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Abstract

With the increasing incidence of cartilage-related diseases such as osteoarthritis (OA) and intervertebral disc
degeneration (IDD), heavier financial and social burdens need to be faced. Unfortunately, there is no satisfactory
clinical method to target the pathophysiology of cartilage-related diseases. Many gene expressions, signaling
pathways, and biomechanical dysregulations were involved in cartilage development, degeneration, and
regeneration. However, the underlying mechanism was not clearly understood. Recently, lots of long non-coding
RNAs (lncRNAs) were identified in the biological processes, including cartilage development, degeneration, and
regeneration. It is clear that lncRNAs were important in regulating gene expression and maintaining chondrocyte
phenotypes and homeostasis. In this review, we summarize the recent researches studying lncRNAs’ expression and
function in cartilage development, degeneration, and regeneration and illustrate the potential mechanism of how
they act in the pathologic process. With continued efforts, regulating lncRNA expression in the cartilage
regeneration may be a promising biological treatment approach.
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Introduction
Nowadays, the disease owing to cartilage widely influ-
ences people’s lives, especially in aging society countries.
Cartilage diseases such as osteoarthritis (OA) and inter-
vertebral disc degeneration (IDD) will cause pain and
movement limitations [1]. The main cause of OA and
IDD is the progressive destruction of cartilage [2, 3]. In
order to cure osteoarthritis and intervertebral disc de-
generation, it is necessary to understand the cartilage’s
development, degeneration, and regeneration.
LncRNAs attract more and more attention owing to

their abundance functions in various tissues [4]. LncRNAs

are virtually transcribed by RNA polymerase II and con-
tain RNA-processing signals such as poly (A) tails and 5′
caps [5]. Owing to the lack of open reading frame,
lncRNAs were thought of as “junk RNAs.” On the pro-
gress in the research, lncRNAs were found to act a crucial
role in the biological process. LncRNAs are alternatively
spliced and undergo a process to remove the intronic se-
quence [6]. LncRNAs are about 200 nucleotides to 100 kb,
similar in the structure of mRNA transcripts but without
encoding a protein function [7]. According to the location
relative to the gene locus, lncRNAs can be divided into
five categories: sense, antisense, bidirectional, intronic,
and intergenic [8]. LncRNAs are more species-specific
and less conserved than the protein-encoding genes.
LncRNAs can act as a regulator in various biological
processes such as tumor development, stem cell differenti-
ation, epigenetic regulation, immune response, and in-
flammation-related diseases [9–13]. LncRNAs can act as
an indicator, biomarker, and therapy target in the physio-
logic and pathologic processes, including cartilage devel-
opment, degeneration, and regeneration [14–16].
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Now in this report, we will illustrate the role of lncRNAs
in cartilage development, degeneration, and regeneration
[14, 17] (Table 1). Hopefully, the brief introduction could
afford a deep understanding of chondrocyte degeneration
and a new target to cure cartilage degeneration.

The role of lncRNAs in cartilage development
Cartilage could be divided into three types: hyaline,
elastic, and fibrocartilage [33]. Cartilage was thought of
as a simple structure, because it contains only one type
of cell and its extracellular matrix (ECM) contains only
three components: water, collagen, and proteoglycan
[34]. Chondrogenesis is the primary process in cartilage
development [35]. Cartilage development contains five
stages [36]: the initial stage mesenchymal stem cell,
commitment into chondrocyte, chondrocyte differenti-
ation, chondrocyte hypertrophy, and calcification and
degradation of cartilage matrices (Fig. 1).
In the initial stage of cartilage formation, mesenchyme

cells begin to condense. The BMP-SMAD4 signaling
pathway plays a crucial role in mesenchymal condensa-
tion [37]. BMPR1B is a principal receptor for BMPs and
GDF5. It will induce the skeletal element hypoplasia for
the lack of BMPR1B. LncRNA HIT could regulate the
BMP-SMAD4 signaling pathway through two mecha-
nisms [38]. Firstly, LncRNA HIT binds to its associated
protein such as p100 and CBP to regulate the expression
of Bmpr1b. Secondly, lncRNA HIT locates within the
HOXA locus [39]. LncRNA HIT could regulate the ex-
pression of Hoxa13 and Hoxa11. Meantime, Hoxa13
regulates Bmp2 and Bmp7, and Hoxa11 regulates Runx2
in the BMP signaling pathway. Runx2 was reported to be

expressed in cartilage condensation in the cartilage an-
lagen of the forelimb zeugopod [40]. Therefore, lncRNA
HIT plays a major role in the initial stage of cartilage
formation.
Sex-determining region Y (SRY)-box 9 (Sox9) plays an

important role in promoting mesenchymal stem cells to
the stage of commitment into chondrocytes [41]. Sox9
determines cell fate in cells derived from all three germ
layers. It plays an important role in the initial stage of
cartilage development. Mutation of Sox9 will disrupt the
cartilage formation to cause campomelic dysplasia [36].
Aryl hydrocarbon receptor (AHR) is a conserved recep-
tor from invertebrates to vertebrates, loss of which will
protect against toxicity phenotypes, including cardiac
malformation, cartilage malformation, and reduced
peripheral blood flow [42, 43]. Garcia et al. [44] found
that a novel lncRNA named slincR is associated with
AHR2 and sox9b expression during normal develop-
ment. LncRNA slincR acts as an intermediate between
AHR2 and sox9b mRNA. However, more researches are
needed to illustrate the mechanism of that reduction of
sox9b caused by LncRNA slincR. Another lncRNA
termed lncRNA ROCR was located 94 kb upstream of
the location of SOX9. LncRNA is prone to regulate the
expression of the gene nearby [45]. LncRNA ROCR
aggregates more in the cytoplasm than in the nucleus,
suggesting that it may regulate the expression of SOX9
in an indirect way. RNAi and LNA GapmeR approach
were used to identify the effect of lncRNA ROCR on the
expression of SOX9 and chondrogenesis [46]. The study
showed that lncRNA ROCR contributes to the expres-
sion of SOX9, and lncRNA ROCR is necessary for matrix

Table 1 Functional characterization of lncRNAs in text

LncRNAs Expression Functional role Related factor Reference

lncRNA-CIR Up Aggrecan and collagen degradation MMP-13 and ADAMTS5 [15]

RP11-296A18.3 Up Abnormal proliferation of HNPC miR-138 and HIF1α [18]

PART1 Up Influence the expression of ACVR1, E2F3, and VEGFA miR-34a and miR-148a [19]

HOTAIR Up Overexpression of matrix metalloproteinase IL-1β [20]

CILinc01 and CILinc02 Down Influence cytokine production NF-κB [21]

PACER Up Influence cytokine production COX-2 [22]

AC005082.12 Up ECM degeneration EFNA3 [23]

MEG3 Down Vascular invasion VEGF [24]

HCG18 Up NP cell apoptosis miR-146a-5p/TRAF6/NFκB [25]

HOTTIP Up Chondrogenic differentiation inhibition HoxA13 [26]

GAS5 Up Apoptosis of chondrocytes miR-21 [27]

PCGEM1 Down Apoptosis of synoviocyte miR-770 [28]

linc-ADAMTS5 Down Aggrecan degradation ADAMTS5 [29]

TUG1 Up NP cell proliferation inhibition Wnt β-catenin [30]

LncRNA-MSR Up Overexpression of metalloproteinase miR-152 [31]

DANCR Down Chondrogenic differentiation inhibition smad3 and STAT3 [32]
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GAG production. All the data support that lncRNA ROCR
is important for chondrogenesis. LncRNA ROCR in the
study was detected from RNA extracted from an aged neck
of femur and OA tissue. Further work should confirm the
expression of lncRNA ROCR in normal tissue. Morpho-
genesis gene PTHLH regulates cartilage differentiation
and digit condensation and was involved in SOX-9-
mediated chondrogenesis. CISTR-ACT that encodes a
lncRNA termed as DA125942 was found to regulate
PTHLH expression in cis and SOX-9 expression in trans.
PTHLH and other factors influence the BMP-mediated
and SOX9-directed chondrogenesis through balancing a
complex signaling network. DA125942 could inhibit the
expression of PTHLH and SOX9. Therefore, downregulat-
ing the expression of DA125942 may be an approach to
promote chondrogenesis [47].
Emerging studies showed that lncRNAs play a part in

the stage of chondrocyte progenitor cells into chondrocyte
differentiation [48]. H19 is an imprinted maternally gene
during fetal development [49]. And H19 may play a role
by harboring the miR-675 [50]. Steck and his colleagues
[51] have found that the H19-encoded miR-675 modulates
collagen type II levels. Insulin growth factor (IGF) is from
paternal and is a neighboring gene of H19. H19 influences
IGF-2 through sponging miR-675. miR-675 could regulate
the expression level of COL2A1 by SOX-9 [52]. In
addition, the study revealed that anabolic stimuli upregu-
lated the expression of H19/miR-675 while inflammatory
cytokines downregulated them, and their overexpression
may be good for cartilage anabolism and tissue degener-
ation. Meantime, two other lncRNA expression trends of
ZBED3-AS1 and CTA-941F9.9 were observed during the
chondrogenic differentiation process. Wang et al. [53]
demonstrated that the two lncRNAs may function in the
early stage of chondrogenic differentiation. Further studies
by Ou et al. [54] found that ZBED3-AS1 could activate
the Wnt/β-catenin signaling and increased the zbed ex-
pression. Overexpression of ZBED3-AS1 upregulates the
expression levels of sox9 and collagen II, but the detailed
mechanism requires further investigation.

The impaired cartilage development will cause cartilage-
hair hypoplasia (CHH). Cartilage-hair hypoplasia is also
termed metaphyseal chondrodysplasia. As a result, chon-
drocytes cannot develop into late phase/hypertrophic
chondrocyte [55]. Sox-9 is expressed from the skeletoge-
netic progenitor cell to cartilage hypertrophy [56]. Mef2c
and Runx2 function in the process from chondrocyte into
hypertrophic chondrocyte [57]. Sox9 could be bind to the
cis-element of Col2a1 to regulate chondrogenic differenti-
ation while Runx2 and Mef2c regulate the expression of
col10a1 during chondrogenic differentiation to the late
phase. The mutation of the RMRP gene was reported as
the main cause of CHH. RMRP lncRNA and some protein
subunits form the small nucleolar ribonucleoprotein par-
ticle RNase MRP. RNase MRP is the source of two short
RNA designated RMRP-S1 and RMRP-S2 [58]. Mutations
in RNase MRP cause human cartilage-hair hypoplasia
(CHH). During the course of chondrogenic differentiation,
RMRP RNA was found to be involved in the chondrocyte
hypertrophy while interfering RMPR RNA will lead to the
deregulation of chondrogenic differentiation [59].

Role of lncRNAs in cartilage degeneration
The degeneration of cartilage could lead to diseases such as
osteoarthritis and intervertebral disc degeneration. These
diseases induce pain and movement limitations and in-
crease the social burden [60]. Diseases caused by cartilage
degeneration were owing to inflammation, oxidative stress,
angiogenesis, cell hyperproliferation, ECM degeneration,
and chondrocyte apoptosis and autophagy [61–63] (Fig. 2).
However, the underlying mechanism was elusive. In re-
cent years, many lncRNAs were found to be correlated
with osteoarthritis and intervertebral disc degeneration
[17, 18]. A recent study identified lncRNAs in IDD and
spinal cord injury as control with RNA sequencing
(RNA-seq). In this study, 1854 lncRNAs were found
differentially expressed, of which 1530 lncRNAs could
influence 6386 genes through cis-regulatory mechanism
[19]. A review described by Li shows that lncRNAs
RP11-296A18.3, TUG1, HCG18, MALAT1, SNHG1,

Fig. 1 LncRNA HIT regulates mesenchymal stem cells through LncRNA DA125942, ROCR, and slincR which influence the expression of SOX9
which is important in the early stage of chondrocyte differentiation. LncRNA ZBED-AS1, H19, and CTA-941F9.9 are involved in the process of
chondrocyte differentiation. LncRNA RMRP could promote the chondrocyte differentiating to hypertrophic chondrocytes
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H19, NEAT1, and linc-ADAMTS5 were involved in the IDD
process through regulating NP cells [64]. Another study
showed that lncRNAs including Gm42770, XLOC-006055,
Gm9801, RP23-54G8.4, Gm26848, A530020G20Rik, and
Rian comprise the core regulatory network in OA [65].
Inflammation factors such as IL-1β and 6 and TNF play

crucial roles in the development of osteoarthritis [66]. IL-
1β could promote the brain-derived neurotrophic factor
(BDNF) and vascular endothelial growth factor (VEGF)
which induce angiogenesis [67]. IL-1β was also reported
regulating cartilage catabolism, anabolism, and extracellu-
lar matrix synthesis [68]. Hox transcript antisense inter-
genic RNA (HOTAIR) was upregulated about 21-fold in
OA compared to the normal cartilage tissue and reported
to bind to polycomb repressive complex 2 (PRC2) [69].
Upregulation of IL-1β activated the expression of lncRNA
HOTAIR which induced the overexpression of matrix me-
talloproteinase (MMP) family such as MMP1, MMP3, and
MMP9 and chondrocytes apoptosis [20]. In addition,
Inflammation factors could induce cartilage degeneration
by regulating the expression of lncRNAs. Preculturing
with IL-1β, 125 lincRNAs were detected differentially

expressing in chondrocyte. The lincRNA p50-associated
cyclooxygenase 2-extragenic RNA (PACER) and chon-
drocyte inflammation-associated lincRNAs (CILinc01
and CILinc02) were upregulated to influence the cytokine
production, which play a crucial role in the inflammation-
driven cartilage degeneration [21]. LincRNA PACER is
located upstream to COX-2 locus and regulates COX-2
expression [22]. Silencing CILinc01 and CILinc02 could
increase the expression of IL-6 via suppressing NF-kB’s
activity. And the inhibitor IKK1 of the NF-kB pathway de-
creased the expression of CILinc01 and CILinc02. In con-
clusion, CILinc01 and CILinc02 could negatively regulate
the inflammation factors to delay cartilage degeneration.
Meantime, angiogenesis is associated with the develop-

ment of cartilage degeneration [70]. Degeneration of
ECM will result in the migration of endothelial cells to
cause neovascularization. Intervertebral disc is an avas-
cular and immune-privileged organ [71]. The neovascu-
larization will expose NP to the immune system to cause
an immune response, which results in degeneration dis-
ease [72]. SPHK1 is a member of SPHK family, which is
associated with cell migration and angiogenesis [73].

Fig. 2 Inflammation, angiogenesis, hyperproliferation, ECM degeneration, apoptosis, and autophagy are the main causes of cartilage
degeneration. LncRNA HOTAIR, PACER, CILinc01, and CILinc01 are involved in the inflammation process. LncRNA MEG3, PART1, LINC00917, and
CTD-2246P4.1 promote the angiogenesis through regulating the expression of vascular factor. LncRNA RP11-296A18.3 acts as a sponge of miR-
138 to induce chondrocytes hyperproliferation. LncHCG18 induces apoptosis and autophagy of chondrocyte through the NF-kB pathway. LncRNA
HOTAIR, AC005082.12, and HOTTIP play a crucial role in the process of ECM degeneration
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LncRNAs LINC00917 and CTD-2246P4.1 [23] were
reported to play a crucial role in the development of
IDD through influencing SPHK1 to regulate vascular
generation. LncRNA PART1 influences the expression
of ACVR1, E2F3, and VEGFA through interacting with
has-miR-34a and has-miR-148a [19]. Although RNA-seq
data were validated by qRT-PCR, more research should
be done to explore the function and mechanism of
LncRNA PART1. Maternally expressed gene 3 (MEG3)
is located in chromosome 14q32 and acts as an inhibitor
in tumor progress by inhibiting angiogenesis [74]. More-
over, lncRNA MEG3 that interacts with SOX2 influences
the expression of BMP4 to promote osteogenic differenti-
ation [75]. Meantime, angiogenesis and inflammation are
causes of osteoarthritis [76]. LncRNA MEG3 is downregu-
lated and inversely associated with VEGF expression, which
causes cartilage remodeling and vascular invasion [24].
These findings suggest that lncRNA MEG3 may play a po-
tential role in cartilage degeneration, although more work
should be done to illustrate the underlying mechanism.
Human nucleus pulposus cells (HNPCs), small

chondrocyte-like cells, are crucial in the homeostasis
of the intervertebral disc. Abnormal proliferation of
HNPC will generate cell clusters which cause interver-
tebral disc degeneration [77]. LncRNA-RP11-296A18.3
promotes the proliferation of HNPCs through sponging
miR-138 which inhibits the expression of hypoxia-inducible
factor-1α (HIF1α) [18]. HIF1α is an element that could lead
to a massive death of HNPCs [78]. On the contrary,
another study found that LncRNA-RP11-296A18.3 could
promote the expression of Fas-associated protein factor-1
(FAF1), which induced aberrant apoptosis of cartilage cell
through the Fas-mediated pathway [79]. Interestingly,
LncRNA-RP11-296A18.3 could promote the prolifera-
tion of HNPCs but induce apoptosis of cartilage cells
in different studies.
Chondrocyte autophagy and apoptosis play a crucial

role in the development of cartilage degeneration [80].
Autophagy could remove the generation of reactive
oxygen species (ROS) stimulated by a compression
stimulus in the nucleus pulposus (NP) cells through
sequestrating damaged organelles. In the study, SIRT1
could protect NP cells against apoptosis through pro-
moting autophagy [81]. Interestingly, a recent study
reported that the osteogenic differentiation of NP cells
was associated with the development of IDD. In the
study, Xi et.al found that lncHCG18 could activate the
miR-146a-5p/TRAF6/NFκB axis which induced apop-
tosis and osteogenic differentiation of NP cells and
macrophage recruitment [25]. LncHCG was highly
expressed in IDD patient, so it may be used as an early
diagnostic marker of IDD. Taken together, lncRNAs
play a role in cartilage degeneration through inducing
apoptosis and autophagy.

ECM serves as the culture medium for the chondrocytes
and also serves as the bridge to transfer signals among
different chondrocytes [82]. Collagens are the major com-
ponents of the cartilage structure. Collagen-1 and MMP-
13 are degeneration ECM markers [83]. Cartilage matrix
protein binds to integrin to modulate processes in cartil-
age development and degeneration [84]. LncRNA CTC-
523E23.5, RP4-639 J15.1, and RP11-363G2.4 were identi-
fied to interact with integrin [23]. So, knowing how to
regulate integrin is important to study the cartilage de-
generation. Dysregulation of HOX family transcripts
may result in limb malformation [85]. HOTTIP, which
is known as a regulator of the HoxA gene, was located
at the 5′ end of HoxA cluster [86]. In the research
studied by Kim et al., HOTTIP was found to regulate
integrin by modulating HoxA13 [26]. Moreover, Chen
et al. [23] found that lncRNA AC005082.12 interacts
with Ephrin-A3 (EFNA3) while MIR132 and RP11-
38F22.1 interact with Cathepsin L (CTSL) in the devel-
opment of IDD. Although the sample size is small in
the study, the result indicated that lncRNA contributes
to cartilage degeneration to some extent.
Other lncRNAs such as lncRNACIR, AC127391.1,

AC128677.4, and IGH are also reported being involved
in cartilage-related diseases [15, 16]. These lncRNAs
discussed above played certain roles in cartilage develop-
ment and degeneration and may be the appropriate bio-
markers and targets for the treatment of osteoarthritis
and intervertebral disc degeneration.

The role of lncRNAs in cartilage regeneration
Cell, biomaterial, and tissue engineering are the three
main approaches for cartilage regeneration. Cell therap-
ies contain transplanting mesenchymal stem cells, au-
tologous chondrocytes, cartilage progenitor cells, and
pluripotent stem cells [87]. However, it may take 2–3
years to produce stable and mature ECM after cell trans-
plantation [34]. Biomaterials show simpler regulatory
process than cell therapy but do not provide biological
function and trigger synthesis of ECM [88, 89]. Tissue
engineering combining cells and biomaterials act as a
cartilage repair method with unsatisfactory mechanical
function [90]. There is still no reliable method to gener-
ate articular cartilage to original tissue after injury or
disease and no regenerative treatment available for clin-
ical use. Up to now, there is no satisfactory method to
cure osteoarthritis and intervertebral disc degeneration.
Emerging evidence showed that lncRNAs are involved

in cartilage regeneration (Fig. 3). Targeting lncRNA may
be a potential method to OA treatment. For example,
silencing of HOTAIR could protect against OA develop-
ment [20]. Liu et al. reported that 82 lncRNAs were
upregulated and 70 were downregulated in OA cartilage
compared to normal cartilage [15]. LncRNA PTENP1,
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HOTAIR, HOTTIP, UCA1, TUG1, GAS5, TEA, and
EGOA were found to be upregulated, while SNHG4,
ncR-uPAR, MERI2C, Emx2os, and DISC were found to
be downregulated in the OA chondrocytes compared to
normal chondrocytes. It may be a suitable approach to
silence the lncRNAs upregulated and overexpress the
lncRNAs downregulated in OA cartilage. LncRNA-CIR
acts as a siRNA to suppress vimentin whose inhibition re-
sults in the reduction of the expression of collagen and
aggrecan. Furthermore, lncRNA-CIR was demonstrated as
a sponge of miR-27b and could regulate the expression of
MMP-13. The study revealed that lncRNA-CIR/miR-27/
MMP-13 plays an important role in the degeneration of
cartilage ECM [16]. Therefore, silencing lncRNA-CIR may
be a potential target for cartilage regeneration. LncRNA
growth arrest-specific 5 (GAS5) had been firstly reported
as a tumor inhibitor in renal cell carcinoma [91]. GAS5
was also upregulated in osteoarthritis compared to normal
tissues [92, 93]. Song and his colleagues [27] found that
extraneous GAS5 could upregulate the expressions of
MMPs such as MMP-2, MMP-3, MMP-9, MMP-13, and
ADAMTS-4. Moreover, LncRNAs could interact with

miRNA response elements (MREs) to affect the ex-
pression of mRNAs [94]. GAS5 acted as a negative
regulator of miR-21 which induced the apoptosis of
chondrocytes and cartilage destruction. Therefore, tar-
geting GAS5 may be developed into a novel therapy to
OA once its pathophysiology is completely illustrated.
Besides, prostate cancer gene expression marker 1
(PCGEM1) was also a possible target for OA therapy.
PCGEM1 sponged miR-770 to inhibit the apoptosis of
synoviocyte. Exogenous overexpression of PCGEM1
could induce the proliferation of synoviocyte [28].
Another lncRNA HOTTIP is located within the HoxA
cluster and worked by interacting with histone modifi-
cation complexes [95]. The study by Kim et al. [26]
illustrated that the expression of HOTTIP was upreg-
ulated in OA chondrocytes with modulating HoxA13
gene level. Knocking down HOTTIP expression, a
regulator of HoxA gene, would induce chondrogenic
differentiation and suppress cartilage degradation.
Collectively, although no effective therapies have yet
been discovered to stop OA progression, lncRNA may
be a potential choice in the future.

Fig. 3 Linc-ADAMTS5, LncRNA-CIR, HOTTIP, TUG1, GAS5, and LncRNA-MSR inhibit the ECM degeneration through influencing the expression of
ECM protease MMPs and ADAMTS. Upregulation of lncRNA DANCR and downregulation of PCGEM1 could promote the proliferation of stem cell
to regulate the cartilage regeneration
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Targeting certain lncRNA give a new hope to IDD re-
generation. ECM degrading enzymes ADAMTS5 serves
as a promoter in IDD development [96, 97]. A newly re-
ported LncRNA named linc-ADAMTS5 is transcribed in
the opposite direction to ADAMTS5. Ras-responsive
element-binding protein 1 (RREB1) could regulate the
expression of ADAMTS5 in NP cells. Linc-ADAMTS5
promotes RREB1 binding to the ADAMTS5 promoter
which inhibits the degeneration of ECM [29]. Thus, it
was speculated that Linc-ADAMTS5 may play a role in
IDD treatment through regulating ECM. Moreover,
silencing of lncRNA-CIR was also found to induce the
generation of aggrecan and collagen and downregulate
the expression of enzymes such as MMP-13 and
ADAMTS5 [15]. Chen et al. reported that silencing the
expression of lncRNA TUG1 could block the Wnt/beta-
catenin pathway to promote NP cell proliferation [30].
When NP cells were transfected with TUG1 siRNA, the
Wnt/β-catenin pathway was greatly inhibited with the
reduction of apoptosis, but the cell proliferation was ob-
viously enhanced. Thus, silencing lncRNA TUG1 to pro-
mote human NP cell proliferation provides a theoretical
basis for the clinical treatment of IDD. LncRNA-MSR is
a Tymosinβ-4 (TMSB4) pseudogene, which is a subclass
of lncRNA. TMSB4 could inhibit the polymerization of
actin filament and induce the expression of metallopro-
teinase in chondrocytes [92]. LncRNA-MSR acts as a
ceRNA through competitively binding to miR-152 to up-
regulate the TMSB4 expression, which leads to the over-
expression of metalloproteinase and disorganization of
cytoskeleton and degeneration of ECM [31]. LncRNA-
MSR may be a potential therapeutic target to decrease
the ECM degeneration. The main challenge of these ap-
proaches should accomplish with target-specific delivery.
Nanoparticle could improve the stability and target-
specific of lncRNAs. Delivery of lncRNA with nanoparti-
cle may be a suitable method to be target-specific and
deserves further researches. It is clear that a practical
approach to silencing a critical lncRNA candidate may
have more broad implications than blocking the initi-
ation or progression of osteoarthritis or intervertebral
disc disease. For example, silencing MEG3 intensifies
lipopolysaccharide-stimulated damage of human lung
cells [98]. Downregulation of lncRNA NEAT1 exerts
suppressive effects on immunity [99]. Silencing of
lncRNA DGCR5 contributes to the growth, migration,
and invasion of cervical cancer [100]. Knockdown of
lncRNA ROR suppresses proliferation, migration, and
angiogenesis in microvascular endothelial cells [101].
Inhibiting lncRNA GAS5 attenuates damage induced by
H2O2 in retinal ganglion cells [102]. Therefore, if we
want to target cartilage-related lncRNAs for cartilage
regeneration, more attention should be paid to the side
effects of the treatment.

Meantime, promoting the expression of lncRNAs
which induce chondrogenesis of stem cells may be an
attractive approach to cartilage regeneration. Mesen-
chymal stem cells are an attractive cell source used in
cell therapy for degenerative disease. A considerable
amount of literatures have described mesenchymal
stem cells have the abilities for osteogenic differenti-
ation, adipogenic differentiation, myogenic differenti-
ation, and chondrogenic differentiation [103]. Stem
cell transplanting is one of the methods useful for
cartilage regeneration. However, how to effectively in-
duce stem cell differentiation into cartilage remains to
be explored. Emerging evidences show that lncRNAs
play a crucial role in stem cell differentiation. Nguyen
and his colleagues found that 230 lncRNAs and 498
associated miRNAs correlated to chondrogenic differ-
entiation [104]. In a microarray test, lncRNA 50450,
37692, and 16667 were prone to promote chondro-
genic differentiation of MSCs [105]. MEG3 regulates
chondrogenic differentiation of mesenchymal stem
cells by inhibiting TRIB2 expression through methyl-
transferase EZH2-mediated H3K27me3 [106]. H19
acts as a promoter in cartilage differentiation of
ADSCs. However, whether STAT2 and IRF9 are the
targets of H19 and the underlying mechanism re-
mains to be identified in the following works [107].
LncRNA UCA1 were proved to promote chondro-
genic differentiation of human bone marrow mesen-
chymal stem cells through the TGF-β pathway.
miRNA-145-5p/SMAD5 and miRNA-124-3p/SMAD4
axes were the targets of UCA1 in chondrogenic differ-
entiation [108]. LncRNA DANCR was first studied in
hepatocellular carcinoma [109]. It plays an important
role in chondrogenic differentiation, which is stimu-
lated by Sox4. A survey conducted by Zhang and his
colleagues had shown that Sox4 increased the expres-
sion of LncRNA DANCR through binding to it to pro-
mote the chondrogenesis [32]. Deletion of DANCR
reversed the stimulative effect of Sox4 on the chondro-
genesis of SMSCs. In addition, the STAT3 pathway was
involved in the process of chondrogenic differentiation
[110]. Moreover, smad3 could activate the expression
of SOX9 and recruit CREB-binding protein to promote
chondrogenic differentiation [111]. LncRNA DANCR
was also found to induce chondrogenic differentiation
through upregulating smad3 and STAT3. Furthermore,
overexpression of lncRNA DANCR increased the ex-
pression of chondrogenic markers and GAG/DNA ratio
[112]. Although lncRNAs are shown as a potential tar-
get for cartilage treatment, more evidence about
lncRNAs’ successful treatment in vivo should be inves-
tigated. These exciting results suggest that targeting
lncRNAs or their related signaling pathways might be a
feasible approach for cartilage regeneration.
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Conclusions
Only a small number of lncRNAs were fully character-
ized. Microarray is utilized to detect lncRNAs from a
known RNA pool, while RNA sequencing (RNA-seq)
could detect new lncRNAs [113]. LncRNAs function
through various mechanisms in biological processes
[114]. For example, lncRNAs could act as RNA decoy,
miRNA sponge, competing endogenous RNAs (ceRNA),
RNP components, and chromatin modifier’s recruitment
and modulate translation, splicing, and degeneration of
mRNA [115–118]. LncRNAs, genes, proteins, and associ-
ated pathways are studied in the co-expression network
with informatics approach. Numerous technologies were
emerging to study lncRNAs such as RNA immunoprecipi-
tation techniques (RIP-Seq), RNA-Seq, crosslinking, and
immunoprecipitation followed by high-throughput se-
quencing (Clip-Seq), chromatin isolation by RNA purifica-
tion (ChIRP), and capture hybridization analysis of RNA
targets (CHART) [119–123]. After that, a loss-of-function
experiment should be carried out to verify the function of
lncRNAs. SiRNA and shRNA work well to silence RNA
but limiting to the cytoplasmic lncRNA [124]. Then, anti-
sense oligonucleotides (ASOs) begin to be used to silence
nuclear lncRNAs [125]. Nowadays, clustered regularly
interspaced short palindromic repeats (CRISPR/Cas 9)
technology is emerging as an ideal tool to knock out the
sequence of certain lncRNA [126, 127]. One situation we
should bear in mind is that CRISPR/Cas 9 is not suitable
for knocking out the lncRNAs located in an exon of other
genes. In research, once a novel lncRNA was found, we
should illustrate the functions of the lncRNAs and verify
the functions in vitro and in vivo. In the process of detect-
ing the expression of lncRNAs between different tissues
or species, RNA-seq retains the gold standard to identify
novel lncRNAs. Second, structure, subcellular location,
and binding partner are the three main approaches to pre-
dict the function of lncRNAs [33]. LncRNAs do not have
the same sequence conservation as protein-coding genes
[128]. As a result, the potential function of lncRNAs
cannot be predicted by the sequence. Interestingly, the
secondary structure of lncRNAs shows more conservation
throughout evolution than sequence [129]. And secondary
structure shows more importance in the function of
lncRNAs. The function of lncRNAs is widespread, so
more attention should be paid to the secondary structure
of lncRNAs in the future. Chemical and enzymatic probes
are utilized to analyze the second and tertiary structure.
And the next-generation methods such as Structure-seq,
SHAPE-seq, and FragSeq are emerged useful to analyze
the structure of lncRNAs [130–132]. Meantime, the lo-
cation was related to the function of lncRNAs. To some
extent, the function of lncRNAs may be indirectly pre-
dicted by the function of genes nearby. Single-molecule
RNA in situ hybridization is the prominent method to

detect the location of lncRNAs. Moreover, hybridization-
based methods are useful to isolate lncRNAs and binding
DNA, RNA, and/or protein, which act as a predictor of
lncRNA function [133]. In the process of verifying the
function of lncRNAs, owing to lncRNAs which show no
conservation among species, there are often no homologs
of lncRNAs in the animal. It is not easy to find in vivo
models to test the function and mechanism of lncRNAs in
detail. Nevertheless, many KO animal models for lncRNAs
were established with gene disruption, targeted promoter
deletions, and premature termination strategies [134–
136]. CRISPR-Cas9 is a breakthrough genome editing tool.
However, lncRNA may retain the function with CRISPR-
Cas9 owing to the lack of ORF [137, 138]. Therefore, the
derivative of Cas9 should be developed to remove the
entire gene fragments [139, 140]. LncRNA used as an
approach to treat cartilage-related disease is in infancy. As
reported by Gogtay, nucleic acid could act as a therapeutic
agent [95]. Owing to many lncRNAs involved in the
pathological process of cartilage-related diseases, lncRNA-
targeting therapy may be a new hope for treatment. RNAi,
antisense oligonucleotide, locked nucleic acid GapmeRs,
small-molecule inhibitors, and zinc finger nucleases are
potential choices to silence the cartilage disease-related
lncRNAs [61]. Knocking out the lncRNA which induce
cartilage degeneration may be useful. Through advancing
technologies, knocking out or overexpressing the key
lncRNAs may be potential approaches to treat cartilage-
related diseases.
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