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as a candidate regulator of age-associated neurogenic decline
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Summary

Adult neurogenesis declines with aging due to the depletion and functional impair-

ment of neural stem/progenitor cells (NSPCs). An improved understanding of the

underlying mechanisms that drive age-associated neurogenic deficiency could lead

to the development of strategies to alleviate cognitive impairment and facilitate

neuroregeneration. An essential step towards this aim is to investigate the molecular

changes that occur in NSPC aging on a genomewide scale. In this study, we com-

pare the transcriptional, histone methylation and DNA methylation signatures of

NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old)

and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic pro-

files of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global

similarities, we detect robust age-dependent changes at several hundred genes and

regulatory elements, thereby identifying putative regulators of neurogenic decline.

Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its

promoter region has altered histone and DNA methylation levels, in aged NSPCs.

Using functional in vitro assays, we show that elevated Dbx2 expression in young

adult NSPCs promotes age-related phenotypes, including the reduced proliferation

of NSPC cultures and the altered transcript levels of age-associated regulators of

NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the

reverse gene expression changes. Taken together, these results provide new insights

into the molecular programmes that are affected during mouse NSPC aging, and

uncover a new functional role for Dbx2 in promoting age-related neurogenic

decline.

K E YWORD S

DNA methylation, epigenetics, histone methylation, neural stem/progenitor cells, neurospheres,

subventricular zone

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Accepted: 4 February 2018

DOI: 10.1111/acel.12745

Aging Cell. 2018;17:e12745.

https://doi.org/10.1111/acel.12745

wileyonlinelibrary.com/journal/acel | 1 of 15

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/acel.12745
http://wileyonlinelibrary.com/journal/ACEL


1 | INTRODUCTION

In the adult mouse forebrain, neurogenesis persists in two restricted

niches located in the subventricular zone (SVZ) close to the lateral

ventricles and in the subgranular zone (SGZ) within the dentate

gyrus. In these regions, neural stem/progenitor cells (NSPCs) are

maintained throughout adulthood and give rise to daughter cells that

undergo differentiation into neurons and glia. Increasing evidence

supports a role for adult neurogenesis in normal brain function and

suggests that neurological disorders and neurodegeneration may be

caused, at least in part, by reduced neuronal output of adult NSPCs

(Goncalves, Schafer & Gage, 2016; Lledo & Valley, 2016).

Aging is a physiological process substantially affecting, in a time-

dependent manner, the function of somatic stem cells in multiple tis-

sues (Signer & Morrison, 2013). Aging is associated with reduced

neurogenesis in the mouse SVZ and SGZ (Encinas et al., 2011;

Enwere et al., 2004; Lugert et al., 2010; Luo, Daniels, Lennington,

Notti & Conover, 2006), which might lead to decreased olfactory

function and cognitive hippocampus-dependent impairment (Gon-

calves et al., 2016; Lledo & Valley, 2016). This age-associated neuro-

genic decline appears to be caused both by a depletion in the NSPC

pool of the aged niche (Ahlenius, Visan, Kokaia, Lindvall & Kokaia,

2009; Bouab, Paliouras, Aumont, Forest-Berard & Fernandes, 2011;

Corenblum et al., 2016; Enwere et al., 2004; Luo et al., 2006;

Maslov, Barone, Plunkett & Pruitt, 2004; Molofsky et al., 2006; Stoll

et al., 2011) and by the decreased capacity of the remaining NSPCs

to sustain proliferation and neuronal differentiation, as revealed by

in vitro studies (Ahlenius et al., 2009; Apostolopoulou et al., 2017;

Corenblum et al., 2016; Daynac, Morizur, Chicheportiche, Mouthon

& Boussin, 2016; Daynac et al., 2014; L’Episcopo et al., 2013; Shi

et al., 2017; Zhu et al., 2014). NSPCs undergo cell autonomous age-

related changes that affect intracellular molecular pathways, includ-

ing the altered expression of telomerase and cell cycle regulators,

which have been linked to the decline in NSPC proliferation upon

aging (Caporaso, Lim, Alvarez-Buylla & Chao, 2003; Molofsky et al.,

2006; Nishino, Kim, Chada & Morrison, 2008). Transcriptional analy-

sis of the aged whole SVZ cell population (including NSPCs, differen-

tiated cells and non-neural cell types) identified several misregulated

genes that are associated with NSPC proliferation and differentia-

tion, suggesting that intrinsic gene expression changes in aged

NSPCs can alter adult neurogenesis (Apostolopoulou et al., 2017; Shi

et al., 2017). The transcriptional regulators that cause these effects

and their roles in relaying extrinsic niche signals remain largely

unclear.

Attenuating the age-associated decline in somatic stem cell func-

tion can be achieved by modulating the extracellular environment

(Adler et al., 2007; Conboy et al., 2005; Villeda et al., 2011), which

implicates epigenetic regulation as a key component of stem cell

aging (Beerman & Rossi, 2015; O’Sullivan & Karlseder, 2012; Rando

& Chang, 2012). To date, the epigenomes of three stem cell popula-

tions have been examined upon mouse and human aging: blood stem

cells, mesenchymal stem cells and muscle satellite cells (Beerman

et al., 2013; Bocker et al., 2011; Bork et al., 2010; Fernandez et al.,

2015; Liu et al., 2013; Sun et al., 2014). Together, these studies con-

clude that the stem cell epigenome is relatively stable during aging,

with a small number of potentially important loci that are signifi-

cantly altered (Beerman & Rossi, 2015). Genes encoding self-renewal

and differentiation factors are particularly vulnerable to age-depen-

dent alterations, and, although often do not have an immediate

impact on transcriptional changes; they might alter the potential or

future decisions of the stem cells (Beerman & Rossi, 2015). Notably,

the global epigenetic profiles have not been examined in aging

NSPCs or in any aged somatic stem cell from nonmesoderm deriva-

tives. This knowledge gap is important to address to identify poten-

tial age-associated drivers of neurogenic decline, and to understand

the commonalities in intrinsic mechanisms that might underpin

somatic stem cell aging.

To address these deficits, we have generated molecular profiles

of NSPCs derived from the SVZ of young adult and aging mice. We

identified age-dependent changes at several hundred genes and reg-

ulatory elements, thereby identifying putative regulators of neuro-

genic decline. Among them, we focused our attention on the

transcription factor-encoding gene Dbx2, which was upregulated in

aged NSPCs and has not been associated previously with aging.

Functional assays revealed that increased Dbx2 transcript levels in

young adult NSPCs promote age-related phenotypes, including the

reduced proliferation of NSPC cultures and the altered expression

levels of age-associated regulators of NSPC proliferation and differ-

entiation. Partial reduction of Dbx2 levels in aged NSPCs caused an

opposite transcriptional response. Taken together, these results

F IGURE 1 Identification of differentially expressed genes in NSPCs derived from the SVZ of young adult and aged mice. (a) MA plot of
RNA-seq data from NSPCs derived from the SVZ of aged and young adult mice. For each age, three independent derivations of SVZ NSPCs
were used for this analysis. A Limma moderated t test with multiple testing corrections identified genes with a false discovery rate (FDR) of
<.05, and these genes were classified as differentially expressed. (b) Top GO terms of differentially expressed gene sets that are upregulated
(upper) and downregulated (lower) in aged compared to young adult NSPCs. Numbers of genes are shown; example genes within each GO
category are listed (right). Corrected p-values were calculated using a modified Fisher’s exact test followed by Bonferroni’s multiple comparison
test. (c–f) Summary of the ten most strongly upregulated (c, d) or downregulated (e, f) genes in NSPCs from aged mice. Charts in (c, e) show
log2 RPM expression levels in adult and aged NSPCs. Data show mean � SD; n = 3 biological replicates. Genome browser representations in
(d, f) show the density of RNA-seq reads across transcribed regions of representative genes. (g–h) RNA-seq analysis of an alternative set of
NSPC derivations from mice that were housed in a separate facility and from a different strain (C57BL/10). The results show consistent gene
expression changes for upregulated (g) and downregulated (h) genes, demonstrating that the observed age-related transcriptional changes were
independent of the genetic background and laboratory conditions of the mice
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provide new insights into the molecular programmes that are

affected during mouse NSPC aging, and identify a Dbx2-dependent

transcriptional programme involved in the functional decline of

NSPCs in the aged SVZ.

2 | RESULTS

2.1 | Comparative transcriptomic analysis of NSPCs
derived from the young adult and aged SVZ

We derived three cohorts of NSPCs from the SVZ of young adult

(3 months old, 3 months) and aged (18 months) mice and expanded

the cells for two passages (2–3 weeks) in nonadherent culture condi-

tions. We used neurospheres that formed during the second passage

to generate expression profiles by RNA sequencing (RNA-seq). Anal-

ysis of these data revealed that the majority of genes were

expressed at similar levels between adult and aged samples, although

254 genes were differentially expressed (Figure 1a and Table S1;

False Discovery Rate (FDR) < .05). As an initial confirmation of our

dataset, we detected changes in Dlx2 and Let-7b expression, which

are misregulated in aged NSPCs (Nishino et al., 2008; Shi et al.,

2017). Furthermore, many cell type-specific genes were detected at

comparable levels in adult and aged samples, indicating that the cel-

lular composition of the neurospheres was unchanged with age (Fig-

ure S1A).

To gain insight into the biological function of the identified

genes, we performed Gene Ontology (GO) analysis of the 125 genes

that were upregulated in the aged NSPCs compared with the young

adult NSPCs. This analysis revealed an enrichment for processes

associated with neuron differentiation, cell signalling and cell mor-

phogenesis (Figure 1b, top). GO terms associated with the 129

genes that were downregulated in the aged NSPCs included vascula-

ture development, angiogenesis and regulation of cell motion (Fig-

ure 1b, bottom). Misregulated genes with the largest fold change are

shown in Figure 1c–f. We validated our findings with a separate

cohort of adult and aged NSPCs from mice that were housed in a

different facility, thereby affirming that aging itself was the main dri-

ver of the observed gene expression changes (Figure 1g,h). These

results provide a robust and comprehensive gene expression data

set for young adult and aged NSPCs.

2.2 | Epigenome profiling identifies differences
between young adult and aged SVZ NSPCs

Epigenetic control of gene regulation through DNA and histone

modifications has a pivotal role to ensure the appropriate transcrip-

tional programmes during embryonic and adult neurogenesis (Cacci,

Negri, Biagioni & Lupo, 2017) and can be misregulated in aged stem

cell compartments (Beerman & Rossi, 2015). Altered epigenetic

mechanisms could also be involved in age-associated neurogenic

decline, but little is known about the epigenetic changes that occur

during the aging of adult NSPCs.

We first investigated DNA methylation levels by profiling

5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) using

whole-genome bisulphite (BS-seq) and oxidative bisulphite (oxBS-

seq) sequencing. Globally, the levels of 5mC and 5hmC were very

similar between the young adult and aged NSPCs (Figure 2a,b). In

keeping with other mammalian cell types, low 5mC levels were

found in CpG islands (CGIs), and high methylation levels were found

in gene bodies and repetitive elements such as L1 and LTR (Fig-

ure 2a). Furthermore, the distribution of 5mC across various genome

compartments was indistinguishable between the adult and aged

samples (Figure 2c). To look for localized differences in DNA methy-

lation between adult and aged NSPCs, we applied a chi-squared test

with multiple testing corrections to define differentially methylated

regions (DMRs; padj < .05). Using this approach, we identified 330

DMRs that overlapped with CGIs (Figure 2d and Table S2). There

were 119 DMRs with reduced 5mC levels (hypo-DMRs) and 211

DMRs with increased 5mC levels (hyper-DMRs) in the aged NSPCs

compared with young adult NSPCs. The majority of hypo-DMRs

(67%) and hyper-DMRs (80%) were within 2kb of a gene (Fig-

ure 2e) and were associated with 79 and 162 genes, respectively

(Figure 2f).

GO analysis of the genes with hyper-DMRs revealed an enrich-

ment for biological processes associated with transcription factors

including Bmi1, Prdm1, Tbx2 and with multicellular organism develop-

ment (Figure 2f). Genes associated with hypo-DMRs were not signif-

icantly enriched for any GO categories, but example genes include

Arx, Dlg2 and Slmo1. Genome browser representations are shown for

DMRs associated with Grin2d and Cmas (Figure 2g). Overall, there

was no correlation between the changes in DNA methylation and

F IGURE 2 Genomewide profiling of DNA methylation in young adult and aged NSPCs identifies differentially methylated regions that are
associated with gene promoters. (a–b) BS-seq and oxBS-seq analysis of 5mC (a) and 5hmC (b) in adult and aged NSPCs. Boxplots show the
average levels of 5mC and 5hmC over the whole genome (mean � SD; n = 3 biological replicates). Heatmaps show the percentage of 5mC
and 5hmC in genes, CGIs located within promoters or intergenic regions, and transposon elements (L1, LTR). (c) Bean plots showing the
distribution of 5mC levels for different genomic features in adult and aged NSPCs. (d) Scatter plot comparing 5mC levels at individual CGIs
between adult and aged NSPCs. CGIs that correspond to differentially methylated regions (DMRs) are highlighted in blue (p < .05, chi-squared
test with multiple testing corrections, and a minimum difference in methylation of 10%). (e) Pie charts showing the percentages of DMRs that
are located within less than 2 kb upstream or downstream of a gene, or that are found in intragenic or intergenic regions. (f) Top GO terms of
genes that are associated with differentially methylated regions either hypomethylated (upper) or hypermethylated (lower) in aged compared to
adult NSPCs. Numbers of genes are shown; example genes within each GO category are listed (right). Corrected p-values were calculated using
a modified Fisher’s exact test followed by Bonferroni’s multiple comparison test. (g) Genome browser tracks of 5mC levels in adult and aged
NSPCs across representative differentially methylated CGIs (indicated by grey line) that overlap with gene promoters
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the changes in the expression of the nearest gene (not shown),

although there were several examples where the gain of DNA

methylation was associated with a transcriptional downregulation

upon aging (e.g. Chl1, Zfp536) and where the loss of DNA methyla-

tion was associated with a transcriptional upregulation (e.g.

Fam179a, Tmcc3). These findings show that DNA methylation levels

and distribution are very similar between adult and aged NSPCs,

although we have identified several hundred regions that are differ-

entially methylated and are near to genes.

We also profiled the genomewide localization of histone H3

lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27

trimethylation (H3K27me3) using chromatin immunoprecipitation

combined with sequencing (ChIP-seq). We identified 30,406

H3K4me3 peaks (MACS, p < 1E�9) that were associated with

13,030 transcriptional start sites (TSS) in adult NSPCs, and 28,854

peaks associated with 12,955 TSS in aged NSPCs. The majority of

H3K4me3 signal was centred on the TSS of genes, and this distri-

bution profile was identical for the adult and aged NSPCs (Fig-

ure 3a). We did not observe the broadening of H3K4me3 peaks

that have been reported in aged blood stem cells (Sun et al., 2014).

Focusing on gene promoters (�2 kb to +0.5 kb from TSS), we iden-

tified 27 regions with increased H3K4me3 levels in the aged

NSPCs compared with the adult NSPCs, and 51 regions with the

opposite trend (Figure 3b and Table S3). Gene promoters with the

largest changes in H3K4me3 upon NSPC aging are shown in Fig-

ure 3c–f. Overall, there was a significant correlation between the

changes in H3K4me3 promoter levels and the changes in the

expression of the associated gene (Figure 3g; Pearson correlation

test, p < .0001).

Analysis of the H3K27me3 ChIP-seq data identified 43,640

peaks (MACS, p < 1E�9) that were associated with 3,819 TSS in

adult NSPCs, and 43,569 peaks associated with 3,836 TSS in aged

NSPCs. The distribution of H3K27me3 across gene promoter regions

was similar for the adult and aged NSPCs, with a broad peak centred

on the TSS of genes (Figure 4a). Quantitation of these regions iden-

tified a set of 202 gene promoters with increased H3K27me3 levels

in the aged NSPCs compared with the adult NSPCs, and 92 gene

promoters with the opposite pattern (Figure 4b and Table S4). Gene

promoters with the largest change in H3K27me3 upon NSPC aging

are shown in Figure 4c–f. There was no correlation between the

changes in H3K27me3 promoter levels and the changes in the

expression of the associated gene (Figure 4g; Pearson correlation

test, p = .18), although there were several examples where the gain

of H3K27me3 was associated with a transcriptional downregulation

(Igf2bp2, Prrg4, Trp73) and also for the converse situation (Tnfrsf13b,

Laptm5, Rhcg).

Our results suggest that the transcriptional and epigenetic signa-

tures of SVZ NSPCs are remarkably well preserved during aging.

Nonetheless, we identified loci with significant gene expression and

epigenetic differences between young adult and aged NSPCs, sug-

gesting that the functional impairment of aged NSPCs might be

caused by the altered regulation of a limited set of influential genes.

2.3 | Identification of Dbx2 as a candidate gene
underlying age-dependent decline of SVZ NSPCs

As an initial step towards defining the molecular modifiers of neuro-

genic decline, we mined our data set for genes that might play an

instructive role in the altered proliferation and/or differentiation of

aged NSPCs. First, we identified the genes that showed consistent

transcriptional and epigenetic changes between adult and aged sam-

ples (Table S5). Second, we used qRT-PCR to screen for genes that

maintained an expression difference between adult and aged NSPCs

after prolonged expansion in vitro. Third, we focused on genes

showing expression changes when NSPCs were switched from pro-

liferating to differentiating conditions. Fourth, we verified the

expression of candidate genes in the adult SVZ in vivo either accord-

ing to previous literature or by experimental analysis.

This strategy led us to focus on Dbx2, which encodes for a

homeodomain-containing transcription factor (Shoji et al., 1996).

Dbx2 is implicated in spinal cord development (Pierani, Brenner-Mor-

ton, Chiang & Jessell, 1999), but has not been previously associated

with adult neurogenesis or NSPC aging. Dbx2 expression was signifi-

cantly increased in aged NSPCs compared with young adult samples

(padj = .04; limma moderated t test). Corresponding epigenetic

changes were present near to the Dbx2 promoter, including

increased H3K4me3 signal and reduced DNA methylation at an

overlapping CGI (Figure 5a). Dbx2 levels remained higher in aged

neurospheres than in young adult cultures after prolonged passaging

in vitro (Figure 5b). Furthermore, Dbx2 was upregulated in adult

NSPC cultures upon switching from proliferating to differentiating

conditions (Figure 5c), suggesting that elevated Dbx2 expression is

associated with reduced NSPC proliferation.

We next examined Dbx2 expression in SVZ NSPCs in vivo. In

situ hybridization assays on sections of mouse telencephalon sug-

gested that Dbx2 is transcribed in adult SVZ (Figure 5d), in addition

to its previously described expression domain in the embryonic

spinal cord (Figure 5e; Shoji et al., 1996). To quantitatively assess

F IGURE 3 Genomewide analysis of H3K4me3 levels in young adult and aged NSPCs. (a) Quantitative trend plot of H3K4me3 normalized
ChIP-seq reads over TSS � 5 kb. (b) MA plot of H3K4me3 ChIP-seq data for adult and aged NSPCs. Data are shown as the average of three
biological replicates. (c–f) Summary of the ten gene promoters showing the strongest decrease (c, d) or increase (e, f) in H3K4me3 signal in
aged NSPCs compared to adult NSPCs. Charts in (c, e) show H3K4me3 normalized reads (log2 RPM) in adult and aged NSPCs. Data show
mean � SD; n = 3 biological replicates. Genome browser representations in (d, f) show the density of H3K4me3 ChIP-seq reads across two
example genes. (g) Comparison of RNA-seq log2 fold change (y-axis) and H3K4me3 ChIP-seq log2 fold change (x-axis) for the 78 transcripts
that have differential H3K4me3 promoter levels between adult and aged NSPCs. There is a significant correlation between gene expression
changes and differences in H3K4me3 levels according to Pearson correlation test (p < .0001)
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Dbx2 levels, we used qRT-PCR to compare Tlx-GFP-positive SVZ

NSPCs freshly isolated from adult (7 months) and aged (18 months)

mice (Feng et al., 2013). The results showed that Dbx2 levels were

higher in the aged sorted NSPCs compared with adult, with a similar

fold change to that detected in aged SVZ-derived NSPC cultures

(Figure 5f). Finally, by re-analysing a recently published RNA-seq

data set of SVZ tissues dissected at different ages, we detected a

significant increase in Dbx2 levels between 2-months and 18-months

SVZ samples (Figure 5g) (Apostolopoulou et al., 2017). These results

show that Dbx2 is upregulated in aged SVZ NSPCs in vitro and

in vivo, and raise the possibility that Dbx2 has a functional role in

driving age-associated changes in NSPC proliferation.

2.4 | Dbx2 overexpression impairs neurosphere
growth in young adult SVZ NSPCs

Aged SVZ NSPCs form smaller neurospheres and adherent colonies

compared with young adult NSPCs, and this correlates with their

decreased proliferation capacity in vitro (Ahlenius et al., 2009;

Corenblum et al., 2016; Daynac et al., 2014, 2016; L’Episcopo et al.,

2013; Zhu et al., 2014). We also observed a proliferation defect in

NSPCs derived from the aged mice (Figures S1B,C).

To address whether elevated levels of Dbx2 could recapitulate

this proliferation phenotype, we generated young adult NSPC lines

that constitutively expressed either a Dbx2 transgene (Dbx2-NSPCs)

or a GFP control transgene (GFP-NSPCs). Immunofluorescence micro-

scopy using an anti-Nestin antibody confirmed the homogeneous

NSPC identity of the cultures when maintained in adherent or non-

adherent proliferating culture conditions (Figure S2A–H). Further-

more, an anti-Dbx2 antibody detected increased Dbx2 protein in

Dbx2-NSPCs compared to GFP-NSPCs (Figure S2I–P). Quantification

of nonviable (trypan blue-positive) cells and proliferating (Ki67-posi-

tive) cells showed a slight increase in cell death and a slight decrease

in the proportion of cycling cells in Dbx2-NSPC cultures (Figure S2Q,

R), suggesting that elevated Dbx2 levels may reduce the self-renew-

ing capacity of NSPCs. To explore this further, we cultured GFP-

NSPCs and Dbx2-NSPCs in nonadherent conditions and, after 4–7

days, quantitated the number and the size of the resulting neuro-

spheres. Dbx2-NSPCs produced smaller neurospheres compared with

the GFP-NSPCs (Figure 6a–e). The mean cell number of individual

neurospheres in Dbx2-NSPC cultures was approximately 30%–40%

that of GFP-NSPCs, with a similar decrease in the mean total cell

count (Figure 6f,g). The average number of neurospheres formed did

not differ between the GFP-NSPC and Dbx2-NSPC cultures

(Figure 6h). These proliferation defects were confirmed with an inde-

pendent pair of GFP-NSPC and Dbx2-NSPC lines (Figure S3A–E).

2.5 | Dbx2 modulates the expression of age-
associated regulators of NSPC proliferation and
differentiation

We investigated the Dbx2-mediated transcriptional programme in

SVZ NSPCs by focusing on a cohort of genes that are transcription-

ally altered upon aging in NSPCs (our data) and SVZ tissue (Apos-

tolopoulou et al., 2017) and are associated with NSPC proliferation

and differentiation. p21, a key cell cycle inhibitor and age-associated

negative regulator of NSPC proliferation (Akizu et al., 2016), was

upregulated in Dbx2-NSPCs (Figure 6i) as were Itgb5, Dll4 and Gfap

(Figure 6j–l). Conversely, Prrx1, Igf2bp2 and Sox2 were downregu-

lated in Dbx2-NSPCs (Figure 6l–n), which is a change that is consis-

tent with the positive influence of these genes on NSPC

proliferation (Fujii, Kishi & Gotoh, 2013; Nishino, Kim, Zhu, Zhu &

Morrison, 2013; Shimozaki, Clemenson & Gage, 2013). Additional

genes that were expressed at lower levels in Dbx2-NSPCs included

Gsx1, Tmcc3 and Aldh1 l1 (Figure 6p–s).

Many of these transcriptional responses were mirrored by corre-

sponding changes in aged NSPCs and SVZ tissue. For example, Prrx1

and Igfbp2 were downregulated in aged NSPCs and in aged SVZ,

similar to Dbx2-NSPCs (Figure 1b, Figure S4A–D, Table S1). Dll4 was

less expressed, and Tmcc3 more expressed, in aged (18 months)

NSPCs (Figure S4E,F), recapitulating the changes observed in

18-months SVZ (Figure S4G,H). Of note, even older SVZ samples

(22 months) showed a significant increase of Dll4 transcripts and a

reduction in Tmcc3 expression (Figure S4G,H), and this pattern

matches the changes detected in Dbx2-NSPCs (Figure 6k,q). Finally,

Gsx1 and Itgb5 showed transcriptional differences between young

adult and aged SVZ (Figure S4K–L) that were similar to those

observed in Dbx2-NSPCs (Figure 6p,j), even though the expression

changes did not match the aged NSPCs (Figure S4I,J).

We confirmed these transcriptional changes in four ways. First,

the above described gene expression differences were reproducible

in an independent pair of Dbx2-NSPC and GFP-NSPC lines

(Figure S3F–P). Second, similar effects were detected in adherent

proliferating or differentiating NSPC cultures (Figure S5), indicating

that the changes were not due to differences in the size or

composition of Dbx2 and GFP neurospheres. Third, NSPCs with

doxycycline-controlled expression of Dbx2 phenocopied the prolifer-

ation defects (Figure S6A–D) and the gene expression changes

F IGURE 4 Genomewide analysis of H3K27me3 levels in young adult and aged NSPCs. (a) Quantitative trend plot of H3K27me3
normalized ChIP-seq reads over TSS � 5 kb. (b) MA plot of H3K27me3 ChIP-seq data for adult and aged NSPCs. Data are shown as the
average of three biological replicates. (c–f) Summary of the ten gene promoters showing the strongest decrease (c, d) or increase (e, f) in
H3K27me3 signal in aged compared to adult NSPCs. Charts in (c, e) show H3K27me3 normalized reads (log2 RPM) in adult and aged NSPCs.
Data show mean � SD; n = 3 biological replicates. Genome browser representations in (d, f) show the density of H3K27me3 ChIP-seq reads
across two example genes. (g) Comparison of RNA-seq log2 fold change (y-axis) and H3K27me3 ChIP-seq log2 fold change (x-axis) for the 294
transcripts that have differential H3K27me3 promoter levels between adult and aged NSPCs. No significant correlation between gene
expression changes and differences in H3K27me3 levels is present according to Pearson correlation test (p < .18)
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(Figure S6E–N) that were detected in NSPCs that constitutively

overexpressed Dbx2. Finally, the opposite gene expression changes

were observed for a subset of genes (Itgb5, Dll4, Gsx1, Aldh1l1) fol-

lowing a partial (35%) reduction in Dbx2 mRNA by means of a

shRNA plasmid (Figure S7).

These results lead us to propose that altered levels of Dbx2 can

affect adult NSPC self-renewal and function by inducing a specific

transcriptional programme that includes age-associated regulators of

NSPC proliferation and differentiation.

3 | DISCUSSION

Mouse SVZ and SGZ are complex niches where neurogenesis per-

sists throughout adult life due to a finely regulated balance among

NSPC self-renewal, expansion and differentiation. During aging, this

regulation is progressively altered, and neurogenic output is cur-

tailed. To investigate the intrinsic molecular changes upon NSPC

aging, we report here a comprehensive set of transcriptional and

epigenetic maps in young adult and aged SVZ NSPCs. We found

that the NSPC epigenome was largely unchanged upon aging, which

is broadly consistent with prior studies that profiled somatic stem

cells from other aged tissues (Beerman et al., 2013; Bocker et al.,

2011; Bork et al., 2010; Fernandez et al., 2015; Liu et al., 2013; Sun

et al., 2014). In contrast to previous reports, we did not detect an

age-associated broadening of H3K4me3 (as in blood stem cells; Sun

et al., 2014) and H3K27me3 (as in muscle satellite stem cells; Liu

et al., 2013) domains in NSPCs, nor a global acquisition in DNA

methylation levels (as in blood stem cells; Beerman et al., 2013; Sun

et al., 2014). It is currently unclear what impact these epigenetic

changes might have on the aged stem cells, and whether the differ-

ences are due to the varied stem cell properties from each tissue,

such as cellular potential or the turnover rate, or perhaps influenced

by external signals from their niches.

Despite the overall similarities, we did identify several hundred

genes with significant differences in the levels of transcription and/

or epigenetic modifications in NSPCs from the aged SVZ. These data

will serve as an important resource for normal and aging studies and

could be used to identify biomarkers and candidate regulators of

NSPC aging. As an initial step, we identified and characterized the

homeobox gene Dbx2 as a putative age-associated regulator of

NSPC functional decline. Increased Dbx2 expression in young adult

NSPCs promoted age-related phenotypes, including the reduced

proliferation of NSPC cultures and the altered expression levels of

age-associated regulators of NSPC proliferation and differentiation.

In particular, elevated Dbx2 expression decreased the size, but not

the number, of neurospheres generated from adult SVZ NSPCs,

supporting a causal link between Dbx2 upregulation and the defec-

tive proliferation of aged NSPCs. Dbx2 overexpression slightly

increased the fraction of nonviable cells and decreased the fraction

of cycling cells, suggesting that cell death and cell cycle exit con-

tribute to the reduced expansion of the transgenic neurospheres.

Nonetheless, as the majority of the cells remained positive for pro-

liferation markers, alternative changes, including lengthening of the

cell cycle, could be a main driver of the growth phenotype elicited

by Dbx2. This hypothesis is consistent with the previously

described alterations in the cell cycle of aged NSPCs (Apos-

tolopoulou et al., 2017; Daynac et al., 2014, 2016; Stoll et al.,

2011). Dbx2 is part of a cohort of transcription factor genes that

are enriched in quiescent NSPCs of the SGZ and SVZ and are

downregulated in NSPCs actively engaged in cell proliferation and

neurogenesis (Codega et al., 2014; Shin et al., 2015), thus suggest-

ing that Dbx2 may negatively regulate NSPC proliferation in both

adult neurogenic niches. Elevated Dbx2 expression in adult NSPCs

also phenocopied several of the molecular effects of aging, includ-

ing the altered expression of key genes such as Sox2 and p21 that

are associated with proliferation and differentiation. Thus, Dbx2

may act as a crucial regulator of age-dependent transcriptional pro-

grammes, as also suggested by the reversed trend of some molecu-

lar markers of SVZ aging following moderate Dbx2 knockdown in

aged NSPCs. As cell proliferation was not affected by this partial

knockdown, an exciting future line of research will be to abrogate

Dbx2 function in aged NSPCs by knockout approaches in vitro and

in vivo. Furthermore, investigating the direct targets of Dbx2 might

help to expand the gene regulatory networks involved in NSPC

dysfunction.

F IGURE 5 Identification of Dbx2 as a candidate gene implicated in SVZ NSPC aging. (a) Genomewide data track for the Dbx2 locus in
young adult and aged NSPCs. The dashed line indicates the TSS; the solid grey line indicates the position of the DMR, and the percentage
5mC levels across the DMR are shown. Data represent the average of three biological replicates. Genomic coordinates for the region shown
are as follows: chr15:95619911-95661537 (GRCm38). (b) qRT-PCR analysis of Dbx2 expression in nonadherent cultures of adult or aged
NSPCs that were expanded for 5–6 passages in vitro from dissected SVZ tissues. Data show mean � SEM following normalization to adult
NSPC samples; n = 3 biological replicates. *p < .05, Student’s t test. (c) qRT-PCR analysis of Dbx2 expression in adherent cultures of adult SVZ
NSPCs that were maintained in proliferating conditions or cultured for 24 hr in differentiation conditions devoid of EGF. Data show
mean � SEM following normalization to proliferating NSPC samples; n = 4 biological replicates. ***p < .001, Student’s t test. (d, e)
Representative images of in situ hybridization assays with a Dbx2 probe performed on (d) coronal sections of adult (5 months) mouse brain cut
at the level of the lateral ventricle (LV) or (e) on transversal sections of E11 mouse embryonic spinal cord. Dbx2 staining is detectable in the
SVZ region adjacent to the LV (arrows in d) of the adult brain and in the intermediate embryonic spinal cord region (e). Scale bars, 75 lm (d)
and 160 lm (e). (f) qRT-PCR analysis of Dbx2 expression in Tlx-GFP-positive NSPCs freshly cell sorted from adult (7 months) and aged
(18 months) mouse brain. Data show mean � SEM following normalization to adult NSPC samples; n = 3 biological replicates. *p < .05,
Student’s t test. (g) Analysis of published (Apostolopoulou et al., 2017) RNA-seq data shows that Dbx2 levels increase with SVZ age. Data
show mean � SEM; n = 3 biological replicates. *p < .05, **p < .01, Student’s t test. mo, months old
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Prrx1 and Igf2bp2 are additional candidate regulators of NSPC

functional decline during SVZ aging. Both genes were downregulated

in NSPCs from the aged SVZ, and for Igf2bp2 this correlated with

increased levels of repressive epigenetic marks at the promoter.

Prrx1 is expressed in NSPCs of the SVZ and the SGZ and promotes

proliferation of SGZ NSPCs at the expense of neuronal differentia-

tion (Shimozaki et al., 2013). Igf2bp2 is expressed in embryonic corti-

cal progenitors where it promotes neurogenesis at the expense of

astrogenesis (Fujii et al., 2013), but its role in the postnatal SVZ has

not been investigated. Igf2bp1 supports proliferation and prevents
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premature differentiation of embryonic cortical progenitors, but its

expression is extinguished postnatally (Nishino et al., 2008). It is

tempting to speculate that the role of Igf2bp1 in maintaining embry-

onic NSPC proliferation is superseded by Igf2bp2 in the postnatal

SVZ, and that the combined decay of Igf2bp1/2 levels underlies the

progressive decline of NSPC proliferation during postnatal life.

Increased Dbx2 expression in adult NSPCs caused the downregula-

tion of Prrx1 and Igf2bp2, providing a potential explanation, along

with the transcriptional effects on Sox2 and p21, for the antiprolifer-

ative activity of Dbx2.

In conclusion, by comparing the molecular profiles of young adult

and aged SVZ, our work suggests that aging does not cause wide-

spread gene dysregulation in NSPCs, but acts through the modula-

tion of specific gene expression programmes. Among them, we have

identified a transcriptional pathway involving the upregulation of the

homeodomain protein Dbx2 in aged NSPCs. Dbx2, in turn, can influ-

ence a cohort of age-associated regulators of NSPC function, and

restrain NSPC proliferation. These results provide a platform to

investigate how changes in extrinsic signals acting in the SVZ niche

due to aging, injury or disease could impinge on intrinsic transcrip-

tional mechanisms controlling adult neurogenesis.

4 | EXPERIMENTAL PROCEDURES

4.1 | Mouse NSPC isolation, culture and
manipulation

Young adult and aged SVZ NSPCs were derived from 3 months or

18 months male C57BL/6 J/Babr mice, respectively. Methods for

their derivation and subsequent in vitro culture were reported previ-

ously (Soldati et al., 2015) and are described in the Supplemental

Experimental Procedures. We combined SVZ tissues from five mice

to form one NSPC derivation, and we repeated this procedure three

times on different days to obtain three independent replicates. The

neurospheres used for the transcriptomic and epigenomic assays

were harvested 5–6 days after seeding SVZ NSPCs at the second

passage postdissection. Summing the first and second passages, SVZ

NSPCs were cultured for a total of 13–20 days postdissection before

being processed for molecular analyses. Experimental procedures for

NSPC derivation were performed in accordance with EU Directive

2010/63/EU and were approved by the Ethical Committee for

Animal Research of the Italian Ministry of Health according to

national regulations (Art. 7, D.Lgs. n. 116/1992). Detailed methods

for the transcriptional and epigenetic profiling are provided in the

Supplemental Experimental Procedures.
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