEL in

CITED2, LPQL in Hif-1α, referred as LPXL) [58]. We docked two complexes: CITED2 with

human TAZ1 (bound, 1p4q) and HIF-1α with mouse TAZ1 (bound, 1l8c; unbound, 1u2nA).

Because the human TAZ1 domain does not have an available unbound structure, we used its

structure in complex with HIF-1α (1l3eB) for the unbound case, which has a binding site

RMSD of 5.11 Å to the bound form with CITED2. Remarkably, the prediction was accurate

not only for the bound (Fig 7B), but also for the unbound case (Fig 7C). Both leucines in the

LPXL motif, Leu243 and Leu246, were experimentally verified as hotspot residues by mutagen-

esis [59], but differ in contact consensus among the 1000 models. Leu243 has above-average

counts (rank 11, 814 models, average 679 for bound and rank 8, 851 models, average 713 for

unbound) while Leu246 has below-average counts (rank 36, 571 models for bound and rank

40, 486 models for unbound; S8 Fig). For the mouse homolog, the bound case had no model

under 12.6 Å L-RMSD in the top 10. The rank 16 model shown had L-RMSD 20.1 Å, but the

LPXL motif is located roughly at the correct position (Fig 7D). The unbound case had no

model with L-RMSD under 10.4 Å in the top 10. However, HIF-1α was bound to almost the

right location in the rank 9 model (Fig 7E), where the fraction of correctly placed ligand resi-

dues was 0.71 and the L-RMSD of the LPXL motif was 3.7 Å. In addition, the residue Leu795,

which was experimentally determined to be a hotspot residue [60], has high contact consensus

for both bound and unbound (rank 5, 911 models, average 734 for bound and rank 8, 881

models, average 694 for unbound; S9 Fig) in the final 1000 models. Thus, in these four models

the IDPs were bound almost at the correct place with the LXPL motif predicted particularly

well.

Finally, we discuss two cases where predictions did not yield acceptable quality models. The

first case is the complex between Bcl2-like protein 1 (Bcl2-L-1) and Bcl2-associated Antagonist

of cell Death (BAD). While the bound receptor had an excellent result with a medium quality

model at rank 1 (2bzw; Table 7, Fig 4a), the unbound receptor (1pq0) had no hits. However,

visual inspection of the top-ranked models shows that the rank 1 to 7 models have a correct

IDP conformation and binding site; however, the IDP is rotated by 180˚ within the binding

site (Fig 4b). Thus, the scoring functions detected a region of affinity but lacked the specificity

to distinguish the correct orientation.

The last example is a complex between botulinum neurotoxin type A (BoNT/A) and the N-

terminal SNARE domain of SNAP25 (sn2). BoNT/A causes paralysis by cleaving SNARE pro-

teins which impairs neuronal exocytosis [61]. Using the bound receptor (PDB ID: 1xtgA), the

structure was correctly predicted at rank 5 (Fig 6d). However, with the unbound receptor

(1xtfA), no hits were found. In the rank 1 model of the unbound case, while the IDP shows a

substantial registration shift, the model occupies 32.6% of the binding groove (top in Fig 7F;

measured by the number of receptor residues within 5 Å of both IDPs). Thus, even in cases

where no hits are produced, the produced models are reasonable and capture characteristic

binding modes of IDPs on their receptors.
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Discussion

The current study presents for the first time that PPIs with long IDPs can be modeled with rea-

sonable accuracy. By taking advantage of the crucial observation that disordered proteins tend

to bind in continuous segments, the procedure is not only more computationally feasible but

also functions similarly to the biophysical mechanism of IDP association. The prediction by

IDP-LZerD was successful for the majority of the complexes tested, including unbound cases.

The study further observed that the correct conformation of IDPs are often identified by evalu-

ating docking scores with receptor proteins.

A major challenge in modeling IDP interactions is the existence of fuzziness, where the IDP

continues to exhibit multiple conformations in the bound state [11]. Two cases in the dataset

we used are listed as fuzzy complexes in the FuzDB [11]: 1g0v (FuzDB ID FC0018) and 3wn7

(FuzDB ID FC0076). IDP-LZerD managed to obtain a rank 1 medium hit for 1g0v (Table 8),

while for 3wn7 IDP-LZerD produced an acceptable model at a low rank. It is particularly chal-

lenging to predict complexes where an IDP binds with two or more regions separated by loop

regions that do not have direct contact its receptor (clamp complexes [10]), because IDP-

LZerD is based on the assumption that each segment of the IDP is in contact with the receptor.

There are several other potential areas of improvement for the method. Docking larger frag-

ments in cases where the structure of the fragments can be predicted with confidence could

improve accuracy. It is also interesting to employ a coarse-grained model such as CABS [62]

for generating fragment conformations and for more efficient structure refinement. In addi-

tion, explicit consideration of receptor flexibility could improve performance, although the

soft surface representation used by LZerD already accounts for some degree of receptor flexi-

bility. A key feature would be the ability to handle phosphorylated residues, as IDPs are fre-

quently sites of post-translational modification and some complexes. This would require

consideration of the effect of phosphorylation on secondary structure in addition to modifica-

tion of the docking and scoring protocols. Another potential area of improvement is to guide

docking by considering known or predicted hotspot residues on both IDPs and receptor pro-

teins. Methods that could detect hotspots include computational alanine scanning [63] or

applying a statistical scoring function [51, 52] on a per-residue basis. Alternatively, as we

showed in the case studies (S7, S8 and S9 Figs) some promise was shown that hotspot residues

could be predicted by taking consensus binding sites from ensembles of docking models.

Accurate detection of hotspot residues could also lead to improved performance for fuzzy

complexes, particularly the clamp class where two or more stably bound regions of the IDP are

separated by fuzzy regions.

Disordered PPIs are involved in important roles in various pathways and diseases. Overall,

the work opens up a new possibility of modeling disordered protein interactions, providing

structural insights for understanding the molecular mechanisms and malfunctions of these

interactions, which are difficult to obtain by both experimental means and conventional

computational protein docking methods.

Methods

Selection of datasets of protein complexes

Protein complexes containing IDPs with diverse functions and lengths were selected for devel-

oping and testing IDP-LZerD. Candidate complexes were found from reviews of disordered

protein complexes [2, 6]. In addition, cases were found in databases of eukaryotic linear motifs

(ELMs) [53] and fuzzy complexes (FuzDB) [11]. For each case, disorder was verified by search-

ing the literature for experimental evidence and DisProt [13] for a corresponding entry (if
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available). Each PDB file was visually inspected and the case was removed if the residues anno-

tated as disordered were missing or phosphorylated. The remaining proteins were divided into

a training set of 14 complexes (Table 2) and a test set of 8 complexes (Table 3). For bound

complexes, unbound structures of the receptor, which were solved without the IDP, were

found by searching PDB entries of the same UniProt ID as the receptor protein(s). Docking

using an unbound structure of the receptor protein would be more similar to a realistic sce-

nario where the bound structure is unknown. If no PDB entries had the same UniProt ID,

PDB entries with 90–100% sequence identity were used. Gaps of up to 16 amino acids were

rebuilt using MODELLER [43].

In addition to the bound and unbound dataset described above, an additional dataset of

9-residue intrinsically disordered region (IDR) fragments was constructed from the database of

eukaryotic linear motifs (ELM) [53]. To select disordered fragments, 442 proteins with struc-

tures in the PDB were cross-referenced against DisProt [13] using the Uniprot [64] ID, yielding

26 candidate complexes. By manual inspection of the PDB files, cases were removed if they

were redundant (using PISCES [65] with a 25% sequence identity cutoff) with the full-length

training set (Table 2; 5 cases), other proteins within the set (6 cases), phosphorylated (4 cases),

only had one chain (2 cases), or had fewer than 9 residues around the ELM resolved (4 cases).

In addition, cases were added using other chains (1 case) or adjacent to the ELM and also anno-

tated as disordered (5 cases). The 11 cases of 9-residue fragments are listed in Table 5.

IDP fragment structure prediction

For each IDP sequence, we provided four independent secondary structure predictions, from

PSIPRED [47], JPRED [44], Porter [45], and SSPro [46], each of which was used separately to

generate one fourth of the fragments output by Rosetta Fragment Picker (RFP). RFP was con-

figured to output 30 fragments for a window (S1 Fig). RFP produces fragments of each second-

ary structure class in proportion to its confidence score. For predictions by Porter and SSPro,

which do not output confidence scores, we used 0.67 for the predicted secondary structure

class and 0.15 for the other classes. Thus, fragments of all three secondary structure classes are

obtained even in cases where the secondary structure prediction has strong consensus for one

class. From the Cα coordinates of a fragment produced by RFP, the full atom backbone and

side-chains were constructed using Pulchra [66] and OSCAR-star [67, 68], respectively.

Docking fragments to receptor

LZerD is a shape-based, rigid body docking algorithm [35]. For two input protein structures,

LZerD generates many docking poses by geometric hashing and evaluates docking models

using a scoring function that considers surface shape matching. Surface shape complementar-

ity is evaluated using a mathematical surface descriptor, 3D Zernike Descriptor (3DZD) [69,

70]. Since 3DZD controls the level of surface smoothness, some degree of protein flexibility is

considered in LZerD. 50,000 docking models were generated by LZerD for each fragment

structure. Docked fragments were clustered with an RMSD cutoff of 4.0 Å and cluster centers

were chosen using the LZerD score. The cluster centers were scored with ITScorePro [52] and

the top 1,000 scoring fragments were pooled for each of 30 fragments of a window. Out of the

30,000 (1,000�30) docked fragments for each window, 4,500 docked fragments with the lowest

DI score (the sum of the Z-scores of ITScorePro and DFIRE [51]) were kept (S3 Table).

Combining docked fragments

By choosing one docked fragment from each window, conformations of the full length IDP,

referred to as paths, were created. Prior to the path search, distance and angle cutoffs (Fig 8)
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were applied to remove physically improbable pairs of docked fragments. Distance cutoffs

were determined heuristically from the observed distributions in IDPs in DisProt [13] (S10

Fig). Docked fragment pairs from all pairs of windows were removed from consideration if

they are too close, i.e. an atom distance less than 3 Å or fragment midpoint distance less than

6.5 Å for neighboring windows and 3.8 Å otherwise. Pairs were also removed if their midpoint

residues are too distant, more than 18.5 Å times the separation between the windows (e.g. 2 for

windows A and C). Also, to ensure that fragments from neighboring windows can be con-

nected in the refinement stage, pairs are removed if they do not satisfy the following criteria:

the overlap residue distance (min. 5.2 Å, max. 13.6 Å), the overlap atom pair distances (max. 6

Å for all atoms or 10 Å for any atom), and the overlap angle (cos θ� 0.1 so that only smoothly

connected turns are included).

Paths were assembled by first combining allowed pairs of docked fragments from the first

two sequence windows and clustering them with a cutoff of 4.0 Å. Paths were extended to

three windows, clustered again, and this process was repeated until all windows were added.

Path scoring

A path was evaluated by Path Score, a linear combination of the Z-scores of four component

scores: energy score (SE), overlap score (SO), cluster size (SC), and receptor score (SR):

Spath ¼ w5 w1ZðSEÞ þ w2ZðSOÞ þ w3Zð� SCÞ þ w4Zð� SRÞð Þ

þð1 � w5ÞminfZðSEÞ; ZðSOÞ; Zð� SCÞ; Zð� SRÞg
ð1Þ

where Z represents the Z-score across all paths in one complex. The lowest Z-score among the

scores was included as an additional term because in some cases a good model is only detected

by some of the scores. SC and SR are inverted so that a low Path Score is a favorable score. SE is

the average of the binding scores (DI score) of docked fragments in the path. SO is the average

of mean square distance (MSD) between the overlapping residues between consecutive

Fig 8. Fragment geometry subject to cutoffs. Midpoint distance: between the Cα atoms of the middle

residues of two fragments; overlap distance: between the Cα atoms of the residues before and after the

overlapping residues; overlap pair distance: between the corresponding N, Cα, Cβ, and C atoms of the three

overlapping residues; overlap angle: formed by the vectors from the N atom of the first overlapping residue to

the C atom of the third overlapping residue.

https://doi.org/10.1371/journal.pcbi.1005485.g008
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fragments:

SO ¼

PjWj� 1

n¼1
MSDðnÞ

jWj � 1
;where ð2Þ

MSDðnÞ ¼
Xv

r¼1

X

a2A

jjXn;rþl� v;a � Xnþ1;r;ajj
2

v � jAj
ð3Þ

and W is the set of windows, A is a set of N, Cα, Cβ, and C atoms of an overlapping residue, v is

the overlap size (=3), l is the window length (=9), and Xn,r,a is the 3D coordinates of atom a of

residue r of the docked fragment for window n. The Cβ atom is included in the computation of

SE to account for rotational as well as translational congruency. For glycine, a virtual Cβ was

constructed. SC is defined as the number of members in the path’s cluster. SR for a path consid-

ers whether the IDP binds to surface regions of the receptor that are also bound by other

paths. For a surface residue of the receptor, the number of paths that bind to the residue (mini-

mum heavy atom distance� 5.0 Å) was counted (called the number of occupying paths, Nop),

and SR of a path is defined as the sum of Nop of the binding residues of the path.

Weights were trained using a grid search from 0.1 to 1.0 with an increment of 0.1 and
P4

1
w ¼ 1. The weight for the lowest Z-score, w5, was trained in a second grid search. Weights

were chosen that maximized the minimum recall of the targets used (S4 Table). Recall is the

number of hits retrieved by a given score divided by the total number of hits. Hits were defined

as paths having pooled RMSD� 10 Å. The pooled RMSD for a given path is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n2W d2
n=jWj

p
where W is the set of windows and dn is the backbone L-RMSD of the docked

fragment for window n, computed using only residues present in the crystal structure. The

final weights for w1 through w5 were 0.5, 0.1, 0.3, 0.1, and 0.3 (Eq 1), with minimum recall of

2.8%. In addition, to validate the trained weights, we further performed a 2-fold cross valida-

tion by splitting the training dataset (Table 2) into two groups. The results are shown in S7

Table. The weights obtained by training on group 1 were 0.4, 0.3, 0.2, 0.1, and 0.1. The mini-

mum recall observed on the group 2 set when predicted by using these weights was was 2.4%

(obtained for 1j3hA). The weights obtained on group 2 were 0.3, 0.2, 0.4, 0.1, and 0.1, and the

minimum recall when applied to the group 1 targets was 1.1%, observed for both 1devA and

1khxA. Thus, the final weights used in this study and the minimum recall were not largely dif-

ferent from what was observed in the 2-fold cross validation. For each complex, the 1000 paths

with the lowest Path Score were kept for refinement, described in the next section.

Refinement

The selected paths were refined using molecular dynamics simulation. FACTS implicit solva-

tion [71] was used. For minimization, all atoms of the receptor were fixed. With the ligand

under a harmonic constraint of 50 kcal/mol/Å2, the complex was minimized using 100 steps of

the steepest descent (SD) algorithm followed by 100 steps of the adopted basis Newton-Raph-

son algorithm (ABNR). This was followed by four rounds of 100 steps of ABNR minimization

with ligand constraints of 40, 30, 20, and 10 kcal/mol/Å2. Next, the constraints were only

placed on the backbone atoms of the ligand. Three rounds of 100 steps of ABNR minimization

were run with ligand backbone constraints of 10, 5, and 1 kcal/mol/Å2. The final minimization

round was 5000 steps of ABNR minimization with no ligand constraints. Finally, the structure

was equilibrated for 40 ps using a 2 fs timestep, fixed hydrogen covalent bond lengths, and a

harmonic constraint of 10 kcal/mol/Å2 on all Cα atoms. The molecular dynamics simulation

protocol was performed using CHARMM [72] but will also run using the academic free
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version charmm and could be implemented using other standard molecular dynamics soft-

ware that implements harmonic constraints.

Model re-scoring

Refined models were re-ranked using Model Score, an integrated score of ITScorePro [52],

DFIRE [51], a molecular mechanics score [54], and GOAP [55]:

Smodel ¼ w5 w1ZðITScoreProÞ þ w2ZðDFIREÞ þ w3ZðMolMechÞ þ w4ZðGOAPÞð Þ

þð1 � w5ÞminfZðITScoreProÞ; ZðDFIREÞ; ZðMolMechÞ; ZðGOAPÞg
ð4Þ

The lowest Z-score among the scores was included as an additional term because in some

cases a good model is only detected by some of the scores. Weights were trained using a grid

search with increments of 0.1 and
P4

1
w ¼ 1. The weight for the lowest Z-score, w5, was

trained in a second grid search. Weights were chosen that minimized the mean rank of first hit

(RFH) across all complexes used (S5 Table). Hits were determined following the CAPRI crite-

ria [39]. RFH is the numerical rank of the first model with CAPRI classification of acceptable

or higher quality (S1 Table). The final weights for w1 through w5 were 0.1, 0.2, 0.3, 0.4, and 0.3

(Eq 4), with mean RFH of 11.3. To further confirm the validity of the trained weights, we per-

formed an additional 2-fold cross validation (S7 Table). The weights obtained on the group 1

set were 0.2, 0.4, 0.1, 0.3, and 0.3 and the mean RFH observed on the group 2 set when the pre-

dictions were made using the group-1 weights was 16.5. The second group weights were 0.4,

0.1, 0.1, 0.4, and 0.1 and the mean RFH observed on the group 1 set by using the second group

weights was 16.4. RFH values obtained from this 2-fold cross validation (S7 Table) were very

similar to the values reported in Table 7, which indicates that the final weights were reasonably

trained and capture the score landscape of the docking models well: out of 28 targets, RFH

results were either the same or within a difference of 5 ranks for 22 targets.

Computational time and availability

Docking one fragment to a receptor structure takes 2–4 hours on a single CPU. Thus, the

docking step (step 2 in Fig 1) takes about 120 CPU hours for a small receptor with a short IDP

and as many as 1000 CPU hours for a large receptor with a long IDP. The path assembly step

(step 3) takes between 3 and 9 CPU hours. Finally, the refinement step (step 4) takes between 4

and 6 CPU hours per model. LZerD is available for download at http://www.kiharalab.org/

proteindocking/lzerd.php. IDP-LZerD is available for download at http://www.kiharalab.org/

proteindocking/idp_lzerd.tar.bz2

Supporting information

S1 Fig. The minimum RMSD of the fragments generated by Rosetta Fragment Picker for

each window of 1devB. Results for each of the six windows of 1devB are plotted in different

colors. Blue: window 1; green: 2; red: 3; purple: 4; yellow: 5; cyan: 6. The RMSD is computed

using all atoms. The minimum RMSD decreases only modestly as more fragments are picked.

(TIF)

S2 Fig. Reduction of the search space by the pre-filtering and clustering procedures. The x-

axis shows the stage of path assembly and the y-axis shows the total number of paths remaining

to consider. The number of possible paths was reduced by pre-filtering improbable pairs of

docked fragments (Fig 8) and clustering paths. The maximum number of paths is 4500N,

where 4,500 is the number of docked fragments for a window and N is the number of win-

dows. 2P shows the number of 2-window pairs that were not pre-filtered multiplied by the
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remaining possible combinations (4500N−2). 2C shows the number of 2-window cluster cen-

ters multiplied by the remaining possible combinations, and so on. Thus, the decrease in possi-

ble paths from Max to 2P is due to pre-filtering while the decrease from 2P to 2C is due to

clustering. Data from six targets, 1l2w, 1bk5, 1l3e, 1axc, 4ah2, and 1ycr, are shown.

(TIF)

S3 Fig. Results of the structure refinement. (A): Cα distances of neighboring residues before

(red) and after (blue) refinement. Bars are in purple when red and blue bars overlap. Data

taken from rank 1 models of all training complexes. (B): Change in L-RMSD (Å) due to refine-

ment. Data from all training complexes.

(TIF)

S4 Fig. Using BindML binding site residue prediction for model pre-filtering. (A): Effect of

BindML score cutoff values on prediction accuracy. In BindML, a confidence score is provided

for each predicted binding site residue, with a smaller (more negative) value more confident.

Blue: precision; green: recall; red: F1-score. Vertical lines show 95% confidence interval of the

mean. Prediction results are taken from all bound training complexes. The plot shows that the

F1-score of the BindML prediction increased as the cutoff became more permissive since recall

increased dramatically while precision stayed at almost the same level. Residues with a BindML

Z-score� −0.25 were considered as interface. (B): L-RMSD of models relative to the agree-

ment of predicted interface residues and model interface residues. For models of a target (after

step 4), the fraction of BindML predicted receptor interface residues that are located at the

interface in the model (fBindML) was computed. Then, the models were sorted by the Z-score of

this fraction among all the paths of the target (Z(fBindML)). In the model selection using

BindML prediction, paths that have a Z-score of 1.5 or larger were selected as a pre-filtering

step. The panels show examples of correlation between Z(fBindML) and L-RMSD. A weak

inverse correlation was observed for 1p4qBA (left) and 1sqkAB (center) but the procedure did

not work for 1ipbAB (right).

(TIF)

S5 Fig. Effect of secondary structure accuracy on overall accuracy. X-axis: secondary struc-

ture for a residue in the native structure and the model; e.g. “HC” means the native structure is

helix and the model is coil. Y-axis: Cα RMSD of the residue. Star (�) indicates the mean. Group

means are significantly different by one-way ANOVA (p = 1 × 10−35). Using Tukey’s range

test, Cα RMSD is significantly lower for HH than HC, CH, and CC and Cα RMSD is signifi-

cantly lower for HC than CC and CH. Secondary structure computed using DSSP [48]. DSSP

classes GHI are considered H, EB are considered E, and all others are considered C. We did

not include bars with E because only 12 residues were classified as E. Computed using the top

10 models of 1ycrB, 1fv1C, 1wkwB, 2cpkI, 1sb0B, 1sqkB, 2bzwB, 3owtC, 1devB, 1l8cB, and

1xtgB.

(TIF)

S6 Fig. Effect of secondary structure prediction agreement on overall accuracy. X-axis: the

number of methods that predict the secondary structure class shown in the native. Y-axis: Cα

RMSD of the residues. Star (�) indicates the mean. Group means are significantly different by

one-way ANOVA (p = 1 × 10−11) Using Tukey’s range test, Cα RMSD is significantly higher

for 0 than 2, 3, and 4. Computed using the top 10 models of 1ycrB, 1fv1C, 1wkwB, 2cpkI,

1sb0B, 1sqkB, 2bzwB, 3owtC, 1devB, 1l8cB, and 1xtgB.

(TIF)
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S7 Fig. Frequency of IDP contacts between TCF7L2 and β-catenin. For each plot, the x-axis

lists all residues in the IDP and the y-axis shows the number of models in the final 1000 where

that IDP residue is in contact with the receptor (5 Å cutoff distance). Gray bars indicate experi-

mentally verified hotspot residues. Horizontal line shows the mean number of models. Top:

bound (1jpw); bottom: unbound (2z6h).

(TIF)

S8 Fig. Frequency of IDP contacts between CITED2 and p300. For each plot, the x-axis lists

all residues in the IDP and the y-axis shows the number of models in the final 1000 where that

IDP residue is in contact with the receptor (5 Å cutoff distance). Gray bars indicate experimen-

tally verified hotspot residues. Horizontal line shows the mean number of models. Top: bound

(1p4q); bottom: cross-docking (1l3e).

(TIF)

S9 Fig. Frequency of IDP contacts between HIF-1α and p300. For each plot, the x-axis lists

all residues in the IDP and the y-axis shows the number of models in the final 1000 where that

IDP residue is in contact with the receptor (5 Å cutoff distance). Gray bars indicate experimen-

tally verified hotspot residues. Horizontal line shows the mean number of models. Top: bound

(1l8c); bottom: unbound (1u2n).

(TIF)

S10 Fig. Distance distributions observed in structures annotated as disordered in DisProt.

These were used to heuristically determine distance cutoffs for pairs of docked fragments (Fig

8). Vertical lines indicate minimum and maximum allowed values for the color-matched dis-

tribution. Top: distances corresponding to neighboring sequence windows. Separation 4

(green) is overlap atom distance, 5.2 Å� d� 13.6 Å. Separation 6 (blue) is midpoint residue

distance, 6.5 Å� d� 18.5 Å. Bottom: distances corresponding to non-neighboring sequence

windows. Separation 12 (purple) is the midpoint residue distance for a window separation of 2

(i.e. window A and C), 3.8 Å� d� 37 Å. Separation 18 (red) is the midpoint residue distance

for a window separation of 3 (i.e. A and D), 3.8 Å� d� 55.5 Å.

(TIF)

S1 Table. Accuracy cutoffs used by CAPRI.

(PDF)

S2 Table. Minimum RMSD at each step of modeling.

(PDF)

S3 Table. Scoring function performance on docked fragments.

(PDF)

S4 Table. Scoring function performance on selecting paths.

(PDF)

S5 Table. Scoring function performance on relaxed models.

(PDF)

S6 Table. MD-based protein-peptide docking test set.

(PDF)

S7 Table. 2-fold cross validation for optimizing Path and Model Scores.

(PDF)
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20. Hetényi C, van der Spoel D. Efficient docking of peptides to proteins without prior knowledge of the bind-

ing site. Protein Sci. 2002; 11(7):1729–1737. https://doi.org/10.1110/ps.0202302 PMID: 12070326

21. Yan C, Xu X, Zou X. Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Pre-

diction. Structure. 2016; 24(10):1842–1853. https://doi.org/10.1016/j.str.2016.07.021 PMID: 27642160

22. Liu Z, Dominy BN, Shakhnovich EI. Structural Mining: Self-Consistent Design on Flexible Protein-Pep-

tide Docking and Transferable Binding Affinity Potential. J Am Chem Soc. 2004; 126(27):8515–8528.

https://doi.org/10.1021/ja032018q PMID: 15238009

23. Raveh B, London N, Schueler-Furman O. Sub-angstrom modeling of complexes between flexible pep-

tides and globular proteins. Proteins: Struct, Funct, Bioinf. 2010; 78(9):2029–2040.

24. Raveh B, London N, Zimmerman L, Schueler-Furman O. Rosetta FlexPepDock ab-initio: Simultaneous

folding, docking and refinement of peptides onto their receptors. PLoS One. 2011; 6(4):e18934. https://

doi.org/10.1371/journal.pone.0018934 PMID: 21572516

25. Trellet M, Melquiond ASJ, Bonvin AMJJ. A Unified Conformational Selection and Induced Fit Approach

to Protein-Peptide Docking. PLoS One. 2013; 8(3). https://doi.org/10.1371/journal.pone.0058769

PMID: 23516555

26. Schindler CEM, de Vries SJ, Zacharias M. Fully Blind Peptide-Protein Docking with pepATTRACT.

Structure. 2015; 23(8):1507–1515. https://doi.org/10.1016/j.str.2015.05.021 PMID: 26146186

27. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S. CABS-dock web server for the flexible

docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015; 43

(W1):W419–W424. https://doi.org/10.1093/nar/gkv456 PMID: 25943545

28. Ben-Shimon A, Eisenstein M. Computational Mapping of Anchoring Spots on Protein Surfaces. J Mol

Biol. 2010; 402(1):259–277. https://doi.org/10.1016/j.jmb.2010.07.021 PMID: 20643147

29. Trabuco LG, Lise S, Petsalaki E, Russell RB. PepSite: prediction of peptide-binding sites from protein

surfaces. Nucleic Acids Res. 2012; 40(W1):W423–W427. https://doi.org/10.1093/nar/gks398 PMID:

22600738

30. Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, et al. Detection of peptide-bind-

ing sites on protein surfaces: The first step toward the modeling and targeting of peptide-mediated inter-

actions. Proteins: Struct, Funct, Bioinf. 2013; 81(12):2096–2105. https://doi.org/10.1002/prot.24422

31. Zhou HX, Shan Y. Prediction of protein interaction sites from sequence profile and residue neighbor list.

Proteins: Struct, Funct, Bioinf. 2001; 44:336–343. https://doi.org/10.1002/prot.1099

Modeling disordered protein interactions from biophysical principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005485 April 10, 2017 26 / 28

https://doi.org/10.1016/j.febslet.2015.07.022
http://www.ncbi.nlm.nih.gov/pubmed/26226339
https://doi.org/10.1093/nar/gkw1019
http://www.ncbi.nlm.nih.gov/pubmed/27794553
https://doi.org/10.1093/nar/gkt960
http://www.ncbi.nlm.nih.gov/pubmed/24174539
https://doi.org/10.1093/nar/gkw1279
https://doi.org/10.1093/nar/gkw1279
http://www.ncbi.nlm.nih.gov/pubmed/27965415
https://doi.org/10.1016/j.bpj.2014.08.033
http://www.ncbi.nlm.nih.gov/pubmed/25418159
https://doi.org/10.1016/j.str.2013.02.023
https://doi.org/10.1016/j.str.2013.02.023
http://www.ncbi.nlm.nih.gov/pubmed/23583037
https://doi.org/10.1093/nar/gkv495
https://doi.org/10.1093/nar/gkv495
http://www.ncbi.nlm.nih.gov/pubmed/25969449
https://doi.org/10.1002/prot.22629
https://doi.org/10.1002/prot.22629
https://doi.org/10.1016/j.str.2011.09.014
https://doi.org/10.1016/j.str.2011.09.014
http://www.ncbi.nlm.nih.gov/pubmed/22153506
https://doi.org/10.1016/j.str.2015.03.010
http://www.ncbi.nlm.nih.gov/pubmed/25914054
https://doi.org/10.1110/ps.0202302
http://www.ncbi.nlm.nih.gov/pubmed/12070326
https://doi.org/10.1016/j.str.2016.07.021
http://www.ncbi.nlm.nih.gov/pubmed/27642160
https://doi.org/10.1021/ja032018q
http://www.ncbi.nlm.nih.gov/pubmed/15238009
https://doi.org/10.1371/journal.pone.0018934
https://doi.org/10.1371/journal.pone.0018934
http://www.ncbi.nlm.nih.gov/pubmed/21572516
https://doi.org/10.1371/journal.pone.0058769
http://www.ncbi.nlm.nih.gov/pubmed/23516555
https://doi.org/10.1016/j.str.2015.05.021
http://www.ncbi.nlm.nih.gov/pubmed/26146186
https://doi.org/10.1093/nar/gkv456
http://www.ncbi.nlm.nih.gov/pubmed/25943545
https://doi.org/10.1016/j.jmb.2010.07.021
http://www.ncbi.nlm.nih.gov/pubmed/20643147
https://doi.org/10.1093/nar/gks398
http://www.ncbi.nlm.nih.gov/pubmed/22600738
https://doi.org/10.1002/prot.24422
https://doi.org/10.1002/prot.1099
https://doi.org/10.1371/journal.pcbi.1005485


32. Wei Q, La D, Kihara D. BindML/BindML+: Detecting protein-protein interface propensity from amino

acid substitution patterns. Methods Mol Biol; 2017; 1529: 279–289. https://dx.doi.org/10.1007/978-1-

4939-6637-0_14 PMID: 27914057.

33. Pappu RV, Hart RK, Ponder JW. Analysis and Application of Potential Energy Smoothing and Search

Methods for Global Optimization. J Phys Chem B. 1998; 102(48):9725–9742. https://doi.org/10.1021/

jp982255t

34. London N, Raveh B, Schueler-Furman O. Modeling peptide-protein interactions. Methods Mol Biol.

2012; 857:375–398. https://doi.org/10.1007/978-1-61779-588-6_17 PMID: 22323231

35. Venkatraman V, Yang YD, Sael L, Kihara D. Protein-protein docking using region-based 3D Zernike

descriptors. BMC Bioinformatics. 2009; 10:407. https://doi.org/10.1186/1471-2105-10-407 PMID:

20003235

36. Esquivel-Rodrı́guez J, Filos-Gonzalez V, Li B, Kihara D. Pairwise and Multimeric Protein-Protein Dock-

ing Using the LZerD Program Suite. In: Kihara D, editor. Protein Struct. Predict. vol. 1137 of Methods in

Molecular Biology. New York, NY: Springer New York; 2014. p. 209–234.

37. Peterson LX, Kim H, Esquivel-Rodrı́guez J, Roy A, Han X, Shin WH, et al. Human and server docking

prediction for CAPRI round 30–35 using LZerD with combined scoring functions. Proteins: Struct,

Funct, Bioinf. 2017; 85(3):513–527. https://doi.org/10.1002/prot.25165

38. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank.

Nucleic Acids Res. 2000; 28(1):235–242. https://doi.org/10.1093/nar/28.1.235 PMID: 10592235

39. Méndez R, Leplae R, De Maria L, Wodak SJ. Assessment of blind predictions of protein-protein interac-

tions: Current status of docking methods. Proteins: Struct, Funct, Bioinf. 2003; 52(1):51–67. https://doi.

org/10.1002/prot.10393

40. Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE. Roles of phosphorylation and helix propensity in

the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB)

activators. J Biol Chem. 2002; 277(44):42241–42248. https://doi.org/10.1074/jbc.M207361200 PMID:

12196545

41. Hertzog M, van Heijenoort C, Didry D, Gaudier M, Coutant J, Gigant B, et al. The β-Thymosin/WH2

Domain. Cell. 2004; 117(5):611–623. https://doi.org/10.1016/S0092-8674(04)00403-9 PMID:

15163409

42. Birtalan SC, Phillips RM, Ghosh P. Three-Dimensional Secretion Signals in Chaperone-Effector Com-

plexes of Bacterial Pathogens. Mol Cell. 2002; 9(5):971–980. https://doi.org/10.1016/S1097-2765(02)

00529-4 PMID: 12049734

43. Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinf. 2016;

54:5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3

44. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server.

Nucleic Acids Res. 2015; 43(W1):W389–W394. https://doi.org/10.1093/nar/gkv332 PMID: 25883141

45. Mirabello C, Pollastri G. Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure

and relative solvent accessibility. Bioinformatics. 2013; 29(16):2056–2058. https://doi.org/10.1093/

bioinformatics/btt344 PMID: 23772049

46. Magnan CN, Baldi P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and rel-

ative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics.

2014; 30(18):2592–2597. https://doi.org/10.1093/bioinformatics/btu352 PMID: 24860169

47. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol

Biol. 1999; 292(2):195–202. https://doi.org/10.1006/jmbi.1999.3091 PMID: 10493868

48. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-

bonded and geometrical features. Biopolymers. 1983; 22(12):2577–2637. https://doi.org/10.1002/bip.

360221211 PMID: 6667333

49. Gront D, Kulp DW, Vernon RM, Strauss CEM, Baker D. Generalized fragment picking in Rosetta:

Design, protocols and applications. PLoS One. 2011; 6(8). https://doi.org/10.1371/journal.pone.

0023294 PMID: 21887241

50. Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Nucleic Acids Res. 1997; 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694

51. Zhou HY, Zhou YQ. Distance-scaled, finite ideal-gas reference state improves structure-derived poten-

tials of mean force for structure selection and stability prediction. Protein Sci. 2002; 11(11):2714–2726.

https://doi.org/10.1110/ps.0217002 PMID: 12381853

52. Huang SY, Zou X. Statistical mechanics-based method to extract atomic distance-dependent potentials

from protein structures. Proteins: Struct, Funct, Bioinf. 2011; 79(9):2648–2661. https://doi.org/10.1002/

prot.23086

Modeling disordered protein interactions from biophysical principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005485 April 10, 2017 27 / 28

https://dx.doi.org/10.1007/978-1-4939-6637-0_14
https://dx.doi.org/10.1007/978-1-4939-6637-0_14
http://www.ncbi.nlm.nih.gov/pubmed/27914057
https://doi.org/10.1021/jp982255t
https://doi.org/10.1021/jp982255t
https://doi.org/10.1007/978-1-61779-588-6_17
http://www.ncbi.nlm.nih.gov/pubmed/22323231
https://doi.org/10.1186/1471-2105-10-407
http://www.ncbi.nlm.nih.gov/pubmed/20003235
https://doi.org/10.1002/prot.25165
https://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
https://doi.org/10.1002/prot.10393
https://doi.org/10.1002/prot.10393
https://doi.org/10.1074/jbc.M207361200
http://www.ncbi.nlm.nih.gov/pubmed/12196545
https://doi.org/10.1016/S0092-8674(04)00403-9
http://www.ncbi.nlm.nih.gov/pubmed/15163409
https://doi.org/10.1016/S1097-2765(02)00529-4
https://doi.org/10.1016/S1097-2765(02)00529-4
http://www.ncbi.nlm.nih.gov/pubmed/12049734
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1093/nar/gkv332
http://www.ncbi.nlm.nih.gov/pubmed/25883141
https://doi.org/10.1093/bioinformatics/btt344
https://doi.org/10.1093/bioinformatics/btt344
http://www.ncbi.nlm.nih.gov/pubmed/23772049
https://doi.org/10.1093/bioinformatics/btu352
http://www.ncbi.nlm.nih.gov/pubmed/24860169
https://doi.org/10.1006/jmbi.1999.3091
http://www.ncbi.nlm.nih.gov/pubmed/10493868
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1002/bip.360221211
http://www.ncbi.nlm.nih.gov/pubmed/6667333
https://doi.org/10.1371/journal.pone.0023294
https://doi.org/10.1371/journal.pone.0023294
http://www.ncbi.nlm.nih.gov/pubmed/21887241
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1110/ps.0217002
http://www.ncbi.nlm.nih.gov/pubmed/12381853
https://doi.org/10.1002/prot.23086
https://doi.org/10.1002/prot.23086
https://doi.org/10.1371/journal.pcbi.1005485


53. Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B, et al. ELM 2016—data update and

new functionality of the eukaryotic linear motif resource. Nucleic Acids Res. 2016; 44(D1):D294–D300.

https://doi.org/10.1093/nar/gkv1291 PMID: 26615199

54. Esquivel-Rodrı́guez J, Yang YD, Kihara D. Multi-LZerD: Multiple protein docking for asymmetric com-

plexes. Proteins: Struct, Funct, Bioinf. 2012; 80(7):1818–1833.

55. Zhou H, Skolnick J. GOAP: A generalized orientation-dependent, all-atom statistical potential for protein

structure prediction. Biophys J. 2011; 101(8):2043–2052. https://doi.org/10.1016/j.bpj.2011.09.012

PMID: 22004759

56. La D, Kihara D. A novel method for protein-protein interaction site prediction using phylogenetic substi-

tution models. Proteins: Struct, Funct, Bioinf. 2012; 80(1):126–141. https://doi.org/10.1002/prot.23169

57. Knapp S, Zamai M, Volpi D, Nardese V, Avanzi N, Breton J, et al. Thermodynamics of the high-affinity

interaction of TCF4 with beta-catenin. J Mol Biol. 2001; 306(5):1179–1189. https://doi.org/10.1006/jmbi.

2001.4463 PMID: 11237626

58. De Guzman RN, Martinez-Yamout M, Dyson HJ, Wright PE. Interaction of the TAZ1 domain of the

CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsi-

cally unstructured ligands for non-identical binding sites. J Biol Chem. 2004; 279(4):3042–3049. https://

doi.org/10.1074/jbc.M310348200 PMID: 14594809

59. Freedman SJ, Sun ZYJ, Kung AL, France DS, Wagner G, Eck MJ. Structural basis for negative regula-

tion of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol. 2003; 10(7):504–512. https://doi.org/

10.1038/nsb936 PMID: 12778114

60. Gu J, Milligan J, Huang LE. Molecular mechanism of Hypoxia-inducible Factor 1α-p300 interaction: A

leucine-rich interface regulated by a single cysteine. J Biol Chem. 2001; 276(5):3550–3554. https://doi.

org/10.1074/jbc.M009522200 PMID: 11063749

61. Breidenbach MA, Brunger AT. Substrate recognition strategy for botulinum neurotoxin serotype A.

Nature. 2004; 432(7019):925–929. https://doi.org/10.1038/nature03123 PMID: 15592454

62. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and

Their Applications. Chem Rev. 2016; 116(14):7898–7936. https://doi.org/10.1021/acs.chemrev.

6b00163 PMID: 27333362

63. Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D. Computational redesign

of protein-protein interaction specificity. Nat Struct Mol Biol. 2004; 11(4):371–379. https://doi.org/10.

1038/nsmb749 PMID: 15034550

64. The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43(D1):

D204–D212. https://doi.org/10.1093/nar/gku989 PMID: 25348405

65. Wang G, Dunbrack RL. PISCES: a protein sequence culling server. Bioinformatics. 2003; 19(12):1589–

1591. https://doi.org/10.1093/bioinformatics/btg224 PMID: 12912846

66. Rotkiewicz P, Skolnick J. Fast procedure for reconstruction of full-atom protein models from reduced

representations. J Comput Chem. 2008; 29(9):1460–1465. https://doi.org/10.1002/jcc.20906 PMID:

18196502

67. Liang S, Zheng D, Zhang C, Standley DM. Fast and accurate prediction of protein side-chain conforma-

tions. Bioinformatics. 2011; 27(20):2913–2914. https://doi.org/10.1093/bioinformatics/btr482 PMID:

21873640

68. Peterson LX, Kang X, Kihara D. Assessment of protein side-chain conformation prediction methods in

different residue environments. Proteins: Struct, Funct, Bioinf. 2014; 82(9):1971–1984. https://doi.org/

10.1002/prot.24552

69. Sael L, La D, Li B, Rustamov R, Kihara D. Rapid comparison of properties on protein surface. Proteins:

Struct, Funct, Bioinf. 2008; 73(1):1–10. https://doi.org/10.1002/prot.22141

70. Kihara D, Sael L, Chikhi R, Esquivel-Rodrı́guez J. Molecular surface representation using 3D Zernike

descriptors for protein shape comparison and docking. Curr Protein Pept Sci. 2011; 12(6):520–530.

https://doi.org/10.2174/138920311796957612 PMID: 21787306

71. Haberthür U, Caflisch A. FACTS: Fast analytical continuum treatment of solvation. J Comput Chem.

2008; 29(5):701–715. https://doi.org/10.1002/jcc.20832 PMID: 17918282

72. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program

for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983; 4(2):187–

217. https://doi.org/10.1002/jcc.540040211

Modeling disordered protein interactions from biophysical principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005485 April 10, 2017 28 / 28

https://doi.org/10.1093/nar/gkv1291
http://www.ncbi.nlm.nih.gov/pubmed/26615199
https://doi.org/10.1016/j.bpj.2011.09.012
http://www.ncbi.nlm.nih.gov/pubmed/22004759
https://doi.org/10.1002/prot.23169
https://doi.org/10.1006/jmbi.2001.4463
https://doi.org/10.1006/jmbi.2001.4463
http://www.ncbi.nlm.nih.gov/pubmed/11237626
https://doi.org/10.1074/jbc.M310348200
https://doi.org/10.1074/jbc.M310348200
http://www.ncbi.nlm.nih.gov/pubmed/14594809
https://doi.org/10.1038/nsb936
https://doi.org/10.1038/nsb936
http://www.ncbi.nlm.nih.gov/pubmed/12778114
https://doi.org/10.1074/jbc.M009522200
https://doi.org/10.1074/jbc.M009522200
http://www.ncbi.nlm.nih.gov/pubmed/11063749
https://doi.org/10.1038/nature03123
http://www.ncbi.nlm.nih.gov/pubmed/15592454
https://doi.org/10.1021/acs.chemrev.6b00163
https://doi.org/10.1021/acs.chemrev.6b00163
http://www.ncbi.nlm.nih.gov/pubmed/27333362
https://doi.org/10.1038/nsmb749
https://doi.org/10.1038/nsmb749
http://www.ncbi.nlm.nih.gov/pubmed/15034550
https://doi.org/10.1093/nar/gku989
http://www.ncbi.nlm.nih.gov/pubmed/25348405
https://doi.org/10.1093/bioinformatics/btg224
http://www.ncbi.nlm.nih.gov/pubmed/12912846
https://doi.org/10.1002/jcc.20906
http://www.ncbi.nlm.nih.gov/pubmed/18196502
https://doi.org/10.1093/bioinformatics/btr482
http://www.ncbi.nlm.nih.gov/pubmed/21873640
https://doi.org/10.1002/prot.24552
https://doi.org/10.1002/prot.24552
https://doi.org/10.1002/prot.22141
https://doi.org/10.2174/138920311796957612
http://www.ncbi.nlm.nih.gov/pubmed/21787306
https://doi.org/10.1002/jcc.20832
http://www.ncbi.nlm.nih.gov/pubmed/17918282
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1371/journal.pcbi.1005485

