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Artemisinin, isolated from the traditional Chinese medicinal plant qīng hāo青蒿

(Artemisia annua) and its derivatives are used for treatment of malaria. With

treatment failures now being recorded for the derivatives and companion drugs

used in artemisinin combination therapies new drug combinations are urgently

required. The amino-artemisinins artemiside and artemisone display optimal

efficacies in vitro against asexual and sexual blood stages of the malaria parasite

Plasmodium falciparum and are active against tumour cell lines. In continuing

the evolution of combinations of the amino-artemisinins with new drugs, we

examine the triterpenoid quinonemethide celastrol isolated from the traditional

Chinese medicinal plant léi gōng téng 雷公藤 (Tripterygium wilfordii). This

compound is redox active, and has attracted considerable attention because

of potent biological activities against manifold targets. We report that celastrol

displays good IC50 activities ranging from 0.50–0.82 µM against drug-sensitive

and resistant asexual blood stage Pf, and 1.16 and 0.28 µM respectively against

immature and late stage Pf NF54 gametocytes. The combinations of celastrol

with each of artemisone and methylene blue against asexual blood stage Pf are

additive. Given that celastrol displays promising antitumour properties, we

examined its activities alone and in combinations with amino-artemisinins

against human liver HepG2 and other cell lines. IC50 values of the amino-

artemisinins and celastrol against HepG2 cancer cells ranged from

0.55–0.94 µM. Whereas the amino-artemisinins displayed notable

selectivities (SI > 171) with respect to normal human hepatocytes, in

contrast, celastrol displayed no selectivity (SI < 1). The combinations of

celastrol with artemiside or artemisone against HepG2 cells are synergistic.

Given the promise of celastrol, judiciously designed formulations or structural

modifications are recommended for mitigating its toxicity.
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1 Introduction

Treatment of malaria with artemisinin combination

therapies (ACTs) comprising artemisinin or one of its clinical

derivatives (Figure 1) (Cui and Su, 2009; Li et al., 2017) with a

longer half-life antimalarial drug (Eastman and Fidock, 2009;

Wells et al., 2009; World Health Organisation, 2021) is

compromised by enhanced tolerance of the malaria parasite,

principally Plasmodium falciparum (Pf), to the artemisinin, and

resistance to the partner drug (Phyo and von Seidlein, 2017;

Woodrow and White, 2017; Ouji et al., 2018; Mairet-Khedim

et al., 2021). The increased tolerance to artemisinins is due to

induction of dormancy (quiescence) in ring stage parasites in

response to drug pressure. Whilst various explanations are put

forward for quiescence (Mbengue et al., 2015; Siriwardana et al.,

2016), the most likely cause is an enhanced stress response

(Bridgford et al., 2018; Rocamora et al., 2018; Wellems et al.,

2020). New drug combinations based on rational consideration

of mechanism of action of the components are urgently required.

Here we focus on amino-artemisinins (Haynes et al., 2004) that

have enhanced efficacies against all blood stages of the malaria

parasite. The best-known is artemisone (Figure 1) (Haynes et al.,

2006; Vivas et al., 2007). Its potent biological activities are

ascribed to the properties of the amino group at C-10 (Wu

et al., 2016), improved pharmacokinetics (Nagelschmitz et al.,

2008), and generation of active metabolites with relatively long

half-lives (Schmeer et al., 2005; Nagelschmitz et al., 2008;

Gibhard et al., 2021; Watson et al., 2021).

In order to select the combination partner, one needs to

briefly consider mechanism of action (MoA) of artemisinins.

Whilst the thesis involving artemisinin activation by heme is the

most strongly supported (Giannangelo et al., 2019; Quadros et al.,

2022), there are difficulties in reconciling this with experimental

observations, known aspects of free radical chemistry, and in

particular structure-activity relationships of artemisinin

derivatives and analogues (Haynes et al., 2004; Haynes et al.,

2013). We have shown that these compounds rapidly oxidize

reduced flavin cofactors of the disulfide reductases glutathione

reductase (GR), thioredoxin reductase (TrXR) and others

important for maintaining redox homeostasis in the malaria

parasite. The artemisinin is thereby irreversibly reduced and

enhancement of oxidative stress ensues (Figure 2) (Haynes

et al., 2010; Haynes et al., 2011; Haynes et al., 2012).

In order to enhance the stress response, a drug capable of

redox cycling is best used in combination with the artemisinin.

One such is methylene blue (MB) (Figure 3), active against

asexual blood stage malaria parasites and displaying synergism

with artemisinins (Akoachere et al., 2005; Buchholz et al., 2008).

MB also has gametocytocidal activity (Adjalley et al., 2011) that is

synergized by artemiside and artemisone (Coertzen et al., 2018;

Wong et al., 2019). Notably, MB rapidly oxidizes the same

reduced flavin cofactors that are oxidized by the artemisinins

and is thereby reduced to leucomethylene blue (LMB). The latter

is reoxidized by oxygen to MB and the ensuing redox cycling

results in build-up of ROS. Thus, NADPH that regenerates

FADH2 from FAD undergoes futile consumption (Figure 3)

(Haynes et al., 2012). The redox cycling of MB will promote

the action of artemisinins (Figure 3).

Artemisinins also show antitumour activities (Efferth, 2017;

Konstat-Korzenny et al., 2018; Augustin et al., 2020; Kiani et al.,

2020; Mancuso et al., 2021). Artemisone elicits activities superior

to artemisinin in vitro (Gravett et al., 2011; Das, 2015). The

activities (IC50) against tumour cell lines range from

0.26–95.7 µM (Gravett et al., 2011; Hooft van Huijsduijnen

et al., 2013; Dwivedi et al., 2015; Wu et al., 2018; Wong et al.,

2020). As in the case of malaria, MoA likely involves interruption

of function of flavin cofactors of disulfide reductases, leading to

generation of intracellular ROS that through downstream

signalling events overwhelms redox homeostasis in the cancer

cell (Efferth, 2017; Wong et al., 2020). Other ROS-independent

FIGURE 1
Artemisinin and clinical derivatives DHA, artemether and artesunate. The amino-artemisinins artemiside and artemisone possess a nitrogen
atom attached to C-10 that enhances biological activities.
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pathways may also be involved (Qin et al., 2015; Greenshields

et al., 2019). Combinations of artemisinins with known and

experimental cancer drugs have been examined (Efferth, 2017;

Kumar et al., 2019; Koltai, 2021). Artemisone shows additivity in

combinations with oxaliplatin and gemcitabine in vitro (Gravett

et al., 2011). Artemisone is also active against A375 melanoma

cells (IC50 95.7 µM), wherein synergism with the redox-active

copper (II) complex of the anticancer drug elesclomol is

observed. Further, generation of ROS is demonstrated, and

use of flow cytometry in combination with the FITC Annexin

V assay indicates the artemisinin induces apoptotic cell death,

that is greatly enhanced in the presence of the companion drug

(Wong et al., 2020). Thus, the case for continuing the

examination of combinations of the amino-artemisinins with

redox-active drugs to enhance cancer chemotherapy is clear.

We now consider the lipophilic triterpenoid quinone-

methide celastrol (Figure 4), also known as tripterine, isolated

from the traditional Chinese medicinal plant léi gōng téng 雷公

藤 or Thunder of God vine (Tripterygium wilfordii) as the redox

component (Chen et al., 2018). Celastrol exhibits potent

antitumour and other biological activities that involve inter

alia redox activity associated with generation of intracellular

ROS and modulation of downstream signalling pathways

(Moreira et al., 2019; Peng et al., 2019; Chen et al., 2020; Lu

et al., 2021; Youns et al., 2021). Celastrol also inhibits the

flavoenzyme siderophore A that catalyzes the hydroxylation of

L-ornithine in Apergillis fumigatus. Whilst in silico experiments

suggested reversible binding at the active site of siderophore A

(Martín Del Campo et al., 2016), the effect of celastrol on the

redox cycling of the flavin cofactor (cf. Effect ofMB, Figure 3) was

not considered. However, that quinone-methides are redox active

and rapidly oxidize reduced flavin cofactors in flavoenzymes is

illustrated by the behaviour of the quinone oxidoreductases

NQO1 and NQO2 upon treatment with o- and p-quinone

methides derived from o- and p-cresol respectively (Kucera

et al., 2013). Thus, we anticipate as for MB (Figure 3)

(Coertzen et al., 2018; Wong et al., 2019), celastrol should

synergize the action of artemisinins against different targets.

However, although celastrol is a biologically potent

compound, it displays untoward toxicity associated with

numerous off-target effects. Thus, considerable effort has been

directed towards development of controlled-release formulations

of celastrol (Huang., et al., 2020; Shi et al., 2020; Guo et al., 2021;

Wagh et al., 2021) or preparation of less toxic derivatives largely

FIGURE 2
Oxidation of reduced flavins by artemisinin: FAD flavin adenine dinucleotide, FMN flavin mononucleotide, RF riboflavin. Formal two-electron
transfer results in irreversible reduction of the artemisinin to deoxyartemisinin. Thereby, scavenging of electrons from the reduced flavin within the
flavin disulfide reductase e.g., GR, TrxR, lipoamide dehydrogenase and others results in blockade of GSH supply. Abrupt build-up of reactive oxygen
species (ROS) upon addition of the artemisinin that may be associated with induction of downstream signalling pathways results in enhanced
oxidative stress (cf. Figure 3 below).

FIGURE 3
Reduction of MB by reduced cofactor flavin adenine dinucleotide FADH2 to LMB and reoxidation by O2 to regenerate MB. Scavenging of
electrons by MB from FADH2 within the flavoenzyme disulfide reductase e.g. glutathione reductase GR, thioredoxin reductase TrxR,
dihydrolipoamide dehydrogenase DLD, results in abrogation of supply of GSH or other biogenic thiol, and sustained build-up of ROS, with futile
consumption of NADPH.
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associated with conversion of the carboxylic acid to amide

derivatives (Klaić et al., 2012; Bassanini et al., 2021; Coghi

et al., 2021).

Antimalarial activities of celastrol and its naturally-occurring

methyl ester pristimerin (Figure 4) have been reported

(Figueiredo et al., 1998; Li et al., 2019); for celastrol, IC50

activities against the chloroquine sensitive Pf NF54 strain and

multidrug resistant Pf K1 strain are 564 and 401 nM respectively,

with similar values for pristimerin (IC50 NF54 583 nM, K1

409 nM). Thus far, the antimalarial MoA has not been

elucidated. However, it is clear that the redox-active quinone

methide moiety of celastrol bestows overall biological activity

(Kucera et al., 2013; Moreira et al., 2019; Peng et al., 2019; Chen

et al., 2020; Lu et al., 2021; Youns et al., 2021). In this sense, this

aspect correlates with the antimalarial activities of MB and

redox-active naphthoquinones such as menadione (Lanfranchi

et al., 2012; Klotz et al., 2014) that are active against asexual and

sexual blood stage parasites (Gupta et al., 2002; Tanaka et al.,

2015; Ehrhardt et al., 2016; Sidorov et al., 2016; Ahenkorah et al.,

2020).

Here, we present the results of an evaluation of the

antimalarial activity in vitro of celastrol alone and in

combination with each of artemisone and MB using

standardized screens (Coertzen et al., 2018; Wong et al.,

2019). Likewise, antitumour activities of each of artemiside,

artemisone and celastrol individually and in combination

against selected cancer cell lines according to reported

methods are described (Wong et al., 2020; Ng et al., 2022).

2 Materials and methods

2.1 Materials

Reference compounds and the artemisinins used for

screening were ≥95% pure (Coertzen et al., 2018; Wong et al.,

2019; Gibhard et al., 2021). Celastrol purchased from the

Chengdu SanHerb BioScience company (Chengdu, China),

was ≥95% pure, and was used without further purification.

2.2 Antimalarial efficacies

2.2.1 Antimalarial efficacies
In vitro cultivation of asexual and gametocyte P. falciparum

parasites: P. falciparum asexual blood stage parasites were

cultivated in human erythrocytes in RPMI-1640 media

supplemented with AlbuMax II under sterile conditions and

in a hypoxic environment (90% N2, 5% CO2, and 5% O2) at 37°C

as described previously (Coertzen et al., 2018; Wong et al., 2019).

Gametocytes were produced from asexual blood stage parasites

in a stage-specific manner through induction of cellular stress as

described previously (Reader et al., 2015; Coertzen et al., 2018;

Wong et al., 2019; Reader et al., 2022).

2.2.2 Asexual blood stage parasites
DHA, artesunate, artemether, chloroquine (CQ), andmethylene

blue (MB) were used as reference drugs. All assay conditions are as

previously described (Coertzen et al., 2018; Wong et al., 2019).

Compound working solutions were prepared from a 10 mM stock

solution in 100% (v/v) dimethyl sulfoxide (DMSO; Sigma-Aldrich)

in AlbuMAX II supplemented RPMI 1640 medium with a final

DMSO concentration of 0.1% (v/v), shown to be nontoxic to be

nontoxic to intraerythrocytic asexual blood stage parasites (Coertzen

et al., 2018). Dose-responses were determined using a 2-fold serial

drug dilution on in vitro 95% ring-stage intraerythrocytic Pf

parasites (1% parasitemia, 1% hematocrit) at 37°C under 90%

N2, 5% CO2, and 5% O2 atmospheric conditions, detecting SYBR

green I fluorescence as amarker for parasite proliferation following a

96 h drug treatment (Smilkstein et al., 2004; Verlinden et al., 2011).

Activity against the Pf drug-sensitive NF54 strain and the multi

drug-resistant K1 (resistant to CQ, quinine, pyrimethamine, and

cycloguanil), andW2 (resistant to CQ, quinine, pyrimethamine, and

cycloguanil) strains was evaluated. Untreated and 1 µM CQ-treated

FIGURE 4
The lipophilic pentacyclic triterpene celastrol isolated from Tripterygium wilfordii used in Traditional Chinese Medicine and the naturally-
occurring methyl ester pristimerin.

Frontiers in Pharmacology frontiersin.org04

Ng et al. 10.3389/fphar.2022.988748

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.988748


parasites were included as positive and negative controls. MB and

artemisone were included as internal reference standards. Data

analysis was performed using GraphPad Prism (version 6)

software, intra-assay variability was monitored with Z-factors,

and acceptable inter-assay reproducibility was determined from

the percent coefficient of variation (CV) (Reader et al., 2015).

Data are from technical triplicates, performed for three biological

replicates. Results are expressed as the compound concentration at

which 50% parasite viability/proliferation is affected (IC50).

2.2.3 Immature and late-stage gametocytes
Gametocytocidal activity was determined using the transgenic

NF54-Pfs16-GFP-Luc reporter lines (Adjalley et al., 2011; Reader

et al., 2015; Reader et al., 2022) to derive dose responses and

determine IC50 after 48 h continuous drug pressure against

immature gametocytes (2-fold serial drug dilutions on ≥95% stage

II-III gametocytes) or after both 48 and 72 h continuous drug

pressure against more mature late-stage IV - V gametocytes

(≥90% stages IV and V, 10-fold serial drug dilutions) (2%–3%

gametocytemia, 2% hematocrit) at 37°C under hypoxic conditions.

Untreated and 5 μM MB-treated immature and late-stage

gametocytes were included as positive and negative controls. MB

and artemisone were included as internal reference standards. In all

cases, an interference assay to eliminate false positives from possible

compound interferencewith the luciferase readoutwas run in parallel.

Unless otherwise indicated, data are from technical triplicates,

performed for three biological replicates. Complete dose-response

curves are given in the (Supplementary Figures S2A,B).

2.2.4 Drug combination assays against asexual
blood stage parasites

The in vitro interactions of celastrol with artemisone and MB

was determined using a fixed-ratio isobole analysis on Pf

NF54 asexual parasites (SYBR Green I-based fluorescence).

Briefly, the drugs were applied alone at their respective IC50

value and in fixed-drug percentage combination ratios of IC50

values of 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100, two-fold

serially diluted and grown for 96 h at 37°C under the 90% N2, 5%

O2, and 5% CO2 gas mixture in 96-well plates to obtain the IC50

dose response curves for each drug alone and in the fixed-drug

ratio (Ohrt et al., 2002; Fivelman et al., 2004). The fractional

inhibitory concentration (FIC) for each drug in the combination

was calculated as follows:

FIC = IC50 of drug A in combination with drug B/IC50 of

drug A

The paired FIC values for the drugs in each combination

were linearly plotted to provide the isobologram. The ΣFIC of

FIC of drug A in combination with FIC of drug B was determined

by calculating the mean FIC value, to obtain the representative

FIC value for the drug combination. Data obtained were analysed

in Excel, and sigmoidal dose-response curves and isobolograms

were plotted using GraphPad 6.0. Experiments were performed

in triplicate, and repeated 3 times.

2.3 Cytotoxicity

Proliferative and non-proliferative mammalian cell lines:

human liver and lung cancer cell lines HepG2 and A549, and

immortalized normal liver LO2 and lung BEAS-2B cells were

purchased fromATCC (Manassas, VA, United States). Cells were

cultured in RPMI-1640 medium supplemented with 10% fetal

bovine serum and antibiotics penicillin (50 U/mL) and

streptomycin (50 μg/ml; Invitrogen, United Kingdom). All

cells were incubated at 37°C in a 5% humidified CO2 incubator.

2.3.1 Assays
All test compounds were dissolved in DMSO at a final

concentration of 50 mM and stored at −20°C before use.

Cytotoxicity was assessed with A549, HepG2, BEAS-2B and

LO2 cells. The MTT assay with 3-(4,5-dimethylthiazole-2yl)-2,5-

diphenyltetrazolium bromide (5 mg/ml) was performed as

previously described (Ng et al., 2022). Briefly, 4 × 103 cells per

well were seeded in 96-well plates before drug treatment. After

overnight cell culture, the cells were exposed to different

concentrations of selected compounds (0.19–100 μM) for 72 h.

Cells without drug treatment were used as control. Next, 10 μl of

the MTT solution was added to each well and incubated at 37°C for

another 4 h. Solubilization buffer (100 μl) was then added (10 mM

HCl in a solution of 10% of SDS) and incubated overnight. The

absorbance A at 570 nm was measured on the next day. The

percentage of cell viability was calculated using the following

formula: Cell viability (%) = Atreated/Acontrol × 100. Dose response

curves for all assays are given in the Supplementary Figures S3–S6.

2.3.2 Drug combination assays
For the drug combination inhibitory assays, six drug

preparations, of which four comprised combinations of either

artemiside or artemisone with celastrol in a fixed ratio of 80:20,

60:40, 40:60, and 20:80 were prepared and screened against

HepG2 liver hepatocellular carcinoma and LO2 human normal

hepatocytes respectively. Two of these six preparations employed

each of artemiside, artemisone or celastrol alone at a concentration

approximately 5–7 times higher than the IC50 of the individual drug

as presented in Table 4. For artemiside, 500 µM was taken as 5-fold

IC50 and for celastrol 20 µM was taken as 7-fold IC50. Thus, six

combinations for artemiside (µM) and celastrol (µM) prepared were

500:0, 400:4, 300:8, 200:12, 100:16, and 0:20, respectively.

As above for the malaria combination assays, a mean

ΣFIC<1.0 represents a synergistic interaction, >1.3 represents

an antagonistic interaction and ΣFIC = 1 represents an

indifferent or additive interaction. Additivity, synergism and

antagonism were also be established from the linear plots

constructed from the FIC values of each of the drugs. A

concave hyperbolic plot indicates synergism, a convex

hyperbolic plot indicates an antagonistic interaction, and a

straight line indicates an additive interaction. Isobole analysis

of the combinations of each of artemiside and artemisone in
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combination with celastrol was performed against HepG2 and

LO2 cells respectively. In Figure 5 is presented the isoboles for

each drug combination.

3 Results and discussion

3.1 Antimalarial efficacy

3.1.1 Asexual blood stage parasites
Activity was determined using the SYBR Green I based

fluorescence assay on asexual blood stages of the NF54 (drug

sensitive), K1 andW2 (drug resistant) strains of P. falciparum. In

Table 1 are presented the activities and the resistance index (RI)

for each drug resistant strain. Dose response curves are given in

the Supplementary Figures S1A–C. Also included in Table 1 for

direct comparison of activities against celastrol are data for the

internal reference standards MB and artemisone recorded at the

same time as for celastrol. The activities correlate with the data

previously reported for these compounds including the other

artemisinin derivatives of Table 1 (Coertzen et al., 2018; Wong

et al., 2019).

Interestingly, celastrol displays antimalarial activities

somewhat similar to those previously recorded (IC50 Pf NF54

564 nM, Pf K1 401 nM) using the tritiated hypoxanthine assay

(Li et al., 2019), confirming that activities of celastrol are orders of

magnitude inferior to those of the artemisinins. Whilst the

activities in terms of IC50 data are better than those of the

naphthoquinone menadione recorded using the tritiated

hypoxanthine assay (IC50 9.6–12 µM) (Lanfranchi et al., 2012),

FIGURE 5
Isoboles for artemisone andMB in combination with celastrol. Isobole analysis was performed for (A): artemisone in combination with celastrol
and (B)MB in combination with celastrol against asexual blood stage NF54 parasites using the SYBRGreen I based assay. Results are representative of
four independent biological replicates (n = 4), each performed in technical triplicates, mean ± SEM.

TABLE 1 Activities (nM) in vitro against asexual blood stage P. falciparum.

aCompound IC50 nM
b

NF54 K1 RIc W2 RId

Methylene Bluef 5.9 ± 0.8e/5.0 ± 0.8f 6.45 ± 0.30f 1.29f 5.13 ± 0.31f 1.03f

DHAf 2.51 ± 0.19 1.51 ± 0.33 0.6 1.74 ± 0.22 0.7

Artemetherf 1.86 ± 0.17 9 ± 2 4.8 7 ± 1 3.8

Artesunatef 3.00 ± 0.29 4 ± 1 1.3 2.4 ± 0.4 0.8

Celastrol 820 ± 190 700 ± 100 0.85 500 ± 100 0.61

Artemisidef 1.11 ± 0.17 1.6 ± 0.4 1.47 1.75 ± 0.27 1.58

Artemisonef 2.32 ± 0.76e/1.2 ± 0.4f 1.01 ± 0.19f 0.85f 1.6 ± 0.4f 1.36f

aStructures of artemisinins in Figure 1, of celastrol in Figure 4; P. falciparum NF54 CQ, sensitive; K1: CQ, pyrimethamine, mefloquine, cycloguanil resistant; W2: CQ, quinine,

pyrimethamine, cycloguanil resistant
bResults for proliferative (SYBR, Green I) assays from three biological replicates, each performed as technical triplicates, mean ± SEM
cResistance index (RI) = IC50 K1/IC50 NF54
dIC50 W2/IC50 NF54
edata for internal reference standards, this study
fdata from Coertzen et al., 2018; Wong et al., 2019.
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there are more recent examples of redox active naphthoquinones

displaying superior activities against asexual blood stages of

drug-sensitive and -resistant Pf (Verlinden et al., 2011;

Ehrhardt et al., 2016; Sidorov et al., 2016; Ahenkorah et al.,

2020; Ng et al., 2022).

3.1.2 Stage specific gametocyte activity
Stage-specific activities of celastrol against immature (stage

II-III) and late stage (stage IV-V) gametocytes were determined

with the luc reporter line as described previously (Coertzen et al.,

2018; Wong et al., 2019). Data are presented in Table 2. Also

included in Table 2 for direct comparison of activities with

celastrol are gametocytocidal data for MB, artemisone and the

artemisinin derivatives recorded previously (Coertzen et al.,

2018; Wong et al., 2019). Dose response curves are presented

in the Supplementary Figures S2A,B. Although celastrol

displayed relatively mediocre activity against immature stage

gametocytes, it showed good activity against late stage IV-V

gametocytes. This approximately 4-fold greater activity against

late stage gametocytes is noteworthy, and in this respect, is more

active than or equipotent with naphthoquinones against this

stage for which comparable data have been obtained, such as for

plasmodione (IC50 1,107 nM) (Ehrhardt et al., 2016) and a series

of imidazolo-naphthoquinones (IC50 164–1,088 nM)

(Ahenkorah et al., 2020).

3.1.3 Antimalarial drug combination studies
As previously recorded for each of artemiside and artemisone

in combination with MB (Coertzen et al., 2018), drug-drug

interactions were monitored through evaluation of fractional

inhibitory concentration (FIC) as determined by isobolograms. A

mean ΣFIC<1.0 represents a synergistic interaction, >1.3 an

antagonistic interaction and ΣFIC = 1 an indifferent or

additive interaction. Isobologram analysis of the combinations

of each of artemisone and MB in combination with celastrol was

performed against the asexual stages of Pf NF54 using the SYBR

Green I based assay. In Table 3 are shown the calculated FIC

values for the independent combinations at each ratio as well as

the ∑FIC values for each combination. In Figure 5 are presented

the independent isoboles for each drug combination.

The combination of each of artemisone and MB with

celastrol showed additive interactions as is apparent from the

isobolograms (Figure 5) as well as the ΣFIC values for these

combinations, with an average ΣFIC of 1.06 (95% confidence

interval (CI) 94.91–95.09) for artemisone with celastrol and an

average ΣFIC of 1.25 (95% CI 94.61–95.39) for MB with celastrol,

similar to that previously observed for artemisone andMB (ΣFIC
of 1.14) on asexual blood stage parasites (Coertzen et al., 2018).

3.2 Antitumor activities

Cytotoxicity was assessed for each of artemisinin, DHA and

artemether, and the amino-artemisinins artemiside and

artemisone, and celastrol against A549 human lung

carcinoma, BEAS-2B non-tumorigenic human bronchial

epithelium, HepG2 liver hepatocellular carcinoma and

LO2 human normal hepatocytes using the MTT assay (Ng

et al., 2022). Data are presented in Table 4, and dose response

curves are given in the Supplementary Figures S3–S6.

The standout features are the relative toxicity of DHA

towards the normal cell lines (SI < 1), and the selective

activities of artemiside and artemisone against liver

hepatocellular carcinoma cell lines (SI >
183 and >171 respectively), compared with celastrol which

displays no selectivity with respect to normal hepatocytes

(SI < 1, Table 4) (Klaić et al., 2012).

Next, combinations of each of artemiside and artemisone

with celastrol were examined, according to the method used to

establish additivity/synergism described above. Interestingly, the

mean of ΣFIC<1.0 for assays against HepG2 carcinoma cell lines

indicates each of artemiside and artemisone display synergism

TABLE 2 Activities (nM) in vitro against immature stage II-III and late stage IV-V P. falciparum NF54 gametocytes.

aCompound bImmature stage II-III
(luc 48 h) IC50 nM

cLate stage IV-V
(luc 72 h) IC50 nM

Fold change preference
ratio EG to LG

Fold change preference
ratio LG to EG

Methylene Blued 95.0 ± 11.3 143.0 ± 16.7 1.5 0.7

DHAd 43.0 ± 3.9 33.66 ± 1.98 0.78 1.3

Artemetherd 37.7 ± 2.0 136.2 ± 85.9 3.6 0.28

Artesunated 62.8 ± 3.0 259.4 ± 80 4.1 0.24

Celastrol 1,160 ± 66.5 282.4 ± 96.2 0.2 4.1

Artemisided 16.4 ± 1.0 1.5 ± 0.5 0.09 10.9

Artemisoned 1.94 ± 0.11 42.4 ± 3.3 21.9 0.05

aStructures of artemisinins in Figure 1, of celastrol in Figure 4; IC50 values against
bimmature stage II-III, gametoctyes (>90%)
clate stage IV-V, gametocytes (>90%) determined using the luciferase based assay against the Luc reporter cell line; results are representative of three biological replicates (n = 3), each

performed in technical triplicates, mean ± SEM; data are from 48 h for immature gametocytes and 72 h for late stage IV-V, gametocytes drug incubation period
ddata from Coertzen et al., 2018, Wong et al., 2019.
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with celastrol. Against the normal hepatocyte LO2 cell line, whilst

the interaction of artemisone with celastrol was synergistic, that

of artemiside was additive. Synergism and additivity were also

evident from the linear plots determined from the FIC values of

each of the drugs (Table 5 and Figure 6). Thus, synergism is

confirmed for combinations of the amino-artemisinins with

TABLE 3 FIC values for artemisone and MB in combination with celastrol against asexual blood stage Pf NF54.a

Drug ratio FIC values

Artemisone Celastrol ΣFIC MB Celastrol ΣFIC

80:20 0.69 0.50 1.19 0.79 0.41 1.06

60:40 0.39 0.60 0.99 0.66 0.72 1.39

40:60 0.24 0.76 1.00 0.67 1.02 1.73

20:80 0.12 0.93 1.06 0.70 0.81 0.81

Avg ΣFIC 1.06 1.25

aCalculated FIC, and ΣFIC (highlighted in bold) values following isobole analysis of each of artemisone and methylene blue MB, in combination with celastrol. Results are representative of

four independent biological repeats (n = 4), each performed as technical triplicates, ± SEM.

TABLE 4 Cytotoxicities of artemisinins and celastrol (µM) against tumour and non-proliferating cell lines in vitro.

aCompound IC50 µM
b

A549 BEAS-2B cSI HepG2 LO2 cSI

Artemisinin >100 >100 — >100 >100 —

DHA 62.6 ± 3.4 21.2 ± 1.4 0.3 >100 30.7 ± 2.2 <0.3
Artemether >100 >100 — 1.02 ± 0.2 >100 >98
Artemiside >100 32.1 ± 2.7 <0.3 0.55 ± 0.02 >100 >183
Artemisone >100 73.6 ± 1.4 <0.7 0.58 ± 0.2 >100 >171
Celastrol 2.83 ± 0.12 0.45 ± 0.1 0.16 0.94 ± 0.1 0.78 ± 0.2 0.83

aStructures of artemisinins in Figure 1, of celastrol in Figure 4.
bA549 human lung carcinoma; BEAS-2B, non-tumorigenic human bronchial epithelium; HepG2 liver hepatocellular carcinoma; LO2 human normal hepatocyte; results are reported as

inhibitory concentrations IC50 from three independent biological replicates, each performed as technical replicates ±standard deviation (SD).
cSI, selectivity index IC50 normal cell line/IC50 tumour cell line.

TABLE 5 Cytotoxicity FIC values for artemiside and artemisone in combination with celastrol.a

Cell line Drug ratio FIC values

Artemiside Celastrol ΣFIC Artemisone Celastrol ΣFIC

HepG2 80:20 0.57 0.08 0.65 0.76 0.14 0.90
60:40 0.4 0.14 0.54 0.48 0.23 0.71
40:60 0.42 0.34 0.76 0.36 0.4 0.76
20:80 0.16 0.35 0.51 0.3 0.88 1.18
Avg ΣFIC 0.61 0.89

LO2 80:20 0.59 0.48 1.07 0.99 0.23 1.22
60:40 0.45 1.03 1.48 0.47 0.29 0.76
40:60 0.33 1.56 1.89 0.28 0.4 0.68
20:80 0.09 1.2 1.29 0.18 0.7 0.88
Avg ΣFIC 1.43 0.88

aCalculated FIC, and ΣFIC (highlighted in grey) values following isobole analysis of each of artemiside and artemisone in combination with celastrol. Results are representative of four

independent biological repeats (n = 4), each performed as technical triplicates, ± SEM; HepG2 liver hepatocellular carcinoma, LO2 human normal hepatocytes.
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celastrol against the HepG2 carcinoma cell line, and for

artemisone-celastrol against human normal hepatocyte LO2.

4 Conclusion

The activities of the oxidant amino-artemisinins artemiside and

artemisone as well as the redox active drug celastrol were determined

against P. falciparum blood-stage asexual drug sensitive NF54 and

multidrug resistant K1 and W2 parasite strains. It is demonstrated

that the combinations of each of artemisone and ofMBwith celastrol

are additive, with a final ΣFIC of 1.06 for artemisone with celastrol

and a final ΣFIC of 1.25 for MB with celastrol. Therefore, for the

asexual blood stage parasites, the results for the artemisone-celastrol

combination are similar to the artemisone-MB combinations

recorded earlier, wherein an ΣFIC of 1.14 is observed (Coertzen

et al., 2018). With respect to the oxidant mode of action of the

artemisinin, this thus strongly supports the precept of common redox

mechanistic pathways for MB and celastrol. That is, it is likely that

celastrol exerts oxidative stress through attrition of reduced flavin

cofactors associated with redox-active flavoenzymes such as

glutathione reductase, thioredoxin reductase and others responsible

for maintaining redox homeostasis in the malaria parasite. For the

first time, the effect of celastrol against blood stage gametocytes was

evaluated. In comparison with the gametocytocidal activities of

known naphthoquinones, celastrol showed good activity against

late stage gametocytes. The results provide substantial impetus for

examining the antimalarial mechanism of action of celastrol. Thus,

proposed future work will aim to more precisely define the redox

activity of celastrol including a delineation of its actual effects on

reduced flavin cofactors in relation to the behaviour of MB (cf.

Figure 3) (Haynes et al., 2012) and of naphthoquinones, as discussed

in the Introduction.

For the antitumour activities, the key features that emerge

here are the selectivities of artemiside and artemisone (SI > 170)

toward the HepG2 cancer cell line with respect to LO2 normal

cell line. Selectivity towards hepatocellular carcinoma elicited by

artemisinins both in vitro and in vivo have been recorded

previously (Hou et al., 2008; Nandi et al., 2021) but here, an

advantage is conferred by the relative lack of toxicity of

artemisone especially with respect to the relatively neurotoxic

DHA and its prodrugs artesunate and artemether (Schmeer et al.,

2005; Haynes et al., 2006; Vivas et al., 2007; Nagelschmitz et al.,

2008; Wu et al., 2016; Watson et al., 2021). Artemiside that is

active against the HepG2 carcinoma cell line as noted here, and

against malaria and other apicomplexan parasites is metabolized

to artemisone and other active metabolites in vivo that in essence

greatly extends the half-life of active drug and enhances overall

bioavailability (Gibhard et al., 2021). Thus, the potential of

artemiside to act as an antitumour agent requires further

FIGURE 6
Isobole analyses of combinations of each of artemiside and artemisone with celastrol against HepG2 liver hepatocellular carcinoma and
LO2 human normal hepatocyte cell lines; results are representative of four independent biological repeats (n = 4), each performed as technical
triplicates, ± SEM.
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evaluation. In addition, we show here that drug interactions

between each of artemiside and artemisone with celastrol are

synergistic, thus supporting the strategy of combining the

oxidant amino-artemisinin with the redox active celastrol. In

this sense, the parallel in activities of the artemisone-celastrol

combination with the artemisone - elesclomol-Cu as noted in the

Introduction is apparent, and may involve a similar mechanistic

pathway.

Overall, even though celastrol is so biologically active, its

non-selectivity with respect to cytotoxicity towards normal cell

lines is an issue, as has been noted on many occasions previously.

Clearly, evaluation of selective formulation methods (Huang, T,

et al., 2020; Shi et al., 2020; Guo et al., 2021; Wagh et al., 2021) or

of relatively non-toxic derivatives (Klaić et al., 2012; Bassanini

et al., 2021; Coghi et al., 2021) must continue in order to develop

celastrol as a potent and successful drug.
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