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Morbilliviruses cause major mortality in marine mammals, but the dynamics

of transmission and persistence are ill understood compared to terrestrial

counterparts such as measles; this is especially true for epidemics in cetaceans.

However, the recent outbreak of dolphin morbillivirus in the northwestern

Atlantic Ocean can provide new insights into the epidemiology and spatio-

temporal spread of this pathogen. To deal with uncertainties surrounding

the ecology of this system (only stranded animals were observed), we develop

a statistical framework that can extract key information about the underlying

transmission process given only sparse data. Our self-exciting Poisson process

model suggests that individuals are infectious for at most 24 days and can

transfer infection up to two latitude degrees (220 km) within this time.

In addition, the effective reproduction number is generally below one, but

reaches 2.6 during a period of heightened stranding numbers near Virginia

Beach, Virginia, in summer 2013. Network analysis suggests local movements

dominate spatial spread, with seasonal migration facilitating wider dissemina-

tion along the coast. Finally, a low virus transmission rate or high levels of

pre-existing immunity can explain the lack of viral spread into the Gulf

of Mexico. More generally, our approach illustrates novel methodologies for

analysing very indirectly observed epidemics.
1. Introduction
In July 2013, an outbreak of dolphin morbillivirus (DMV) was officially declared

along the northwestern (NW) Atlantic coast of the United States and has

since been implicated in the stranding of over 1600 common bottlenose dolphins

(Tursiops truncatus, hereafter referred to as bottlenose dolphin). DMV, a member

of the Morbillivirus genus that also includes measles, rinderpest, phocine distem-

per virus (PDV) and canine distemper virus, infects at least 14 odontocetes species

worldwide and is a major cause of morbidity and mortality [1–5]. The current

outbreak has been declared an unusual mortality event (UME) due to the high

number and unexpected nature of the strandings that have occurred [6]. In fact,

this outbreak represents the largest number of bottlenose dolphin strandings

reported in the NW Atlantic since the last recorded DMV epidemic in
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1987–1988, when between 10 and 50% of the coastal

population was believed to have died [7–9].

The underlying dynamics and persistence of morbilli-

viruses in marine mammals are poorly understood, especially

for cetaceans. A variety of epidemiological dynamics have

been observed in DMV hosts, from endemic transmission

among pilot whales (Globicephala spp.) in the southwestern

Pacific Ocean to recurrent epidemics among dolphins in the

Mediterranean Sea, Atlantic Ocean and Gulf of Mexico (GoM)

[2], but the mechanisms underlying these different patterns

remain elusive. Key questions regarding the epidemiology of

the virus in different cetacean species, and transmission of the

virus between species, have yet to be answered. However, the

current NW Atlantic UME provides a unique opportunity to

explore the spatio-temporal spread of DMV within a species,

and thus gain new insights into the dynamics of this poorly

understood pathogen.

Mathematical and statistical modelling can help gain insight

into the important drivers of disease dynamics in marine sys-

tems, but one limiting factor is the availability of detailed

population and epidemiological data. For example, successful

modelling of PDV outbreaks in North Sea harbour seals

(Phoca vitulina) enabled estimation of key epidemiological

parameters such as the basic reproduction number, R0 (the aver-

age number of secondary cases caused by an infected individual

in a completely susceptible population) [10–13]. However, such

work was aided by the ‘haul-out’ behaviour of harbour seals:

individuals spend a significant amount of time aggregating on

land, which enables accurate counts of population densities

and individual mortalities to be made [12]. In contrast, much

less is known about the coastal bottlenose dolphin populations

of the NW Atlantic and no modelling work has been done that

explicitly explores the drivers of DMV dynamics in this system.

Population estimates are available, but some of the stocks are

highly mobile and there is limited information regarding their

spatio-temporal distribution and the extent of mixing within

and between different stocks.

The natural history of DMV in cetaceans is also a major

source of uncertainty. As with other morbilliviruses, immunity

following recovery from infection is likely to be long-term

[5,14], but other key epidemiological parameters such as R0,

the virulence of the virus, and the duration of infectiousness

are largely undocumented. Transmission is mainly thought to

occur when susceptible individuals inhale aerosolized virus

particles from infected individuals, possibly when close-knit

groups form for travelling and feeding [15]. However, vertical

transmission and direct transmission through bodily fluids

may also be possible [15]. Other important quantities for

DMV spread that have still to be determined include the dis-

tance an individual is likely to travel while infectious, and the

spatio-temporal distribution of the susceptible population.

An additional question regarding the transmission dyna-

mics is whether the risk of infection scales with host density

(often referred to as density-dependent transmission), or

remains independent of host density (frequency-dependent

transmission) [16]. Density-dependent transmission may be

favoured by the respiratory means of infection coupled with

the gregarious behaviour of dolphins [5,15]. However, if the

average number of contacts of an individual remains relatively

constant in the face of host density change, then frequency-

dependent transmission may be more appropriate [10,16].

Bottlenose populations inhabiting estuarine waters in the

NW Atlantic are thought to maintain stable group sizes
which may favour frequency-dependent transmission [17],

but the degree to which this accurately captures transmission

dynamics in the coastal populations is unclear.

The above uncertainties present challenges when designing

an appropriate epidemic model, and so we construct a minimal

stochastic framework based on a self-exciting Poisson process

that requires only limited information to describe the spatio-

temporal dynamics of the system. Such models are more

commonly used to capture the spatio-temporal clustering of

earthquakes [18] and have also been employed to model

urban crime distribution [19]. However, there is great potential

for application within an infectious disease context as the local

nature of transmission naturally leads to clustering of cases in

space and time [19–21]. We demonstrate how this method can

be used to infer epidemiological parameters such as the range

of host movement, the duration of infectiousness and the effec-

tive reproduction number, R (the average number of secondary

cases caused by an infected individual in a population for

which there may be pre-existing immunity). Furthermore,

since the spatio-temporal pattern of strandings is likely influ-

enced by the migrating habits of the different coastal stocks

and the intensity of transmission within and between these

stocks, we reconstruct transmission networks that allow us

to explore the importance of host mobility in facilitating

spread along the coast. Finally, we simulate an epidemic in

the GoM to explore why the current UME has seemingly

failed to trigger DMV-related mortality in this neighbouring

region [22]. Overall, our findings provide a first step towards

better understanding Morbillivirus spread in the NW Atlantic.
2. Material and methods
2.1. Data
Level A stranding records from 1989 to 2014 were extracted from

the National Oceanic and Atmospheric Association Marine

Mammal Health and Stranding Response Program (NOAA

MMHSRP) National Database. For each reported stranding, the

authorized responding agency is required to complete a Marine

Mammal Stranding Report—Level A data form (available at

www.nmfs.noaa.gov/pr/pdfs/health/levela.pdf) that includes

details such as the species, date and location of each stranding.

The final data used in this paper were extracted from the database

on 23 May 2014 and 30 June 2014, and included strandings up

through June 2014. Due to the ongoing nature of the UME at the

time of writing, subsequent records may have been added that

are not included in our data. Before 1996, annual observed strand-

ing numbers were low relative to subsequent years, reflecting the

absence of recorded data south of North Carolina and high varia-

bility in reporting along the remaining coastline (electronic

supplementary material, figure S1). We therefore excluded these

years from further analysis to minimize historical reporting bias.

The subsequent stranding data (aggregated by day and latitude

band as in all analyses) are available online (Github repository:

http://github.com/SineadMorris/Dolphin-morbillivirus).

During the current UME, strandings have occurred along

the East Coast of the United States, from New York to Florida

(27–428 N latitude; electronic supplementary material, figure S3).

Individuals are thought to be from the main NW Atlantic coastal

bottlenose dolphin stocks: the Northern Migratory Coastal Stock

(NMCS), the Southern Migratory Coastal Stock (SMCS), the

South Carolina–Georgia Coastal Stock (SCGCS) and the Northern

Florida Coastal Stock (NFCS), with population estimates of 11 548,

9173, 4377 and 1219 individuals, respectively [23]. However,

there are other resident bay and estuarine stocks in this region,

http://www.nmfs.noaa.gov/pr/pdfs/health/levela.pdf
http://github.com/SineadMorris/Dolphin-morbillivirus
http://github.com/SineadMorris/Dolphin-morbillivirus
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Figure 1. (a) Strandings by latitude and day since the start of the epidemic ( from June 2013 to 2014) for the original UME data (top panel) and the new epidemic
dataset generated by removing background cases (bottom panel). The size of each point indicates the number of strandings. (b) Map of the United States NW
Atlantic coast with latitude bands highlighted by dashed lines (for reference). (c) Comparison of the new epidemic (disease-only data) and original UME datasets.
Each point compares the number of strandings on a given day and latitude band between both datasets, with size indicating the number of times that particular
coordinate combination occurred. The dashed line indicates when both are equal.
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and the true origin of stranded cases has still to be confirmed by

genetic analyses [23].

One caveat to these data is that the total number of infected

individuals is likely to be underestimated due to inherent difficul-

ties associated with monitoring disease outbreaks among marine

mammals: generally only those animals that strand onshore can

be reliably identified as infected cases and a larger proportion of

animals may die at sea and not be counted in the stranding records.

As such, we refer to this as a partially observed epidemic process

and apply a minimal stochastic framework (outlined in §2.3) that

enables the spatio-temporal dynamics of the system to be modelled

despite the limited available data.

2.2. Data preparation
There was no recorded outbreak of morbillivirus infection during

1996–2012 and so these data reflect strandings that would happen

in any given year, independent of DMV-related mortality. We refer

to these as ‘background’ strandings and assume that the current

UME data include background cases in addition to cases due to

DMV. In order to implement our epidemic model, these back-

ground cases must first be removed from the UME dataset. To

do this, we applied a Poisson generalized linear model to the
1996–2012 data to estimate the average annual rate of background

strandings (by season and latitude degree) in non-epidemic years,

and then removed the corresponding proportion of strandings

from the UME dataset (see electronic supplementary material,

S2.1–S2.2, for further details). This procedure preserves the overall

spatio-temporal pattern of strandings when compared with the

original dataset, but contains fewer sporadic cases and shows a

clearer shift in the main stranding density as time progresses

(figure 1a). We assume that potential biases in the UME data aris-

ing from non-uniform temporal and/or spatial distributions of

background strandings (e.g. due to seasonal changes in the spatial

distribution of host abundance) are accounted for by remov-

ing these from the data. We thus conclude that the resulting

dataset sufficiently approximates the distribution of disease-

induced strandings only, and it is henceforth referred to as the

‘epidemic’ dataset.

Implementation of our model also requires estimation of the

spatio-temporal distribution of the NW Atlantic coastal bottle-

nose dolphin population. The two largest coastal stocks are

believed to be migratory: the NMCS occupies waters as far

north as New York (approx. 418 N) in summer and as far south

as central North Carolina (approx. 34.58 N) in winter, and the

SMCS ranges from Virginia (approx. 388 N) in summer to
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northern Florida (approx. 288 N) in winter [23–25]. However,

there is large uncertainty in the precise boundaries of these

ranges and how seasonal migration of these stocks affects the

spatio-temporal distribution of the entire coastal population.

For instance, the smaller coastal stocks (SCGCS and NFCS) are

thought to be resident, i.e. non-migratory, but may come into

contact with the SMCS at certain times during the year.

Previous work has made progress in this area by using

stranding distributions in non-epidemic years to inform hypoth-

eses about the structure and migration patterns of the coastal

populations [25]. Guided by this approach, we assumed that

the number of background strandings at any location was pro-

portional to the local population density at the time of the

strandings. This enabled us to estimate the spatio-temporal dis-

tribution of population density along the coast in a typical,

non-epidemic year using the seasonal distribution of background

strandings and estimates of the total coastal population size (see

electronic supplementary material, S2.3, and figures S2 and S5,

for further details). Our estimates are in broad agreement with

the seasonal migratory ranges described above and are thus

used in the epidemic model.
676
2.3. Epidemic model
We assume that the stranding locations along the coast are

uniquely defined by their respective latitude coordinates, so

that one spatial dimension, l, is sufficient to model the epidemic

process. In addition, we assume that both the duration of time

and the distance travelled from each individual’s initial infection

(unobserved data) to their eventual stranding (observed data)

remain constant throughout our dataset (e.g. any pair of individ-

uals that strand 2 days apart are assumed to have been infected

2 days apart). This enables us to approximate the spatio-temporal

distribution of cases in the unobserved infection process using

the distribution of strandings in our epidemic dataset.

If the full temporal and spatial ranges covered in our

epidemic data are defined by t [ ½0, T� and l [ ½L1, L2�, respect-

ively, then the distribution of cases, St,l, is modelled as an

inhomogeneous (or ‘non-stationary’) Poisson process [26], for

which the probability of observing N total cases is given by

PrðNÞ ¼ LNe�L

N!
, whereL ¼

ðT

0

ðL2

L1

lðt, lÞdtdl:

The hazard function (or conditional intensity) at time t and

latitude l, l(t, l ), represents the rate at which new cases arise at

each new point in the epidemic and is analogous to the force

of infection in standard epidemiological models [19].

The history of all cases i, in the epidemic process up to time t,
is defined by the set of all observation times ftig that occur before

t and the corresponding latitude, li, at which the observation was

recorded, i.e. H(t) ¼ f(ti, li)jti , tg [18]. Given this history, l can

be expressed as

lðt, ljHðtÞÞ ¼ R lim
Dt ,Dl!0

PDt ,Dl ðt, ljHðtÞÞ
DtDl

� �
,

where PDt ,Dlðt, ljHðtÞÞ is the combined probability density that each

previous case generates a new case in the time interval (t, t þ Dt)

and latitude region (l, l þ Dl) (determined by the current infectious-

ness of each case), and R is the effective reproduction number (that

may also vary as a function of time and latitude) [18,19,26]. Note

that R represents the average number of new cases generated by

each case over the entire epidemic, and so multiplying the prob-

ability density by R determines how these cases are distributed

across space and time. Such frameworks, termed ‘self-exciting’

Poisson processes due to the influence of previous events on the

distribution of future events [27], are often used to model processes

exhibiting significant spatio-temporal clustering [19]. We use this

framework to model the spatio-temporal distribution of stranding
events in the NW Atlantic system within an epidemiological con-

text, but other applications include modelling of earthquakes

and urban crime [18,19].

Similar to previous formulations proposed for earthquake and

epidemic modelling [18,28], we define probability distributions,

g(t) and f(l ), to describe how an individual’s infectiousness

decays in time and space, respectively. The hazard can then be

expressed as

lðt, ljHðtÞÞ ¼ R
X
i,ti,t

gðt� tiÞf ðl� liÞ: ð2:1Þ

Since ti and li are the initial observation time and location for

individual i, respectively, it follows that (t 2 ti) is the current

length of time (in days) since the beginning of that individual’s

infectious period and (l 2 li) is the current distance (in lati-

tude degrees) from the individual’s initial location [18,19].

Thus, g(t 2 ti)f (l 2 li) represents the current proportional contri-

bution of the individual’s overall infectiousness to the hazard

at time t and location l, and the total hazard is obtained by

taking the sum of the current contributions of all previously

infected individuals [19,20].

Many functional forms describing the change in infectiousness

are possible, but here we assume an individual’s infectiousness

decays exponentially in space and time from the initial infec-

tion event [20,28]. Specifically, we model the temporal decay of

infectiousness using an exponential distribution,

gðt� tiÞ ¼ a expð�aðt� tiÞÞ,

and the spatial decay with a normal distribution,

f ðl� liÞ ¼
1

s
ffiffiffiffiffiffi
2p
p exp �ðl� liÞ2

2s2

 !
:

The parameters a and s control the rate of decay of infectious-

ness in space and time, respectively, and are estimated during

the fitting process. Although their biological interpretation is lim-

ited by the sparseness of our data, i.e. they cannot incorporate

the influence of unobserved cases, they are valuable in that

they allow us to characterize the dynamics of the observed

infection process within an epidemiological context.

The effective reproduction number is expressed as R ¼ bDc

t,l,

where b is the pathogen transmission rate, Dt,l is the population

size at time t and latitude l, and c [ f0, 1g is a scaling parameter

that determines whether transmission is frequency- or density-

dependent. When transmission is frequency-dependent, c ¼ 0

and R is constant throughout the epidemic, whereas when trans-

mission is density-dependent, c ¼ 1 and R changes in proportion

to the local population distribution [16]. We investigate both

scenarios in our analyses to determine which most accurately

captures the underlying transmission process. We use R instead

of R0 since we do not have sufficient evidence to assume the

entire population is susceptible. Instead, we allow for the possi-

bility that some individuals may be immune, and note that the

formulation for the density-dependent model may be viewed

as an upper bound for R as it incorporates the total population

size rather than the unknown susceptible proportion.

This framework can also be adapted to capture periods

where the transmission intensity may significantly fluctuate

above or below the baseline value, R. For example, an additional

reproduction number, R̂ ¼ b̂Dc

t,l, can be defined for t [ ½t1, t2�
and l [ ½l1, l2� such that

lðt, lÞ ¼
R̂
P

i,ti,t
gðt� tiÞf ðl� liÞ if l1 � l � l2 and t1 � t � t2

R
P

i,ti,t
gðt� tiÞf ðl� liÞ otherwise:

8><
>:

One final point is that the self-exciting Poisson framework

described here does not account for the dynamic depletion of

susceptible individuals over space and time as the epidemic



Table 1. Model parameters.

parameter description

b transmission rate

D population density

R average number of secondary infections caused by

one individual

s rate of spatial decay of infectiousness

a rate of temporal decay of infectiousness

c transmission scaling factor (0 for frequency- and 1 for

density-dependence)

l hazard function
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progresses. The number of strandings on each day is small rela-

tive to the total population size and thus it is assumed that

susceptible depletion will not play a significant role in the trans-

mission dynamics. However, we also develop an analogous

binomial chain model that accounts for susceptible depletion to

test this assumption (see electronic supplementary material, S6,

for further details).

2.3.1. Parameter estimation
All parameters incorporated in the model are defined in table 1,

and the log-likelihood of observing the entire time series is [19,26]

L ¼
XN

i¼1

logðlðti, liÞÞ
" #

�
ðT

0

ðL2

L1

lðt, lÞdtdl

(see electronic supplementary material, S3, for a derivation of

this formula). To estimate the unknown parameters, a, b and

s, Bayesian inference was conducted via Hamiltonian Markov

chain Monte Carlo (MCMC) sampling using uniform prior

distributions in the R package RStan [29,30]. The effective repro-

duction number was calculated using estimates from the inferred

parameter posterior distributions and model predictions were

compared with the observed data via self-exciting Poisson

simulations of the form: St,l ¼ Pois(lt,l).

Model fits were also compared using approximate Akaike

information criterion (AIC) and Watanabe–Akaike information

criterion (WAIC) methods, which compare the predictive accuracy

of different models while penalizing those with more parameters

[31–33]. Since AIC calculations rely on a point value for the maxi-

mum log-likelihood (that must be estimated from our posterior

distributions), they are not entirely suited to a Bayesian framework

and so we include these only for approximate comparisons. In con-

trast, WAIC calculations average across the posterior distribution

rather than requiring a point estimate to be made and so may

be more appropriate in this setting [32,33]. We thus use WAIC in

conjunction with AIC to compare our different models. Further

details of these information criterion calculations are given in

electronic supplementary material, S4.

2.4. Transmission networks
Using the distribution of parameter estimates from the best-

fitting model, transmission networks were reconstructed that

connected stranded individuals with the source of their strand-

ing (i.e. the previously stranded individual that most likely

caused their infection). Briefly, for each Tursiops that stranded

at time ti and latitude li, we compared the contributions of all

previously stranded individuals to the hazard at ti and li and

used the resulting probability distribution to determine the
most likely source of infection (see electronic supplementary

material, S7, for further details). Directed networks were then cre-

ated by grouping individuals according to the latitude where they

stranded. For example, a connection from node 368 N to node 388
N in the network would represent a transmission event originat-

ing from an individual that stranded at 368 N to an individual

that consequently stranded at 388 N.

A different transmission network was generated for each

value in a randomly sampled subset of the estimated parameter

distributions, and these transmission networks then served as a

tool for visualizing and interpreting the results of the model

inference. In particular, network properties were evaluated

using betweenness measures with the R package igraph [34].

The betweenness of a node j is the number of shortest paths

between any pair of network nodes that pass through j, and

thus indicates the influence or centrality of j within the network

[35]. This measure enabled quantification of the temporal change

in the spatial structure of the inferred transmission networks over

the course of the epidemic.
2.5. Simulating an outbreak in the Gulf of Mexico
To investigate the apparent lack of viral spread to bottlenose dol-

phin populations in the GoM, we simulated an outbreak in this

region by introducing one infected case into an otherwise

susceptible population. Cases were generated according to the

self-exciting Poisson process defined above, with the constraint

that the cumulative number of cases could not exceed the total

estimated population size. We considered only the stock that

would most likely be expected to come in first contact with the

currently affected NW Atlantic stocks, namely the GoM Eastern

Coastal Stock that inhabits waters along the west coast of Florida

from 25 to 318 N. In addition, we assumed that the total popu-

lation size (7702) was equally distributed along this stretch of

coastline throughout the simulation [36]. Median parameter

values from the posterior distributions of the best-fitting model

were used as simulation inputs.
3. Results
To assess whether frequency- (c ¼ 0) or density-dependent

(c ¼ 1) transmission best characterized the underlying epi-

demic dynamics, both models were fitted to the data using

MCMC methods as described above. There is some variation

between the parameter estimates (primarily in the estimates

for R), but the main distinction is that the frequency-

dependent model returns lower AIC and WAIC values than

the density-dependent model and thus represents a better fit

to the entire dataset (table 2). However, the strongest epidemic

signal in the data occurs during a significant peak in stranding

numbers in August 2013, between southeast Virginia and

northeast North Carolina (36–378 N, figure 1a,b), that is

better captured by the density-dependent model (electronic

supplementary material, figures S6 and S7). Thus, although fre-

quency-dependent transmission appears to dominate in

general, it is likely that there are other factors contributing to

an increased transmission intensity during this peak period

that the model does not account for.

In order to better capture the key dynamics of the epi-

demic, we defined a new model that incorporated the

frequency-dependent nature of transmission while also

allowing the significant peak in August 2013 to be captured.

Given the isolated nature of this signal, in space and in time,

we adapted the frequency-dependent model to incorporate

an additional transmission rate around the occurrence of



Table 2. Model comparisons. Values indicate median parameter estimates (2.5th – 97.5th quantiles) and information criterion from 2000 RStan simulations (not
including warm-up sampling) of each model.

model density-dependent frequency-dependent
frequency-dependent with
location-specific transmission rate

R min: 0.045 (0.043 – 0.048)a 1.01 (0.95 – 1.08) 0.95 (0.89 – 1.02)

max: 2.68 (2.53 – 2.85)

R̂ — — 2.58 (2.08 – 3.17)

s 1.05 (0.90 – 1.22) 0.78 (0.68 – 0.91) 0.89 (0.76 – 1.07)

a 0.11 (0.09 – 0.14) 0.13 (0.11 – 0.15) 0.12 (0.1 – 0.14)

number of parameters 3 3 4

approximate AIC 3821.11 3557.39 3498.09

WAIC 7358.52 7235.64 6528.21
aReproductive values are calculated using the inferred posterior distribution of b (results not shown). The minimum value refers to R at the lowest population
estimate for any one latitude degree and time point, and the maximum value refers to R at the largest population estimate.
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the peak, between latitudes 36–378 N and days 50–70 (as

outlined in §2.3). This modified model provided the best

overall fit to the data (see AIC and WAIC values, table 2)

and was also able to capture the isolated peak better than

either the frequency- or density-dependent models alone

(figure 2b). We thus conclude that this model represents the

closest approximation to the underlying dynamical process

and use this for all further analyses.

We also investigated frequency- and density-dependent

iterations of a binomial chain model incorporating susceptible

depletion, but in each case the model was a poorer fit (both in

terms of the information criterion values and in capturing the

significant peak) than the self-exciting models without suscep-

tible depletion (see electronic supplementary material, S6, for

details). This result is discussed further below.

The baseline estimate for the effective reproduction

number, R, from the best-fitting model is below one (table 2),

reflecting the pattern of sporadic cases that characterizes

the majority of the epidemic data. The additional estimate is

substantially higher (R̂ ¼ 2:58), capturing an increase in
transmission intensity around the main epidemic signal. The

mean infectious period of an individual (1/a) is 8.3 days,

and 95% of an individual’s infectiousness is estimated to

occur within 24 days and 2 latitude degrees (roughly 220 km)

of the initial infection event (figure 3a–d). These values rep-

resent upper bounds for the likely infectious period and

spatial range of an infected bottlenose dolphin. In particular,

the estimated infectious period is reasonable for the generation

time of a morbillivirus [10].

The marginal distributions for the hazard function in space

and time highlight hotspots of transmission risk (figure 4a,b).

Across space, there is a clear global maximum around 36–378
N, with a local plateau around 30–328 N, and across time there

is one global peak towards the end of summer (at around 70

days), and another local peak near the beginning of winter

(around 160 days). This suggests these particular regions and

time periods are important for propagating epidemic spread

and reinforces the idea that the region between southeast

Virginia and northeast North Carolina may be driving an

increase in transmission intensity towards the end of summer.



0

0 2 4–2–4

0 10 20 30

0 10 20 30

0

0.2

0

0.1

0.2

0.3

0.4

0.5

0.4

0.6

0.8

1.0

0

0.2

0.4

cu
m

ul
at

iv
e 

de
ns

ity
pr

op
or

tio
na

l d
en

si
ty

0.6

0.8

1.0

0

0.05

0.10

(a) (b)

(c) (d)

1 2
distance (latitude degrees)time (days)

3 4 5

Figure 3. Individual infectiousness functions from the frequency-dependent model with location-specific transmission rate. Probability distributions for the temporal
(a) and spatial decay functions (b). Cumulative distributions for the temporal (c) and spatial decay functions (d ). Solid black lines are median values of 2000
simulations in RStan and grey shaded regions represent the 2.5th – 97.5th quantile range.

27
0 0

5

10

15

50

m
ar

gi
na

l h
az

ar
d 150

100

200

(a) (b)

4139373533
latitude

31 0 100 200
time (days)

30029

Figure 4. Marginal hazard distributions in space (a) and in time (b) for the frequency-dependent model with location-specific transmission rate. Solid black lines
indicate median values of 2000 simulations in RStan and grey shaded regions represent the 2.5th – 97.5th quantile range.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150676

7

3.1. Transmission networks
Transmission networks were generated as outlined in §2.4.

Transmission events resulting from movements of the order

of 1–2 latitude degrees are most common (in accordance with

our spatial range estimates), although long-range movements

do occur and are important for seeding events in regions

where there are no (or relatively few) infections (e.g. electronic

supplementary material, figure S10). Therefore, high mobility

of some individuals (e.g. during migration) may explain the

wide dissemination of the virus along the coast.

To explore this further, we measured temporal changes

in the betweenness of the network as an indication of the rela-

tive importance of each latitude degree in propagating the

underlying transmission process. In general, the most influen-

tial nodes at any time point are clustered around the regions
where transmission is greatest (figure 5). As would be

expected, the nodes with the highest initial betweenness are

those clustered around the northern latitudes where the epi-

demic is believed to have begun, in particular the 36–378 N

region. Following the most influential nodes throughout the

year then signals how the centre of mass of the epidemic

changes: the highest betweenness values gradually shift to

the more southerly regions during winter and autumn,

before moving northwards again during the warmer months.

This again suggests that seasonal migration is likely to play a

key role in the spatial spread of the epidemic.

3.2. Gulf of Mexico
We simulated an epidemic in the GoM assuming frequency-

dependence and using parameter estimates obtained from the
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best-fitting model (as described in §2.5) to explore the likelihood

of an outbreak in this region. We additionally assumed the

population was entirely susceptible and so our NW Atlantic

effective reproduction number estimates, R ¼ 0.95 and

R̂ ¼ 2:58, can be viewed as lower bounds for R0 and R̂0 in the

GoM, representing the ‘best’ and ‘worst’ case scenarios, respect-

ively. In the best-case scenario, the outbreak always fails to take

off (figure 6a), whereas in the worst-case scenario, although not

all outbreaks take off, those that do result in rapid viral spread

until all susceptibles have been infected (figure 6b). Although

all epidemics are initiated in the lowest latitude band (where

dolphins from the GoM and NW Atlantic are most likely to

come in contact), peaks tend to occur first in the intermediate

latitudes as a result of the uniform distribution of individuals
and the additional force of infection gained from being

surrounded by infected neighbours.

To investigate potential levels of pre-existing immunity in

the GoM, we use standard epidemiological theory which

states that R must be less than one to avoid an outbreak

(where R ¼ R0 � s and s is the proportion of the population

that are susceptible) [16]. In the best-case scenario, R0 , 1

and so an outbreak will never take off. In the worst-case

scenario, R̂0 ¼ 2:58 and so

R̂ ¼ 2:58� s , 1 , s ,
1

2:58
¼ 0:388 � 38:8%:

This suggests at least 61.2% of the population should be

immune to avoid an outbreak.
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4. Discussion
The aim of this paper was to gain insight into the spatio-tem-

poral spread of DMV in the NW Atlantic using data that may

represent only partially recovered Tursiops mortality. With a

self-exciting Poisson framework, we were able to estimate pre-

viously unknown epidemiological parameters and reconstruct

networks to visualize key aspects of the underlying trans-

mission process. This has provided a greater understanding

of the ecology of disease spread among the dolphin stocks in

this region.
J.R.Soc.Interface
12:20150676
4.1. Model fits and parameter estimates
The best-fitting model assumed frequency-dependent trans-

mission, which agrees with previous findings for PDV and

measles [10,11,37]. Frequency-dependence suggests that trans-

mission is largely independent of population density, and

typically results from populations with stable social structures

in which individuals generally have a fixed number of contacts

(where ‘contact’ refers to interactions that may lead to disease

transmission) [10,16]. However, at this stage, we cannot rule

out density-dependent transmission fully, as the relatively

poor overall fit of that model could be due to local inaccuracies

in our population distribution estimates (which rely on histori-

cal stranding data and the assumption that stranding numbers

in a particular area are proportional to the local population

density). In particular, the density-dependent model captured

the outlying peak in cases better than the original frequency-

dependent model (with constant transmission intensity). This

is most likely due to the large population sizes predicted

in this region that increase the local hazard of the density-

dependent model and thus allow more cases to be generated.

More detailed data on stock movement, social structures

and virus transmission pathways are thus needed to further

understand the scaling of transmission in this system.

The estimate for the baseline effective reproduction number

(R ¼ 0.95) suggests low-intensity transmission and is consist-

ent with the occurrence of sporadic cases and the absence of

a characteristic epidemic growth phase. Allowing an additional

transmission rate around the outlying peak (36–378 N, August

2013) increased the model fit and resulted in a substantial

increase in transmission intensity (R̂ ¼ 2:58). One driver of

this increase may be seasonal migration. Around Virginia

Beach, VA (a section of coastline within this 36–378 N

region), Barco et al. [38] found substantially higher numbers

of Tursiops in August than at any other time of year, potentially

due to the overlapping of the NMCS and SMCS at the extreme

boundaries of their migratory ranges. This aggregation of

individuals at higher densities could cause nonlinear increases

in the frequency of contact between hosts that would explain

the subsequent jumps in transmission intensity that were

not captured by the model with constant transmission par-

ameter. Moreover, our additional estimate falls within the

range of reproduction number estimates for PDV (2–3), for

which high aggregation of seals at haul-out sites was believed

to facilitate rapid virus transmission [11].

The infectious period of an individual had an upper bound

of 24 days, with a mean of 8 days. This is similar to other

morbillivirus infections, including measles (6–9 day latent

period and 6–7 day infectious period) and PDV (11–18 day

combined latent and infectious period) [10,11,39]. Two lati-

tude degrees (approx. 220 km) was the upper bound for the
expected travel distance of an individual during their infectious

period; further distances were possible, but rare. The coastal

stocks exhibit both migratory and sedentary behaviour

(depending on the time of year) and thus movement patterns

are highly variable and difficult to quantify. However, our esti-

mated ranges are supported by movement data from tagged

NMCS individuals that show weekly travel distances of up

to 347 km (mean: 114 km; 2.5th–97.5th quantiles: 2–299 km;

N ¼ 240) (A. Hohn 1998–2000, unpublished data). We note

that the spatial and temporal decay parameters (s and a) may

be overestimated as our model does not account for the influ-

ence of unobserved cases. However, it is encouraging that our

estimates do not vary substantially between the different

models tested and that they are within such close ranges of

the corresponding quantities discussed above from related

viruses (measles and PDV) and the population movement data.

The inference process was also applied to frequency- and

density-dependent models incorporating susceptible depletion,

but the overall fits to the data were worse than both the fre-

quency- and density-dependent Poisson processes. There are

two likely reasons for this. First, since only reported strandings

are included in the analysis and the total number of these

observed cases is small relative to the total size of the NWAtlan-

tic population, new infections are unlikely to significantly alter

the available pool of susceptible individuals in our models.

Second, our models do not explicitly account for the extent

and distribution of pre-existing immunity to DMV, or the role

of host migration in shaping transmission dynamics and the

subsequent spatio-temporal distribution of susceptibility.

These factors should strongly influence the importance of

susceptible depletion in this system, but due to lack of infor-

mation could not be included in the current framework

without compromising model parsimony. A greater under-

standing of the underlying spatio-temporal distribution

of susceptibility to DMV would enable future modelling to

incorporate susceptible depletion in a more realistic framework.

4.2. Transmission networks
Analysis of the reconstructed transmission networks indi-

cated that certain regions may disproportionately promote

virus transmission at different times of the year, and long-

range movements of dolphins are important for seeding the

epidemic in new, unaffected regions. Measuring betweenness

at discrete intervals suggested a seasonal shift in the centre of

gravity of the underlying transmission process, further sup-

porting the idea that stock migration is a key factor in

propagating virus spread along the coast [24]. In particular,

Rosel et al. [24] proposed that the seasonal spread of the

1987–1988 epidemic was a result of the virus being trans-

ferred from the NMCS to the SMCS following interaction

between the two stocks at times of population overlap.

More detailed information on the seasonal movements of

the coastal stocks is needed to investigate this further.

4.3. Gulf of Mexico
Assuming the virus was introduced to bottlenose dolphins in

the GoM (e.g. through contact with the NW Atlantic stocks)

and the transmission intensity was equal to our increased

estimate, R̂, we found that an outbreak should occur unless

there were high levels of pre-existing immunity in the popu-

lation. The last confirmed DMV outbreak in the GoM

occurred in 1994, with suspected outbreaks also occurring
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in 1990 and 1992 [1,40]. Given that bottlenose dolphins in this

region can live up to 40–50 years, there may be survivors in

the current population that have maintained immunity from

these previous outbreaks [41,42]. Although Rowles et al. [41]

found seropositivity to DMV ranging from 0 to 18% between

sampling regions in the GoM, the extent and spatial distri-

bution of evidence of previous exposure across the wider

population remains unclear, and further information is

needed to compare this with our 61% estimate derived for

the Eastern Coastal Stock.

On the other hand, we found that an outbreak would fail to

take off at the baseline transmission rate, even in an entirely sus-

ceptible population. This could also sufficiently explain the lack

of substantial DMV spread since only sporadic cases would be

expected in this scenario. Given the association between R̂ and

large seasonal aggregations of individuals in the NW Atlantic,

it is possible that the smaller size of the GoM Eastern Coastal

Stock is insufficient to generate the frequency of contacts

needed to support a transmission intensity of comparable

levels. Further modelling work could help to identify a threshold

population size above which density-dependent effects may

become important in this region.

Seasonal migration and contact between different stocks

are also key factors in promoting viral dissemination along

the coast [1]. Therefore, another reason for limited spread

could be that there is simply not enough contact between the

GoM and NWAtlantic stocks to provide sufficient transmission

opportunities. Rosel et al. [24] found substantial genetic differ-

ences between NWAtlantic and GoM bottlenose dolphins that

was consistent with limited mixing between the two popu-

lations. However, given that an infected individual stranded

as far south as the Florida Keys in November 2014 [43], there

is clear potential for viral spread into the neighbouring GoM.

More information on the levels of contact between these two

regions would enable this to be explored further.
4.4. Caveats and future directions
Marine mammals, and especially cetaceans, represent challen-

ging study subjects as it is common to have only limited

data regarding population sizes, individual dispersal patterns

and disease prevalence [44]. We used historical stranding

distributions to infer the spatio-temporal distribution of

population density and assumed that the observed epidemic

strandings could be used as a proxy for the underlying infection

process. However, there are a number of caveats to these assump-

tions. Firstly, the stranding data do not include those individuals

that recover from infection or those that die from the disease but

do not strand onshore, and so we have only a partial repre-

sentation of the infection process. The self-exciting Poisson

framework provides a means of identifying key epidemiological

parameters from the outbreak despite these sparse data; how-

ever, there may be important information embedded in the

unobserved infection process that is not accounted for. Unfortu-

nately, integrating an additional unobserved process into the

model is challenged by identifiability issues arising from the

sparseness of the data and the computational intensity of

performing inference on a model with more unknown variables.

Secondly, wind, oceanic currents and the length of coastline

in a particular area can affect the likelihood of an individual

stranding onshore, and the location and timing of the stranding

should it occur [25,45]. Using daily wind force data, Rijks et al.
[45] found that wind had a confounding effect on the
distribution of seal strandings during the 2002 PDV outbreak

in the Netherlands. Similar data from the NW Atlantic

could be used to assess the influence of wind and other

weather variables on stranding distributions. Future work

could account for the length of available coastline when calcu-

lating the distribution of population density from historical

strandings and could also integrate weather components into

the model as an additional term affecting the location and

timing of strandings. This would enable a more realistic rep-

resentation of the stranding process and could also provide

greater insight into the unobserved infection process.

Thirdly, temporal and spatial heterogeneity in reporting

effort can influence the likelihood and promptness of carcass

identification [25]. Although this may be a significant factor

in the historical stranding data, we expect reporting to be

uniformly high across all locations during the current UME

due to the public attention and rapid response of NOAA.

Again, more detailed information on the distribution of the

stocks would better inform our population estimates and

decrease the likelihood of historical reporting bias influencing

our findings.

In addition, we assume the population is closed and do not

include the reintroduction of DMV from other marine mammal

populations that have been implicated as reservoir hosts, such

as pilot whales and offshore bottlenose dolphins [1,46]. Such

spillover could be incorporated into the model via an

additional hazard function term representing some baseline

risk of external infection [20,21]. However, further information

on the prevalence of DMV in other Atlantic cetaceans, and the

frequency of contact between these populations and the coastal

bottlenose stocks, would be needed to assess the likelihood of

these events and guide the parametrization and functional

form of such a term.

Our hazard function also assumes an exponential form

for the spatial and temporal decay of infectiousness and

does not explicitly account for individual migration. There

have been more complex models of dolphin movement but

these have been based on explicit tracking of individuals

[47,48]. Since our stranding data contain no information on

how animals move during the epidemic, we have adopted

the most parsimonious framework to describe dispersal that

can provide biologically interpretable results in broad agree-

ment with existing knowledge and data. More information on

how virus infectivity changes over time within a given indi-

vidual and on the complex movements, migration patterns,

and interactions between the different stocks in the NW

Atlantic is needed to guide alternative hazard functions. In

particular, tagging individuals during disease outbreaks is

an important area for future work.

Finally, age-structured models have provided key insights

into the influence of social structure on the spread of other mor-

billiviruses such as PDV and measles [11,49]. In particular,

subadult harbour seals were disproportionately important in

transmitting PDV during the 2002 Dutch outbreak [11]. Juven-

ile bottlenose dolphins tend to have a larger number of contacts

than individuals in any other age class [50], and thus may simi-

larly be important vectors driving the spread of DMV in the

NWAtlantic. In addition, there may be differences in stranding

times between age classes that could only be accounted for in

an age-structured model. Estimates of age for stranded Tursiops
(measured by length) are available from the current UME data-

set. This would therefore be another interesting covariate for

future analyses.
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In conclusion, despite many unknowns surrounding the

spread of DMV in cetaceans, we have gained important

insights into the epidemiology of this pathogen by using a

simple statistical framework to model the current NWAtlantic

UME. Furthermore, there is clear potential to extend this meth-

odology beyond the current framework (e.g. [20,21,28,51–54]),

although requirements for future applications will depend on

the system under consideration, in particular on the resolution

and spatio-temporal patterns of the observed data, and the

complexity of the desired hazard function for capturing under-

lying disease dynamics. Overall, however, we believe this

work illustrates the general utility of self-exciting Poisson

models to analyse partially observed spatial epidemics.

Future serological studies, migration data and population

census information would enable more rigorous testing of

the key findings outlined in this work and provide a platform

for the development of more sophisticated frameworks to

model the underlying system dynamics.
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21. Höhle M. 2009 Additive-multiplicative regression
models for spatio-temporal epidemics. Biom. J. 51,
961 – 978. (doi:10.1002/bimj.200900050)

22. NOAA Fisheries. 2014 FAQs on the ongoing Gulf of
Mexico dolphin die-off. See http://www.nmfs.noaa.
gov/pr/health/mmume/cetacean_gulfofmexico_faq.
htm.

23. Waring GT, Josephson E, Maze-Foley K, Rosel PE.
2014 U.S. Atlantic and Gulf of Mexico marine
mammal stock assessments—2013. NOAA Tech.
Memo. 228, 1 – 464.

24. Rosel PE, Hansen L, Hohn AA. 2009 Restricted
dispersal in a continuously distributed marine
species: common bottlenose dolphins Tursiops
truncatus in coastal waters of the western North
Atlantic. Mol. Ecol. 18, 5030 – 5045. (doi:10.1111/j.
1365-294X.2009.04413.x)

25. McLellan WA, Friedlaender AS, Mead JG, Potter CW,
Pabst DA. 2002 Analysing 25 years of bottlenose
(Tursiops truncatas) strandings along the Atlantic
coast of the USA: do historic records support the
migratory stock hypothesis? J. Cetacean Res.
Manage. 4, 297 – 304.

26. Daley DJ, Vere-Jones D. 2003 An introduction to the
theory of point processess. Volume I: elementary
theory and methods, 2nd edn. New York, NY:
Springer.

27. Hawkes AG. 1971 Spectra of some self-exciting and
mutually exciting point processes. Biometrika 58,
83 – 90. (doi:10.1093/biomet/58.1.83)

28. Diggle PJ. 2007 Spatio-temporal point
processes: methods and applications. In Statistical
methods for spatio-temporal systems (eds B
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