

Received 9 May 2015 Accepted 19 May 2015

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; silver; mixed valency; quinoline

CCDC reference: 1401857 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of μ -cyanido-1:2 $\kappa^2 N$:C-dicyanido-1 κC ,2 κC -bis(quinolin-8-amine-1 $\kappa^2 N$,N')-2-silver(I)-1-silver(II): rare occurrence of a mixed-valence Ag^{1,II} compound

Zouaoui Setifi,^{a,b} Sylvain Bernès,^c* Olivier Pérez,^d Fatima Setifi^a* and Djamil-Azzeddine Rouag^b

^aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, ^bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, ^cInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and ^dLaboratoire CRISMAT, UMR 6508 CNRS, ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 04, France. *Correspondence e-mail: sylvain_bernes@Hotmail.com, fat_setifi@yahoo.fr

The title dinuclear complex, $[Ag_2(CN)_3(C_9H_8N_2)_2]$, may be considered as an Ag^{II} compound with the corresponding metal site coordinated by two bidentate quinolin-8-amine molecules, one cyanide group and one dicyanidoargentate(I) anion, $[Ag(CN)_2]^-$. Since this latter ligand contains an Ag^I atom, the complex should be a class 1 or class 2 mixed-valence compound, according to the Robin–Day classification. The Ag^{II} atom is six-coordinated in a highly distorted octahedral geometry, while the Ag^I atom displays the expected linear geometry. In the crystal, the amino groups of the quinolin-8-amine ligands form $N-H \cdots N$ hydrogen bonds with the N atoms of the non-bridging cyanide ligands, forming a two-dimensional network parallel to (102). The terminal cyanide ligands are not engaged in polymeric bonds and the title compound is an authentic molecular complex. The title molecule is thus a rare example of a stable $Ag^{I,II}$ complex, and the first mixed-valence $Ag^{I,II}$ molecular complex characterized by X-ray diffraction.

1. Chemical context

The coordination chemistry of silver is clearly dominated by Ag^I complexes. The oxidation state Ag^{II}, with a paramagnetic $4d^9$ electronic configuration, is however present in inorganic species like AgF₂, a compound which readily decomposes in water, and is even able to oxidize SiCl₄ (Grochala & Mazej, 2015). Ag^{II} is also stable in bimetallic perfluorinated compounds $Ag^{II}M^{IV}F_6$, with M = Pt, Pd, Ti, Rh, Sn and Pb. In these solids, the Ag^{II} sites are bonded to six F atoms, in an octahedral coordination geometry distorted by the Jahn-Teller effect. In contrast, AgO, precipitated from Ag in presence of K₂S₂O₈ in a basic medium, is a diamagnetic mixedvalence Ag^{I,III} oxide, rather than a Ag^{II} compound (Housecroft & Sharpe, 2012). Some actual Ag^{II} coordination complexes may be formed in solution, for example $[Ag(bpy)_2]^{2+}$, which follows the Curie law with a magnetic moment close to the spin-only value expected for a d^9 system (Kandaiah et al., 2012).

Recently, polynitrile and cyanidometallate anions have received considerable attention because of their importance in both coordination chemistry and in molecular materials chemistry (Atmani *et al.*, 2008; Benmansour *et al.*, 2008, 2009, 2012; Setifi *et al.*, 2013; Setifi, Lehchili *et al.*, 2014; Setifi, Charles *et al.*, 2014). In view of the possible roles of these

versatile anionic ligands, we have been interested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the extensive field of molecular materials exhibiting the spin-crossover (SCO) phenomenon (Dupouy *et al.*, 2008, 2009; Setifi *et al.*, 2009; Setifi, Charles *et al.*, 2014; Setifi, Milin *et al.*, 2014). During the course of attempts to prepare such complexes, using the dicyanidoargentate(I) anion, we isolated the title compound, whose structure is described here.

2. Structural commentary

The title complex (Fig. 1) is a binuclear silver compound placed in a general position, in which metallic sites present contrasting coordination environments. Ag1 is six-coordinated by two quinolin-8-amine bidentate ligands, one terminal cyanide ligand, and one bridging cyanide ligand. The quinoline ring system N1–C8 is slightly twisted, with a r.m.s. deviation of 0.04 Å, while the other, N11–C18, may be considered as planar (rms deviation: 0.01 Å). Quinoline ligands are arranged *cis* in the octahedral coordination polyhedron, and their mean planes make a dihedral angle of 58.71 (5)°. The amino groups bonded to C8 and C18 are *trans* to the cyanide ligands. The octahedral geometry around Ag1 is distorted, mainly because

Figure 1

The molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level.

Table 1				
Hydrogen-bond geometr	ry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N9-H9A\cdots N21^{i}$	0.79 (3)	2.36 (3)	3.143 (4)	169 (3)
$N9-H9B\cdots N21^{ii}$	0.85 (3)	2.23 (3)	3.075 (3)	172 (3)
N19 $-$ H19 A \cdots N21 ⁱⁱ	0.77(3)	2.48 (3)	3.205 (4)	157 (3)
$N19-H19B\cdots N25^{iii}$	0.90 (3)	2.19 (3)	3.087 (4)	175 (3)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, y - 1, z; (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$.

of bite angles for quinoline ligands, N1-Ag1-N9 = 69.59 (7)° and N11-Ag1-N19 = 71.29 (7)°. The coordination of the terminal cyanide ligand, C20=N21 is through the C atom, as determined from the structure refinement (see *Refinement* section). This orientation seems to be favored by the availability of atom N21 as an acceptor for hydrogen bonding with symmetry-related molecules in the crystal (Table 1).

Metal site Ag2 has a linear coordination with two cyanide ligands. Both ligands are coordinated through their C atoms (C22 and C24), and the coordination angle C22-Ag2-C24 =176.05 (11)°, close to the ideal angle of 180° expected for an *sp* hybridization of the metal. Site Ag2 may thus be confidently assigned to a Ag^I coordination site, and charge balance for the complex should then set the oxidation state for the octahedral metal as Ag^{II} , with a formal hybridization sp^3d^2 . The title complex is a mixed-valence compound, with valences localized on a single site. According to the Robin-Day classification (Day et al., 2008), this compound should thus be a class 1 or class 2 mixed-valence compound. The deep-red color of the crystals should be the result of the $\pi^* \leftarrow 4d(Ag)$ metal-toligand charge transfer, rather than a consequence of an intervalence charge transfer of a class 2 complex. Indeed, porphyrinato-Ag^{II} compounds are generally purple or red compounds (e.g. Xu et al., 2007).

Cyanide ligand C22=N23 bridges metal sites Ag1 and Ag2, with oxidation states II and I respectively. The best structure refinement shows that this ligand is not disordered: the C atom is bonded to Ag^+ , and the N atom to the Ag^{II} atom. This orientation observed for the bridge is consistent with the Pearson's HSAB principle (Pearson, 2005). The cyanide Lewis base is considered as a soft ligand, which preferentially forms covalent bonds with soft Lewis acid, like Ag⁺. However, the heteronuclear nature of this ligand induces an asymmetric character for the softness: based on the absolute electronegativity criterion, the C side of the cyanide ligand is expected to be softer than the N side. On the other hand, regarding the acid component of the coordination bonds, Ag⁺ is expected to be softer than Ag²⁺, due to the charge difference, which makes Ag⁺ more polarizable than Ag²⁺. The most stable acid-base interactions for the bridging mode of ligand C22=N23 is thus $Ag^+-C=N-Ag^{2+}$, as observed in the X-ray-based structure refinement. From the reactivity point of view, the dicyanidoargentate(I) anion, $[Ag(CN)_2]^-$, used as starting material, preserves the κC coordination mode for the cyanide groups in the product. This anion thus acts as a ligand to the oxidized Ag^{II} atom formed during the reaction. The

Figure 2

Part of the crystal structure of the title complex, emphasizing the N- $H \cdots N$ hydrogen bonds (dashed red lines) forming *R* rings. The green molecule corresponds to the asymmetric unit.

same κC coordination is observed for the terminal cyanide group bonded to Ag²⁺, indicating that this fragment $[Ag(CN)]^+$ is also produced from dicyanidoargentate, probably prior to aminoquinoline coordination.

3. Supramolecular features

As described in the previous section, both terminal cyanide ligands are bonded to Ag1 and Ag2 as KC ligands, allowing the N terminus to act as acceptor sites for hydrogen bonding (Ramabhadran et al., 2014). Amino groups of aminoquinoline ligands are the donors for these contacts (Table 1), forming a two-dimensional supramolecular network parallel to (102) (Fig. 2). Molecules are aggregated through a centrosymmetric $R_4^2(8)$ ring, where the donor group is the terminal cyanide C20/ N21 bonded to Ag1. The same cvanide ligand is engaged in $R_2^1(6)$ rings, where donors are from two different amino groups. This basic pattern of fused rings propagates in the [010] direction, via larger $R_2^2(10)$ rings. Finally, these rows of molecules are connected in the crystal via the long arms Ag2-C24=N25, which take part in large $R_3^2(19)$ rings. The shortest metal...metal distance is observed in these rings involving Ag⁺ ions: Ag2···Ag2ⁱ = 3.9680(3) Å [symmetry code (i): $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}].$

Although the resulting supramolecular structure is compact, hydrogen bonds, with $H \cdots N$ contacts in the range 2.19 (3)–2.48 (3) Å, should be considered as interactions of moderate strength. The crystallized compound is an authentic molecular complex, in which the terminal cyanide ligands are not engaged in polymeric bonds.

4. Database survey

Complexes characterized by X-ray diffraction which include at least one Ag^{2+} ion are much less common than Ag^{+} complexes. An estimation using the field 'NAME = silver(II)' or 'NAME = silver(I)' in the current release of the CSD (version 5.36 with all updates; Groom & Allen, 2014), affords 63 and more than 8000 hits, respectively. Within Ag^{I} complexes, the occurrence of the dicyanidoargentate ion is significant. It has been used not only as a counter-ion (*e.g.* Stork *et al.*, 2005) but also as a ligand for numerous transition-metal ions, including Ag^{+} (Lin *et al.*, 2005).

For non-polymeric compounds, the most common coordination for Ag²⁺ is the square-planar [AgN₄] arrangement, found in porphyrin derivatives and tetra-aza cyclic ligands (e.g. Xu et al., 2007). However, a few cases of sixcoordinate Ag2+ species have been characterized, with N-donor ligands (Clark et al., 2009) and S-donor ligands (Shaw et al., 2006). Compounds with both Ag^+ and Ag^{2+} ions which have been X-ray characterized seem to be very scarce. A 1D polymeric mixed-valent Ag^I/Ag^{II} polymer was obtained by reacting AgNO₃, Na₂S₂O₈ and pyrazine in a CH₃CN/H₂O mixture, and the presence of Ag²⁺ was confirmed by ESR (Sun et al., 2010). The two other cases retrieved from the CSD are ionic compounds, in which tetraazacyclotetradecane derivatives coordinate the Ag²⁺ ion in a square-planar geometry, while the Ag⁺ ion is present in the anionic polymeric part (Wang & Mak, 2001) or in an anionic cluster (Wang et al., 2002). The title complex is, as far we can see, the first nonpolymeric and non-ionic mixed-valence Ag^{I,II} compound characterized by X-ray diffraction.

5. Synthesis and crystallization

The title compound was obtained under solvothermal conditions from a mixture of iron(II) sulfate heptahydrate (28 mg, 0.1 mmol), quinolin-8-amine (30 mg, 0.2 mmol) and potassium dicyanidoargentate (40 mg, 0.2 mmol) in water–ethanol (4:1 ν/ν , 20 ml). The mixture was transferred to a Teflon-lined autoclave and heated at 423 K for 48 h. The autoclave was then allowed to cool to ambient temperature. Deep-red crystals of the title compound were collected by filtration, washed with water and dried in air (yield 30%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Special attention was paid to the accurate orientation for the three cyanide ligands in the asymmetric unit. For each C=N group, two refinements were carried out with each possible orientation, and the best model was retained on the basis of R_1 and wR_2 factors, and ADP for the C and N sites. For example, wR_2 for all data rises from 8.78% to *ca.* 9.30% if one cyanide ligand bonded to Ag2 is inverted. No evidence for disordered cyanido groups was detected in the difference maps. All C-bonded H atoms were placed in calculated positions and refined as riding atoms, with C-H bond lengths fixed to 0.93 Å. Amino H atoms bonded to N9 and N19 were found in a difference map and refined freely. For all H atoms, isotropic displacement parameters were calculated as $U_{iso}(H) = 1.2U_{eq}(carrier atom)$.

Table 2	
Experimental	details.

Crystal data Chemical formula $[Ag_2(CN)_3(C_9H_8N_2)_2]$ 582.15 M_r Crystal system, space group Monoclinic, P21/c Temperature (K) 293 13.5449 (7), 6.9385 (3), *a*, *b*, *c* (Å) 22.3824 (11) $\beta (^{\circ})$ V (Å³) 94.767 (2) 2096.25 (17) Ζ 4 Μο Κα Radiation type $\mu \,({\rm mm}^{-1})$ 1.89 Crystal size (mm) $0.27 \times 0.23 \times 0.18$ Data collection Bruker APEXII CCD Diffractometer Absorption correction Multi-scan (SADABS; Sheldrick, 2003) T_{\min}, T_{\max} 0.615, 0.754 No. of measured, independent and 27103, 7113, 5226 observed $[I > 2\sigma(I)]$ reflections 0.021 $R_{\rm int}$ $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.750 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.034, 0.088, 1.02 No. of reflections 7113 No. of parameters 283 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 1.70, -0.56

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support.

References

- Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). *Inorg. Chem. Commun.* 11, 921–924.
- Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). *Inorg. Chim. Acta*, **361**, 3856–3862.
- Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). *Inorg. Chem.* 51, 2359–2365.
- Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

research communications

 Clark, I. J., Crispini, A., Donnelly, P. S., Engelhardt, L. M., Harrowfield, J. M., Jeong, SH., Kim, Y., Koutsantonis, G. A., Lee, Y. H., Lengkeek, N. A., Mocerino, M., Nealon, G. L., Ogden, M. I., Park, Y. C., Pettinari, C., Polanzan, L., Rukmini, E., Sargeson, A. M., Skelton, B. W., Sobolev, A. N., Thuéry, P. & White, A. H. (2009). Aust. J. Chem. 62, 1246–1260.
Day, P., Hush, N. S. & Clark, R. J. H. (2008). Philos. Trans. R. Soc. London A. 366, 5–14.
Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, JF. (2009). <i>Chem. Commun.</i> pp. 3404–3406.
Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, JY., Gómez-García, C. J. & Guionneau, P. (2008). <i>Inorg. Chem.</i> 47, 8921–8931.
Grochala, W. & Mazej, Z. (2015). <i>Philos. Trans. Roy. Soc. A: Math.</i> <i>Phys. Engineering Sci.</i> 373 , 20140179.
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
Housecroft, C. E. & Sharpe, A. G. (2012). <i>Inorg. Chem.</i> 4th ed., ch. 22. Harlow: Pearson.
Kandaiah, S., Huebner, R. & Jansen, M. (2012). Polyhedron, 48, 68–71.
Lin, YY., Lai, SW., Che, CM., Fu, WF., Zhou, ZY. & Zhu, N. (2005). <i>Inorg. Chem.</i> 44, 1511–1524.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41 , 466–470.
Pearson, R. G. (2005). J. Chem. Sci. 11 7, 369–377. Ramabhadran, R. O., Hua, Y., Flood, A. H. & Raghavachari, K. (2014) J. Phys. Chem. A 118 7418 7423
 Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, JY., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). <i>Inorg. Chem.</i> 48, 1269–1271.
Setifi, F., Charles, C., Houille, S., Thétiot, T., Triki, S., Gómez-García, C. J. & Pillet, S. (2014). Polyhedron, 61, 242–247.
Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.
Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). <i>Inorg. Chem.</i> 53, 97–104.
Shaw, J. L., Wolowska, J., Collison, D., Howard, J. A. K., McInnes, E. J. L., McMaster, J., Blake, A. J., Wilson, C. & Schröder, M. (2006). J. Am. Chem. Soc. 128, 13827–13839.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). <i>Acta Cryst.</i> A 64 , 112–122. Sheldrick, G. M. (2015). <i>Acta Cryst.</i> C 71 , 3–8.
Stork, J. R., Rios, D., Pham, D., Bicocca, V., Olmstead, M. M. & Balch, A. L. (2005). <i>Inorg. Chem.</i> 44, 3466–3472.
Sun, D., Yang, CF., Xu, HR., Zhao, HX., Wei, ZH., Zhang, N., Yu, LJ., Huang, RB. & Zheng, LS. (2010). <i>Chem. Commun.</i> 46, 8168–8170.
Wang, QM., Lee, H. K. & Mak, T. C. W. (2002). New J. Chem. 26, 513–515.
Wang, QM. & Mak, T. C. W. (2001). Chem. Commun. pp. 807-808.

Xu, Y.-J., Yang, X.-X., Cao, H. & Zhao, H.-B. (2007). Acta Cryst. E63, m1437.

supporting information

Acta Cryst. (2015). E71, 698-701 [doi:10.1107/S2056989015009664]

Crystal structure of μ -cyanido-1:2 $\kappa^2 N$:C-dicyanido-1 κ C,2 κ C-bis(quinolin-8amine-1 $\kappa^2 N$,N')-2-silver(I)-1-silver(II): rare occurrence of a mixed-valence Ag^{I,II} compound

Zouaoui Setifi, Sylvain Bernès, Olivier Pérez, Fatima Setifi and Djamil-Azzeddine Rouag

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS2014*/7 (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014*/7 (Sheldrick, 2015).

μ -Cyanido-1:2 κ^2 N:C-dicyanido-1 κ C,2 κ C-bis(quinolin-8-amine-1 κ^2 N,N')-2-silver(I)-1-silver(II)

Crystal data	
$[Ag_{2}(CN)_{3}(C_{9}H_{8}N_{2})_{2}]$ $M_{r} = 582.15$ Monoclinic, $P2_{1}/c$ a = 13.5449 (7) Å b = 6.9385 (3) Å c = 22.3824 (11) Å $\beta = 94.767 (2)^{\circ}$ $V = 2096.25 (17) Å^{3}$ Z = 4	F(000) = 1140 $D_x = 1.845 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 9889 reflections $\theta = 3.1-30.7^{\circ}$ $\mu = 1.89 \text{ mm}^{-1}$ T = 293 K Prism, deep-red $0.27 \times 0.23 \times 0.18 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube $\varphi \& \omega$ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{min} = 0.615, T_{max} = 0.754$ 27103 measured reflections	7113 independent reflections 5226 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 32.2^{\circ}, \ \theta_{min} = 4.2^{\circ}$ $h = -20 \rightarrow 17$ $k = -7 \rightarrow 10$ $l = -33 \rightarrow 32$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.088$ S = 1.02 7113 reflections 283 parameters	0 restraints 0 constraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.043P)^2 + 0.5603P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.70 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ag1	0.66686 (2)	0.78323 (2)	0.41853 (2)	0.03575 (6)
Ag2	0.97403 (2)	0.95903 (4)	0.28877 (2)	0.05800 (8)
NI	0.58984 (15)	0.6944 (3)	0.32264 (9)	0.0372 (4)
C2	0.6314 (2)	0.7024 (4)	0.27131 (12)	0.0487 (6)
H2A	0.7001	0.7094	0.2722	0.058*
C3	0.5762 (3)	0.7006 (4)	0.21569 (13)	0.0593 (8)
H3A	0.6080	0.7002	0.1804	0.071*
C4	0.4768 (3)	0.6994 (4)	0.21363 (13)	0.0584 (8)
H4A	0.4397	0.7024	0.1768	0.070*
C4A	0.4286 (2)	0.6937 (3)	0.26690 (12)	0.0470 (6)
C5	0.3257 (2)	0.6965 (4)	0.26830 (17)	0.0631 (9)
H5A	0.2852	0.7052	0.2327	0.076*
C6	0.2850 (2)	0.6865 (4)	0.32116 (19)	0.0682 (9)
H6A	0.2166	0.6928	0.3218	0.082*
C7	0.3441 (2)	0.6670 (4)	0.37504 (15)	0.0552 (7)
H7A	0.3142	0.6564	0.4109	0.066*
C8	0.44478 (18)	0.6633 (3)	0.37580 (11)	0.0382 (5)
C8A	0.48939 (18)	0.6834 (3)	0.32138 (11)	0.0360 (5)
N9	0.50821 (17)	0.6373 (3)	0.42895 (10)	0.0400 (5)
H9A	0.481 (2)	0.675 (4)	0.4567 (14)	0.048*
H9B	0.525 (2)	0.519 (4)	0.4314 (13)	0.048*
N11	0.74947 (17)	0.7366 (3)	0.51431 (9)	0.0445 (5)
C12	0.7454 (2)	0.8572 (4)	0.55930 (13)	0.0617 (8)
H12A	0.7000	0.9578	0.5554	0.074*
C13	0.8057 (3)	0.8419 (5)	0.61242 (14)	0.0682 (9)
H13A	0.8014	0.9322	0.6428	0.082*
C14	0.8705 (2)	0.6948 (4)	0.61937 (14)	0.0597 (8)
H14A	0.9111	0.6831	0.6548	0.072*
C14A	0.87684 (19)	0.5588 (4)	0.57329 (12)	0.0448 (6)
C15	0.9406 (2)	0.4006 (4)	0.57738 (15)	0.0590 (8)
H15A	0.9829	0.3824	0.6118	0.071*
C16	0.9414 (3)	0.2742 (4)	0.53187 (18)	0.0708 (10)
H16A	0.9836	0.1684	0.5354	0.085*
C17	0.8793 (2)	0.3000 (4)	0.47926 (14)	0.0560 (7)
H17A	0.8815	0.2114	0.4482	0.067*
C18	0.81619 (17)	0.4517 (3)	0.47276 (11)	0.0379 (5)
C18A	0.81318 (16)	0.5856 (3)	0.52035 (10)	0.0362 (5)
N19	0.75194 (17)	0.4838 (3)	0.41939 (10)	0.0404 (5)
H19A	0.716 (2)	0.397 (4)	0.4210 (12)	0.048*
H19B	0.788 (2)	0.478 (4)	0.3873 (14)	0.048*
C20	0.6010 (2)	1.0782 (4)	0.44098 (11)	0.0431 (6)
N21	0.5709 (2)	1.2156 (4)	0.45109 (12)	0.0620 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C22	0.8639 (2)	0.9377 (4)	0.34572 (14)	0.0525 (7)
N23	0.8017 (2)	0.9129 (4)	0.37489 (12)	0.0607 (6)
C24	1.0814 (2)	0.9611 (4)	0.23044 (13)	0.0497 (6)
N25	1.1367 (2)	0.9559 (4)	0.19515 (12)	0.0620 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ag1	0.03820 (10)	0.03710 (10)	0.03135 (10)	0.00115 (7)	-0.00073 (7)	-0.00062 (7)
Ag2	0.04638 (14)	0.07771 (16)	0.05085 (14)	-0.00800 (10)	0.00974 (10)	0.00022 (10)
N1	0.0449 (11)	0.0354 (10)	0.0311 (10)	0.0019 (8)	0.0019 (8)	-0.0006 (7)
C2	0.0625 (17)	0.0462 (14)	0.0379 (14)	0.0028 (12)	0.0082 (12)	-0.0016 (11)
C3	0.101 (3)	0.0448 (15)	0.0322 (14)	0.0020 (15)	0.0083 (15)	-0.0017 (11)
C4	0.096 (3)	0.0372 (14)	0.0383 (15)	0.0027 (14)	-0.0184 (15)	-0.0002 (11)
C4A	0.0630 (17)	0.0279 (11)	0.0464 (15)	0.0007 (10)	-0.0183 (13)	-0.0006 (10)
C5	0.0601 (19)	0.0490 (16)	0.074 (2)	0.0009 (13)	-0.0320 (17)	0.0012 (14)
C6	0.0419 (17)	0.0603 (19)	0.099 (3)	-0.0001 (13)	-0.0157 (18)	0.0021 (17)
C7	0.0449 (15)	0.0506 (14)	0.071 (2)	-0.0012 (12)	0.0079 (14)	0.0014 (14)
C8	0.0390 (13)	0.0296 (10)	0.0455 (14)	0.0001 (9)	-0.0001 (10)	0.0012 (9)
C8A	0.0457 (13)	0.0225 (9)	0.0383 (13)	0.0021 (8)	-0.0057 (10)	-0.0014 (8)
N9	0.0472 (12)	0.0381 (11)	0.0355 (11)	0.0048 (9)	0.0083 (9)	0.0019 (9)
N11	0.0491 (13)	0.0469 (11)	0.0359 (11)	0.0087 (9)	-0.0062 (9)	-0.0054 (9)
C12	0.074 (2)	0.0592 (17)	0.0497 (17)	0.0210 (15)	-0.0114 (15)	-0.0173 (14)
C13	0.089 (2)	0.0686 (19)	0.0438 (17)	0.0094 (18)	-0.0156 (16)	-0.0194 (15)
C14	0.068 (2)	0.0594 (17)	0.0474 (17)	0.0005 (14)	-0.0217 (14)	-0.0051 (13)
C14A	0.0402 (13)	0.0473 (14)	0.0450 (15)	-0.0041 (10)	-0.0074 (11)	0.0028 (11)
C15	0.0513 (17)	0.0565 (16)	0.065 (2)	0.0051 (13)	-0.0196 (14)	0.0039 (15)
C16	0.064 (2)	0.0536 (17)	0.091 (3)	0.0210 (14)	-0.0199 (18)	-0.0047 (17)
C17	0.0556 (17)	0.0464 (15)	0.0643 (19)	0.0098 (12)	-0.0041 (14)	-0.0121 (13)
C18	0.0334 (12)	0.0390 (12)	0.0408 (13)	-0.0025 (9)	0.0003 (10)	0.0000 (9)
C18A	0.0316 (11)	0.0386 (11)	0.0376 (13)	-0.0018 (9)	-0.0010 (9)	0.0017 (9)
N19	0.0422 (12)	0.0432 (11)	0.0359 (11)	-0.0028 (8)	0.0041 (9)	-0.0047 (9)
C20	0.0539 (15)	0.0388 (13)	0.0365 (13)	-0.0039 (11)	0.0025 (11)	0.0045 (10)
N21	0.0785 (19)	0.0514 (14)	0.0581 (16)	0.0082 (13)	0.0184 (14)	0.0060 (12)
C22	0.0526 (17)	0.0500 (15)	0.0553 (18)	-0.0087 (12)	0.0074 (14)	-0.0033 (12)
N23	0.0626 (16)	0.0563 (14)	0.0659 (17)	-0.0120 (12)	0.0221 (13)	-0.0064 (12)
C24	0.0423 (15)	0.0592 (16)	0.0470 (16)	0.0007 (12)	-0.0004 (13)	0.0082 (12)
N25	0.0548 (15)	0.0745 (17)	0.0581 (17)	0.0054 (12)	0.0119 (13)	0.0138 (12)

Geometric parameters (Å, °)

Ag1—C20	2.305 (3)	N9—H9A	0.79 (3)	
Ag1—N23	2.323 (3)	N9—H9B	0.85 (3)	
Ag1—N11	2.357 (2)	N11—C12	1.314 (3)	
Ag1—N19	2.375 (2)	N11—C18A	1.357 (3)	
Ag1—N1	2.3878 (19)	C12—C13	1.389 (4)	
Ag1—N9	2.404 (2)	C12—H12A	0.9300	
Ag2—C24	2.033 (3)	C13—C14	1.347 (4)	

Ag2—C22	2.047 (3)	C13—H13A	0.9300
N1—C2	1.322 (3)	C14—C14A	1.406 (4)
N1—C8A	1.361 (3)	C14—H14A	0.9300
C2—C3	1.398 (4)	C14A—C15	1.395 (4)
C2—H2A	0.9300	C14A—C18A	1.419 (3)
C3—C4	1.343 (5)	C15—C16	1.345 (5)
C3—H3A	0.9300	C15—H15A	0.9300
C4—C4A	1.407 (4)	C16—C17	1.400 (4)
C4—H4A	0.9300	C16—H16A	0.9300
C4A - C5	1 397 (4)	C17-C18	1.357(3)
C4A - C8A	1.397(1) 1 415(3)	C17—H17A	0.9300
C5-C6	1.347(5)	C18 - C18A	1417(3)
C5—H5A	0.9300	C18 $N19$	1.417(3) 1 436(3)
C6C7	1 397 (5)	N19_H194	0.77(3)
C6 H6A	0.0300	N10 H10P	0.77(3)
C7 C8	1.363(4)	C20 N21	1.060(3)
$C_7 = C_8$	0.0200	C_{20} N23	1.009(3)
$C^{2} - \Pi / A$	0.9300	C22—N25	1.121(4)
C_{0}	1.411(4)	C24—N23	1.155 (4)
C8—N9	1.420 (3)		
C_{20} Ag1 N23	94 56 (9)	C8 - N9 - Ag1	110 41 (15)
$C_{20} = A_{g1} = N_{11}$	94.96 (8)	C8_N9_H9A	109(2)
N_{23} $\Delta \sigma_1$ N_{11}	96.04 (9)	$\Delta g1 - N9 - H9\Delta$	$10^{-1}(2)$
C_{20} Ag1 N10	166 25 (8)	C8 NO HOB	1085(10)
$N_{23} = N_{19}$	86.81 (9)	Λ_{g1} N0 H0B	100.3(19) 100.1(19)
N11 Ag1 N10	71.20(7)	HOA = NO = HOB	100.1(19)
C_{20} Ag1 N1	106.00(8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114(3)
$N_{20} = A_{g1} = N_{1}$	100.09(8)	$C12$ N11 A_{c1}	110.0(2)
N_{23} Ag1 N_{1}	91.27 (0)	C12 N11 Ag1	124.20(10) 116.52(16)
N10 A al N1	137.10(7)	$\frac{11}{1000} - \frac{11}{1000} - $	110.32(10)
N19—Ag1—N1	87.34(7)	N11-C12-C13	123.3 (3)
C20—Ag1—N9	89.30 (9)	$\mathbf{N11} = \mathbf{C12} = \mathbf{H12A}$	118.4
N11 A 1 NO	100.78 (9)	C13 - C12 - H12A	118.4
NII—AgI—N9	102.39 (8)	C14 - C13 - C12	119.2 (3)
N19—Ag1—N9	93.89 (8)	C14—C13—H13A	120.4
NI—AgI—N9	69.59 (7)	C12—C13—H13A	120.4
C24—Ag2—C22	1/6.05 (11)	C13—C14—C14A	120.2 (3)
C2—NI—C8A	118.8 (2)	С13—С14—Н14А	119.9
C2—N1—Ag1	125.78 (18)	C14A—C14—H14A	119.9
C8A—N1—Ag1	113.24 (15)	C15—C14A—C14	123.7 (3)
N1—C2—C3	122.6 (3)	C15—C14A—C18A	119.2 (2)
N1—C2—H2A	118.7	C14—C14A—C18A	117.1 (2)
C3—C2—H2A	118.7	C16—C15—C14A	120.5 (3)
C4—C3—C2	119.4 (3)	C16—C15—H15A	119.8
C4—C3—H3A	120.3	C14A—C15—H15A	119.8
С2—С3—НЗА	120.3	C15—C16—C17	120.8 (3)
C3—C4—C4A	120.4 (3)	C15—C16—H16A	119.6
C3—C4—H4A	119.8	C17—C16—H16A	119.6
C4A—C4—H4A	119.8	C18—C17—C16	121.2 (3)

C5—C4A—C4	123.6 (3)	C18—C17—H17A	119.4
C5—C4A—C8A	119.4 (3)	C16—C17—H17A	119.4
C4—C4A—C8A	117.0 (3)	C17—C18—C18A	119.1 (2)
C6—C5—C4A	120.0 (3)	C17—C18—N19	122.9 (2)
С6—С5—Н5А	120.0	C18A—C18—N19	118.1 (2)
С4А—С5—Н5А	120.0	N11—C18A—C18	119.3 (2)
C5—C6—C7	121.1 (3)	N11—C18A—C14A	121.5 (2)
С5—С6—Н6А	119.4	C18—C18A—C14A	119.2 (2)
С7—С6—Н6А	119.4	C18—N19—Ag1	113.75 (15)
C8—C7—C6	120.8 (3)	C18—N19—H19A	100 (2)
С8—С7—Н7А	119.6	Ag1—N19—H19A	112 (2)
С6—С7—Н7А	119.6	C18—N19—H19B	109.0 (19)
C7—C8—C8A	119.2 (2)	Ag1—N19—H19B	108.9 (17)
C7—C8—N9	123.2 (3)	H19A—N19—H19B	113 (3)
C8A—C8—N9	117.6 (2)	N21—C20—Ag1	179.5 (3)
N1—C8A—C8	119.1 (2)	N23—C22—Ag2	174.7 (3)
N1—C8A—C4A	121.6 (2)	C22—N23—Ag1	163.6 (2)
C8—C8A—C4A	119.2 (2)	N25—C24—Ag2	175.2 (3)
		-	
C8A—N1—C2—C3	0.2 (3)	C18A—N11—C12—C13	2.2 (5)
Ag1—N1—C2—C3	-161.74 (19)	Ag1—N11—C12—C13	-170.2 (3)
N1—C2—C3—C4	3.0 (4)	N11—C12—C13—C14	-1.4 (6)
C2—C3—C4—C4A	-2.1 (4)	C12-C13-C14-C14A	0.1 (6)
C3—C4—C4A—C5	178.5 (3)	C13—C14—C14A—C15	-178.8 (3)
C3—C4—C4A—C8A	-1.9 (3)	C13—C14—C14A—C18A	0.3 (5)
C4—C4A—C5—C6	178.6 (3)	C14—C14A—C15—C16	178.7 (3)
C8A—C4A—C5—C6	-1.0 (4)	C18A—C14A—C15—C16	-0.4 (5)
C4A—C5—C6—C7	-2.1 (5)	C14A—C15—C16—C17	0.9 (6)
C5—C6—C7—C8	2.0 (5)	C15—C16—C17—C18	-0.6 (5)
C6—C7—C8—C8A	1.3 (4)	C16—C17—C18—C18A	-0.2 (4)
C6—C7—C8—N9	-177.8 (3)	C16—C17—C18—N19	179.5 (3)
C2—N1—C8A—C8	176.2 (2)	C12—N11—C18A—C18	178.3 (3)
Ag1—N1—C8A—C8	-19.6 (2)	Ag1—N11—C18A—C18	-8.7 (3)
C2—N1—C8A—C4A	-4.4 (3)	C12—N11—C18A—C14A	-1.7 (4)
Ag1—N1—C8A—C4A	159.72 (16)	Ag1—N11—C18A—C14A	171.31 (18)
C7—C8—C8A—N1	175.0 (2)	C17—C18—C18A—N11	-179.4 (3)
N9—C8—C8A—N1	-5.8 (3)	N19-C18-C18A-N11	0.9 (3)
C7—C8—C8A—C4A	-4.3 (3)	C17—C18—C18A—C14A	0.6 (4)
N9—C8—C8A—C4A	174.9 (2)	N19—C18—C18A—C14A	-179.2 (2)
C5—C4A—C8A—N1	-175.2 (2)	C15—C14A—C18A—N11	179.7 (3)
C4—C4A—C8A—N1	5.2 (3)	C14—C14A—C18A—N11	0.5 (4)
C5—C4A—C8A—C8	4.2 (3)	C15—C14A—C18A—C18	-0.3 (4)
C4—C4A—C8A—C8	-175.4 (2)	C14—C14A—C18A—C18	-179.5 (2)
C7—C8—N9—Ag1	-153.5 (2)	C17—C18—N19—Ag1	-172.6 (2)
C8A—C8—N9—Ag1	27.4 (2)	C18A—C18—N19—Ag1	7.2 (3)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N9—H9A…N21 ⁱ	0.79 (3)	2.36 (3)	3.143 (4)	169 (3)
N9—H9 <i>B</i> ···N21 ⁱⁱ	0.85 (3)	2.23 (3)	3.075 (3)	172 (3)
N19—H19A…N21 ⁱⁱ	0.77 (3)	2.48 (3)	3.205 (4)	157 (3)
N19—H19 <i>B</i> …N25 ⁱⁱⁱ	0.90 (3)	2.19 (3)	3.087 (4)	175 (3)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) -*x*+2, *y*-1/2, -*z*+1/2.