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Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway is crucial for the regulation of growth and development. The 
correct processing of the IGF-1Ea prohormone (proIGF-1Ea) and the IGF-1 receptor (IGF-1R) peptide precursor requires 
proper N-glycosylation. Deficiencies of N-linked glycosylation lead to a clinically heterogeneous group of inherited diseases 
called Congenital Disorders of Glycosylation (CDG). The impact of N-glycosylation defects on IGF-1/IGF-1R signaling com-
ponents is largely unknown. In this study, using dermal fibroblasts from patients with different CDG [PMM2-CDG (n = 7); 
ALG3-CDG (n = 2); ALG8-CDG (n = 1); GMPPB-CDG (n = 1)], we analyzed the glycosylation pattern of the proIGF-1Ea, 
IGF-1 secretion efficiency and IGF-1R signaling activity. ALG3-CDG, ALG8-CDG, GMPPB-CDG and some PMM2-CDG 
fibroblasts showed hypoglycosylation of the proIGF-1Ea and lower IGF-1 secretion when compared with control (CTR). 
Lower IGF-1 serum concentration was observed in ALG3-CDG, ALG8-CDG and in some patients with PMM2-CDG, 
supporting our in vitro data. Furthermore, reduced IGF-1R expression level was observed in ALG3-CDG, ALG8-CDG 
and in some PMM2-CDG fibroblasts. IGF-1-induced IGF-1R activation was lower in most PMM2-CDG fibroblasts and 
was associated with decreased ERK1/2 phosphorylation as compared to CTR. In general, CDG fibroblasts showed a slight 
upregulation of Endoplasmic Reticulum (ER) stress genes compared with CTR, uncovering mild ER stress in CDG cells. 
ER-stress-related gene expression negatively correlated with fibroblasts IGF-1 secretion. This study provides new evidence 
of a direct link between N-glycosylation defects found in CDG and the impairment of IGF-1/IGF-1R signaling components. 
Further studies are warranted to determine the clinical consequences of reduced systemic IGF-1 availability and local activ-
ity in patients with CDG.
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genetic disease · Lectins

Abbreviations
Akt  RAC-alpha serine/threonine-protein 

kinase
ALG3  Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol 

alpha-1,3-mannosyltransferase
ALG8  Dolichyl pyrophosphate Glc1Man9Glc-

NAc2 alpha-1,3-glucosyltransferase
ALS  Acid-labile subunit

ATF4  Activating transcription factor 4
CDG  Congenital Disorder(s) of Glycosylation
CEBPB  CCAAT enhancer binding protein beta
CHAC1  ChaC glutathione-specific gamma-gluta-

mylcyclotransferase 1
CHOP/DDIT3  DNA damage inducible transcript 3
ConA  Concanavalin A
CTR   Control
DMEM  Dulbecco’s Modified Eagle Medium
ER  Endoplasmic reticulum
ERGIC  ER–Golgi intermediate compartment
ERK  Mitogen-activated protein kinase
FBS  Fetal bovine serum
GAPDH  Glyceraldehyde-3-phosphate 

dehydrogenase
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GH  Growth hormone
GMPPB  GDP-mannose pyrophosphorylase
GPI  Glycosylphosphatidylinositol
HRP  Horseradish peroxidase
HSPA5  Heat shock protein family A (Hsp70) 

member 5
IEF  Isoelectric focusing
IGF-1  Insulin-like growth factor-1
IGF1-R  Insulin-like growth factor-1 receptor
IGFBP-3  IGF binding protein-3
MAP1LC3B  Microtubule associated protein 1 light 

chain 3 beta
PGAP2  Post-GPI attachment to proteins factor 2
PHA-L  Phaseolus vulgaris Leucoagglutinin
PMM2  Phosphomannomutase 2
proIGF-1E  IGF-1 prohormone
sXBP1  Spliced X-box binding protein 1
uXBP1  Unspliced X-box binding protein 1

Introduction

The insulin-like growth factor-1 (IGF-1) signaling pathway 
is fundamental for growth regulation, especially in child-
hood, while also playing a central role in development 
and metabolic homeostasis. In the bloodstream, IGF-1 
circulates primarily as part of a 150 kDa ternary complex 
with two additional proteins, the IGF binding protein-3 
(IGFBP-3) and the acid-labile subunit (ALS). This system 
extends the half-life of circulating IGF-1 from 10 to 12 min 
to about 15 h, preserving stable serum levels of IGF-1 [1, 
2]. Although growth hormone (GH) is a major regulator 
of hepatic IGF-1 production, IGF-1 is also regulated and 
secreted by other organs in an autocrine/paracrine manner 
[3]. Tissue-specific IGF-1 knockout models demonstrated 
the role of circulating IGF-1 in regulation of body size and 
tissue growth and revealed autocrine actions in specific tis-
sues such as skeletal muscle [4], bone [5] and nervous sys-
tem [6]. Thus, the activity of IGF-1 is due to a combination 
of local expression together with IGF-1 delivered to the tis-
sue from the circulation where high levels are maintained 
[7].

The function of all the IGF-1 system components is 
affected by their glycosylation status [8, 9]. The mature 
IGF-1 is a non-glycosylated polypeptide of 7.6 kD derived 
from post-translational cleavage of the C terminal E peptide 
from the IGF-1 prohormone (proIGF-1E) [9]. In human, the 
most ubiquitously expressed prohormone, named proIGF-
1Ea, is glycosylated (N-glycosylation site on residue 92 
of the Ea petide) and proIGF-1Ea N-glycosylation ensures 
proper secretion of the mature IGF-1 [9, 10]. Both IGFBP-3 
and ALS proteins are glycosylated. IGFBP-3 contains three 
N-glycosylation sites [1] and ALS is a soluble glycoprotein 

of 85 kDa [11]. Previous studies have demonstrated that 
N-glycosylation prolongs the half-life of IGFBP-3 [12], 
increases the affinity of ALS to the IGFBP-3/IGF-1 complex 
[13] and thus is required for the correct formation and stabi-
lization of the 150 kDa ternary complex [2]. The actions of 
IGF-1 are regulated by the tyrosine kinase receptor IGF-1R. 
This receptor is synthesized as a single polypeptide precur-
sor (proreceptor), which undergoes proteolytic cleavage into 
α (130 KDa) and β (97 kDa) chains that form a tetramer 
(α-β-β-α). Each α and β subunit contains 11 and 5N-gly-
cosylation sites, respectively [14]; therefore, the α-β-β-α 
tetramer structure may enclose 32 glycosylation positions 
[15]. Several studies demonstrated that proper N-glycosyla-
tion of IGF-1R proreceptor is required for correct IGF-1R 
maturation and transport to the cell surface [15–17].

Defects in either IGF-1 or its receptor can result in poor 
pre- and post-natal growth [18, 19]. Beside growth failure, 
patients with IGF-1R haploinsufficiency often exhibit addi-
tional clinical features including skeletal malformation, 
intellectual disability, cardiac defects and facial dysmor-
phisms [19, 20]. In contrast, much less is known about the 
impact of N-glycosylation genetic defects, such as those 
found in Congenital Disorders of Glycosylation (CDG), on 
the IGF-1 system. CDG are a large family of rare inborn 
errors of metabolism caused by defective glycoprotein and 
glycolipid glycan synthesis and attachment. They comprise 
a broad spectrum of clinical manifestations, because gly-
cosylation occurs in every cell and involves all organs and 
tissues [21]. Major clinical manifestations include nearly 
always neurological involvement (such as developmental/
intellectual disability, hypotonia, epilepsy, stroke-like epi-
sodes, polyneuropathy) besides other organ involvement 
[21]. Nearly 160 CDG have been described and their num-
ber increases exponentially [22]. Glycosylation comprises a 
large number of biochemical pathways, including N-linked 
and O-linked pathways, glycosylphosphatidylinositol (GPI) 
anchor synthesis and glycolipid glycosylation. It occurs in 
several organelles: the cytoplasm, the endoplasmic reticulum 
(ER) and ER–Golgi intermediate compartment (ERGIC), the 
Golgi and vesicular network and the plasma and sarcolem-
mal membranes [23]. Most CDG are ultrarare disorders, 
those affecting N-glycosylation are the most common. Sev-
eral specific therapeutic strategies are under evaluation for 
these diseases [24, 25]. PMM2-CDG is the most common 
N-glycosylation defect with more than 900 reported patients 
worldwide [21].

N-linked glycosylation disorders are usually identified 
by analyzing the serum transferrin isoforms by isoelectric 
focusing (IEF) or mass spectrometry [23]. On the basis 
of the transferrin IEF profiles (type 1 or type 2 pattern), 
N-glycosylation defects are classified as CDG-I or CDG-II. 
CDG-I results from defects in the glycan assembly in the 
cytoplasm and ER and is hallmarked by the absence of one 
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or more N-glycans on glycoproteins [23]. CDG type-II is 
Golgi-related and characterized by defective glycans [23]. 
Hypoglycosylation leads to protein misfolding and a mild 
increase of ER-stress markers in patients’ fibroblasts [26].

Growing evidence suggests that insufficient levels and/
or activity of growth factors might contribute to some of 
the clinical manifestations in CDG [8, 27–29]. The endo-
crine data from PMM2-affected children showed that cir-
culating IGF-1 levels were in the low or low normal range 
in infants and children below the age of 9 years (n = 15 
median, 33 µg/L; range, 12–92 µg/L; normal, 77–135 µg/L) 
and in the low-to-normal IGF-1 levels in adolescents 
(n = 8; median, 267 µg/L; range, 107–437 µg/L; normal, 
350–504 µg/L) [29]. Similarly, Miller et al. [8] reported 
reduced serum levels of ALS, IGFBP-3, IGF-1 and of 
ternary complex formation in children with PMM2-CDG 
(n = 12; age = 8.1 ± 6.6 years) compared with age-matched 
controls, despite normal or elevated levels of GH. These 
features were also found in the recently developed mouse 
model of PMM2-CDG [28].

The molecular basis of the IGF-1 system deficiency found 
in PMM2-CDG patients is currently unknown.

In this study, we investigated whether glycosylation is 
directly involved in the function of the IGF-1 system. We 
hypothesize that primary fibroblasts from patients with CDG 
show aberrant proIGF-1Ea N-glycosylation and impaired 
activation of the IGF-1R signaling pathways.

Materials and methods

CDG fibroblasts

Primary fibroblasts derived from patients with CDG caused 
by different N-glycosylation defects were studied. ALG3-
CDG (α-1,3-mannosyltransferase deficiency), PGAP2-CDG 
(post-GPI attachment to proteins 2 deficiency), ALG8-CDG 
(α-1,3-glucosyltransferase 2 deficiency), GMPPB-CDG 
(GDP-mannose pyrophosphorylase B) and control (CTR) 
fibroblasts from age-matched volunteers were provided 
by the Neuroscience Department of the Meyer Children’s 
Hospital (Florence, Italy). PMM2-CDG (phosphomanno-
mutase-2 deficiency) fibroblasts were obtained from the 
Giannina Gaslini Institute-Telethon Network of Genetic 
Biobanks (Genoa, Italy) [30]. Clinical features of these 
patients have been previously published in part [31] and are 
described in the Supplementary Table 1. Fibroblasts were 
cultured in Dulbecco’s Modified Eagle Medium (DMEM, 
high glucose) supplemented with 10% heat-inactivated fetal 
bovine serum (FBS), 2 mM glutamine, penicillin (100 U/
mL) and streptomycin (100 μg/mL) and maintained in a 5% 
 CO2 atmosphere at 37 °C. For IGF-1R activation, after 24 h 

of serum-free culture in 12-well plates, cells were stimulated 
with IGF-1 (100 ng/mL) (Cat #I3769-50UG, Sigma-Aldrich) 
for 30 or 60 min before lysis.

For IGF-1 gene overexpression, fibroblasts were trans-
fected using the Human Dermal Fibroblast Nucleofector™ 
Kit (Cat #VPD1001; Lonza) using the Nucleofector™ 
Device (Lonza) following the instruction manual. Briefly, 
1 ×  106 fibroblasts were resuspended in the nucleofector 
solution, combined with 2.5 µg of plasmid construct con-
taining the class 1 IGF-1Ea isoform [32], transferred to the 
cuvette supplied and finally transfected with the U-23 pro-
gram of the Nucleofector™ Device. After electroporation, 
cells were mixed with 500 µl of DMEM and immediately 
plated into a 6-well plate. The efficiency of transfection was 
estimated by GFP-dependent fluorescence and by qPCR for 
total IGF-1 mRNA levels at 48 h after transfection, as pre-
viously described [32]. The fibroblasts' concentration and 
cell viability were determined by the LUNA-II™ Automated 
Cell Counter (Logos Biosystems, Twin Helix) with trypan 
blue staining.

ELISA assay

Quantitative determination of IGF-1 concentrations in 
transfected fibroblasts supernatants was performed by a 
commercially available ELISA kit following the manufac-
turer’s instructions (Human IGF-I/IGF-1 DuoSet ELISA Cat 
#DY291-05; R&D Systems). The data were acquired at a 
wavelength of 450 nm using Model 680 microplate reader 
(Bio-Rad Laboratories).

Western blot and lectin blot analyses

Fibroblasts were processed for western blot analyses as 
previously reported [32]. The protein samples (20–40 µg 
total proteins) were electrophoresed with 10% SDS-PAGE 
and then transferred to nitrocellulose or PVDF membranes 
(Bio-Rad Laboratories) for immunoblotting. Primary anti-
bodies against phospho-IGF-1 Receptor β (1:2000; Cat 
#3024 Cell Signaling Technology); IGF-1 Receptor β 
(1:2000; Cat #3027 Cell Signaling Technology), phospho-
Akt (Ser473) (1:2000; Cat #9271 Cell Signaling Technol-
ogy), Akt (1:2000; Cat #9272 Cell Signaling Technology), 
phospho-p44/42 (ERK1/2) (1:2000; Cat #9101 Cell Signal-
ing Technology), p44/42 (ERK1/2) (1:2000; Cat #9102 Cell 
Signaling Technology) and IGF-1 (1:2000; Cat #500P11 
Peprotech) were incubated overnight at 4 °C. For lectin 
blotting, membranes were probed with biotinylated Conca-
navalin A (ConA, 1:1000; Cat #B-1005-5) and Phaseolus 
vulgaris leucoagglutinin (PHA-L, 1:200; Cat #B-1115-2) 
lectins (Vector laboratories, D.B.A. Italia) at room tempera-
ture while shaking for 1 h. After washes, the membranes 
were incubated with the appropriate horseradish peroxidase 
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(HRP)-conjugated secondary antibody (against primary 
antibodies) or streptavidin–HRP (for biotinylated lectins) 
at room temperature for 1 h and were then washed three 
times. Blots were developed using Clarity Western ECL 
Substrate (Bio-Rad Laboratories) and were quantified using 
the ChemiDoc MP (Bio-Rad Laboratories) equipped with 
Image Lab software.

RNA extraction, cDNA synthesis and quantitative 
real‑time polymerase chain reaction

The total RNA was extracted and genes of interest analyzed 
by real-time qPCR as previously described [33]. Briefly, 
the expression of ER-stress-related genes was monitored by 
qPCR using TB Green Premix Ex TaqII Mastermix (Takara 
Bio Europe, France), in a RotorGene 6000 instrument (Cor-
bett life science, Sydney, Australia). As template, 2 ng of 
total RNA used for cDNA synthesis was used in each PCR 
tube and a non-template control was included for each primer 
pair reaction as negative control. All amplification reactions 
were performed in duplicate. The amplification conditions 
were: 95 °C for 10 min, 95 °C for 10 s and 60 °C for 50 s for 
40 cycles. At the end of each run, a melting curve analysis 
from 65 °C to 95 °C was performed to exclude the presence 
of non-specific products or primer dimers. The data were nor-
malized against the reference gene GAPDH (glyceraldehyde-
3-phosphate dehydrogenase). The relative expression levels 
were calculated using the  2−ΔΔCt method [34].

Statistical analyses

The data are represented as mean ± SEM of at least three 
independent experiments. Statistical analyses were per-
formed using the t test or one-way ANOVA as appropriate, 
followed by Tukey’s Multiple Comparison post hoc test. 
Correlation between fibroblasts IGF-1 secretion, densito-
metric quantification of proIGF-1Ea and IGF-1R immuno-
reactive bands, lectin binding and ER-stress-related genes 
was analyzed using Pearson’s correlation. The statistical 
tests were performed using SPSS (IBM SPSS Statistics for 
Windows, Version 20.0, IBM Corp.) and GraphPad Prism 
version 5 (GraphPad Software, Inc., La Jolla, CA, USA). A 
p value ≤ 0.05 was considered statistically significant.

Results

proIGF‑1Ea N‑glycosylation pattern and mature 
IGF‑1 secretion in CDG fibroblasts

To evaluate the expression level of IGF-1 in CTR and 
CDG fibroblasts, we conducted preliminary analyses on 
the IGF-1 mRNA and protein quantity. IGF-1 mRNA 

quantification by qPCR showed that all fibroblasts 
had detectable levels of IGF-1 mRNA (mean CT value 
30.5); however, the IGF-1 protein level was too low to 
be detected by western blot or ELISA. We also tried to 
quantify the IGF-1 secretion in the fibroblast supernatants 
after concentration using 3 kDa Spin Columns (by about 
20-fold;  Amicon® Ultra Merck Millipore), but the IGF-1 
concentration still remained below the ELISA sensitiv-
ity (93.8 pg/mL). Subsequently, to assess the expression 
pattern and the N-glycosylation status of the IGF-1 pro-
tein, we transiently transfected fibroblasts with a plasmid 
encoding the IGF-1Ea isoform or an empty vector [32] by 
electroporation.

As shown in Fig. 1A, two distinct bands, likely rep-
resenting glycosylated (~ 17  kDa) and unglycosylated 
(~ 12  kDa) proIGF-1Ea, were detected in CTR and 
PGAP2-CDG fibroblasts. In contrast, the glycosylation 
pattern of proIGF-1Ea differed in other CDG fibroblasts. In 
particular, the two fibroblasts from ALG3-CDG presented 
a distinct band of about 14 kDa, while ALG8-CDG and 
GMPPB-CDG revealed a marked accumulation of 12 kDa 
proteins. It is likely that all these bands represent under-
glycosylated forms of the proIGF-1Ea. Among PMM2-
CDG fibroblasts analyzed, there was a general preservation 
of proIGF-1Ea N-glycosylation pattern, however the IGF-1 
bands intensity in PMM2_p1-CDG, PMM2_p6-CDG and 
PMM2_p7-CDG fibroblasts were lower compared to CTR. 
Densitometric analysis of western blot bands further con-
firmed a reduction of glycosylated proIGF-1Ea band in 
most CDG fibroblasts compared to CTR (Fig. 1B), while 
the intensities of un/under-glycosylated bands did not 
change (ANOVA, p = 0.101). Subsequently, we quanti-
fied the IGF-1 protein level in the cell culture media of 
IGF-1Ea-transfected fibroblasts (Fig. 1C). We observed 
that both ALG3-CDG fibroblasts derived from two dif-
ferent patients, GMPPB-CDG, PMM2_p1-CDG and 
PMM2_p6-CDG showed a decreased IGF-1 secretion as 
compared to CTR. The secretion pattern of IGF-1 posi-
tively correlated with the glycosylated proIGF-1Ea quan-
tity (r = 0.612, p = 0.020), corroborating the previous find-
ing that N-glycosylation is required for proper proIGF-1Ea 
processing and IGF-1 secretion [9, 10]. IGF-1 serum level 
was also quantified from some available patients (Supple-
mentary Table 1). Low serum IGF-1 was found in ALG3-
CDG (52 ng/mL, normal 95–312 ng/mL) and ALG8-CDG 
patients (80 ng/mL, normal, 95–460 ng/mL), while nor-
mal levels were observed in PGAP2-CDG (116 ng/mL, 
normal 47–231 ng/mL). Among PMM2-CDG patients, 
decreased IGF-1serum levels were observed in patients 2 
(64 ng/ml, normal 99–238 ng/ml) and 4 (80 ng/ml, normal 
99–238 ng/ml) while it was in the low normal or normal 
range in patients 1 (101 ng/ml, normal 82–214 ng/ml) and 
7 (361 ng/mL, normal 119–395 ng/mL), respectively.
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IGF‑1R expression and IGF‑1R pathway activation 
in CDG fibroblasts

As shown in Fig. 2A, ALG3-CDG fibroblasts from two 
different patients and ALG8-CDG cells revealed reduced 
IGF-1R expression levels compared to CTR fibroblasts. 
PMM2-CDG fibroblasts from different patients presented 
significant variability in the IGF-1R expression levels. 
IGF-1R was reduced in about 50% of PMM2-CDG cells 
tested. Reduced levels of IGF-1R found in CDG fibroblasts 
were not followed by an IGF-1R proreceptor accumula-
tion (Fig. 2B and C). Altogether, CDG fibroblasts showed 
reduced IGF-1R expression compared with CTR (Fig. 2D). 
To further investigate the possible differences in the two 
main study CDG subtypes, we performed a post hoc sub-
group analysis for ALG-CDG (n = 3) and PMM2-CDG 
(n = 7) showing reduced IGF-1R levels both in ALG-CDG 
(p = 0.003) and PMM2-CDG (p = 0.02). To evaluate if 
IGF-1R deficiency observed in PMM2-CDG was associ-
ated with reduced IGF-1R pathway activation, fibroblasts 
were treated with recombinant IGF-1 (100 ng/ml) for 30 

and 60 min and the level of IGF-1R (Fig. 3A), Akt (Fig. 3B) 
and ERK1/2 (Fig. 3C) phosphorylation was quantified by 
western blotting. The IGF-1-induced activation of IGF-1R 
and ERK1/2 was reduced in most PMM2-CDG fibroblasts, 
while Akt phosphorylation level was more heterogeneous. 
Notably, in some PMM2-CDG, the decreased response to 
IGF-1 treatment was mainly due to higher basal IGF-1R and 
ERK1/2 activation (e.g., PMM2_p2-CDG; PMM2_p3-CDG; 
PMM2_p5-CDG; PMM2_p6-CDG), instead of general 
inhibition of IGF-1R and ERK1/2 activity (Fig. 3D). When 
PMM2-CDG fibroblasts derived from different patients were 
pooled together (n = 7), both IGF-1R and ERK1/2 IGF-1-in-
duced activation were reduced compared to CTR (Fig. 3E). 
Preliminary results obtained in some ALG-CDG fibroblasts 
showed IGF-1 pathway downregulation (not shown) (Fig. 4).

Lectin binding analysis and ER‑stress‑related 
markers in CDG fibroblasts

Lectin blotting with ConA and PHA-L, which recognize high 
mannose and beta 1,6 branched oligosaccharides complex 

Fig. 1  IGF-1Ea prohormone expression patterns and IGF-1 secre-
tion. Representative western blot showing the IGF-1Ea prohormone 
expression patterns (A) and relative protein expression level (B) of 
IGF-1Ea transfected fibroblasts (mean ± SEM of three technical rep-
licates for each fibroblast subtype). Quantification of IGF-1 level 

in fibroblast supernatants measured by ELISA (C) (mean ± SEM of 
three technical replicates for each fibroblast subtype). Gly_proIGF-
1Ea: glycosylated IGF-1Ea prohormone; un/under gly_proIGF-1Ea: 
un/underglycosylated IGF-1Ea prohormone. *significantly different 
from CTR fibroblasts; ***p < 0.001, **p < 0.01, *p < 0.05
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type N-glycans, respectively, showed a non-significant decre-
ment trend of PHA-L binding in CDG- compared to CTR- 
fibroblasts (p = 0.29), while ConA reactivity did not change 
(p = 0.43). Subsequently, qPCR was carried out to quantify the 
expression level of selected ER-stress-related genes: CHOP/
DDIT3, sXBP1, uXBP1, MAP1LC3B, HSPA5, CEBPB, 
CHAC1 and ATF4. As shown in Fig. 5, CHOP/DDIT3, uXBP1 
and ATF4 mRNA levels were higher in CDG compared to CTR 
fibroblasts. The post hoc subgroup analysis showed that ATF4 
mRNA expression was higher in ALG-CDG as compared to 
PMM2-CDG and CTR fibroblasts (p = 0.008), while CHOP/
DDIT3 and uXBP1 mRNA levels did not differ between ALG-
CDG and PMM2-CDG. The Pearson’s correlation coefficient 
showed that fibroblast IGF-1 secretion was directly associated 
with PHA-L binding (r = 0.516, p = 0.05) and inversely cor-
related with CHOP/DDIT3 (r = − 0.747, p = 0.002), uXBP1 
(r = − 0.715, p = 0.004), CEBPB (r = − 0.548, p = 0.043) and 
ATF4 (r = − 0.735, p = 0.003) mRNA expression.

Discussion

In this study, we provide new evidence for IGF-1 system 
impairment in CDG fibroblasts due to defective N-glyco-
sylation of proIGF-1Ea and IGF-1R, which partially disrupts 

IGF-1 signaling pathway activation. We previously demon-
strated that, under physiological conditions, intracellular 
IGF-1 is mainly expressed as a heavily N-glycosylated pro-
hormone of 17–22 kDa [10]. Here, using CTR and CDG 
fibroblasts transiently transfected with the IGF-1Ea isoform, 
we monitored the N-glycosylation pattern of proIGF-1Ea 
and IGF-1 secretion. Two distinct bands, likely representing 
glycosylated and unglycosylated proIGF-1Ea, were found 
in CTR, PGAP2-CDG and most PMM2-CDG fibroblasts 
by western blotting. Conversely, a unique band was present 
in fibroblasts derived from ALG3-CDG, ALG8-CDG and 
GMPPB-CDG. In both ALG3-CDG, we found an abnor-
mal band of about 14 kDa, while in ALG8-CDG and in 
GMPPB-CDG, we found a marked accumulation of a 12 
KDa isoform. These bands probably represent hypoglyco-
sylated isoforms of the proIGF-1Ea. To evaluate if aber-
rant proIGF-1Ea glycosylation impaired IGF-1 secretion, 
we quantified the IGF-1 protein level in cell culture super-
natants and found that most CDG fibroblasts released less 
IGF-1 in the culture media compared to CTR. These data 
corroborate our previous findings that N-glycosylation of 
the proIGF-1Ea is essential for correct IGF-1 secretion [10]. 
Normal proIGF-1Ea N-glycosylation and IGF-1 secretion in 
PGAP2-CDG fibroblasts was expected, since PGAP2 is not 
involved in N-glycosylation but in GPI-anchor synthesis of 

Fig. 2  IGF-1R protein levels in CDG fibroblasts. Relative expres-
sion level of IGF-1R (A) and IGF-1R proreceptor (B) in different 
CDG quantified by western blot (mean ± SEM of three technical 
replicates for each fibroblast subtype). Representative western blot 
showing expression levels of IGF-1R proreceptor (~ 200 kDa), IGF-
1R (~ 97 kDa) and GAPDH (~ 36 kDa) (C). Relative expression lev-

els of IGF-1R in CTR (mean of three technical replicates for each of 
five biological replicates) and CDG- fibroblasts (mean of three tech-
nical replicates for each of twelve biological replicates) quantified 
by western blot (D). *significantly different from CTR fibroblasts; 
***p < 0.0001, **p < 0.001, *p < 0.05
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GPI-anchored proteins. The IGF-1 serum level was evalu-
ated in seven patients, whose fibroblasts have been included 
in this work (ALG3-CDG, ALG8-CDG, PGAP2-CDG and 

PMM2_p1,_p2,_p4,_p7-CDG). ALG3-CDG and ALG8-
CDG patients showed low IGF-1 serum levels, while low-
to-normal IGF-1 serum levels were found in studied patients 
with PMM2-CDG. These data remain provisional, due to the 
low number of patients tested, but they are in line with the 
published data on reduced circulating IGF-1 levels in CDG 
patients [8, 29].

Because the effects of IGF-1 are mediated principally 
through the IGF-1R, we subsequently analyzed the IGF-1R 
levels in primary fibroblasts from different CDG. Previ-
ous studies have shown that N-glycosylation contributes to 
ligand binding, kinase activity and turnover of the IGF-1R 
[35]. Accordingly, we found that IGF-1R expression and 
activity were reduced in primary fibroblasts from different 
CDG. Levels of IGF-1R were particularly low in ALG3-
CDG, ALG-8-CDG and in some of the PMM2-CDG fibro-
blast cell lines tested. We did not find an accumulation of 
the IGF-1 proreceptor in these cells, suggesting that defec-
tive N-glycosylation causes IGF-1R proreceptor instability 
and degradation [27]. In PMM2-CDG, we also analyzed the 
IGF-1-induced IGF-1R pathway activation. Most PMM2-
CDG fibroblasts showed reduced IGF-1R and ERK1/2 phos-
phorylation compared to CTR, while the Akt activation did 
not differ significantly probably due to the high variability of 
the Akt response among PMM2-CDG fibroblasts.

Fig. 3  IGF-1R signaling pathway activation. Relative expres-
sion levels of phosphorylated IGF-1R (A), Akt (B) and ERK1/2 
(C) in PMM2-CDG fibroblasts obtained from different patients 
(mean ± SEM of three technical replicates for each fibroblast sub-
type). Representative western blot showing expression levels of phos-
phorylated and total IGF-1R, Akt, ERK1/2 and GAPDH (D). IGF-

1R, Akt and ERK1/2 phosphorylation level in CTR (mean of three 
technical replicates for each of five biological replicates) and PMM2-
CDG (mean of three technical replicates for each of seven biological 
replicates) fibroblasts (E). *significantly different from CTR fibro-
blasts; #significantly different from recombinant IGF-1 untreated 
cells *** and ###p < 0.0001, ##**p < 0.001, *p < 0.01; #p < 0.05

Fig. 4  Lectin-binding analysis. Concanavalin A (ConA) and Phaseo-
lus vulgaris leucoagglutinin (PHA-L) binding to CTR (mean of three 
technical replicates for each of five biological replicates) and CDG 
(mean of three technical replicates for each of twelve biological rep-
licates) fibroblasts. Con A and PHA-L recognize high mannose and 
complex type N-glycans, respectively. *significantly different from 
CTR fibroblasts, *p < 0.0001
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Altogether, these data corroborate and expand previous 
observations demonstrating an IGF-1 system deficiency in 
CDG [8, 27–29]. In particular, our results suggest that the 
glycosylation defect found in CDG might impair the IGF-1 
system not only indirectly, by destabilizing the ternary 
complex [8], but also directly due to proIGF-1Ea hypo-
glycosylation and IGF-1 secretory defect. Furthermore, 
local growth-promoting effects of IGF-1 might be com-
promised by the reduced IGF-1R proreceptor glycosyla-
tion and related impairment of IGF-1 signal transduction. 
We believe that these findings are relevant in the context 
of CDG since both systemic IGF-1 production and local 
bioactivity are essential to support normal growth during 
development [5, 7]. Patients with genetic IGF-1R defects, 
show symptoms (i.e., pre and postnatal growth retardation, 
microcephaly, cardiac defects and dysmorphic features) 
that significantly overlap with those presented in various 
CDG types [19, 20]. For example, the majority of CDG 
patients analyzed in the present study showed growth fail-
ure and microcephaly (Supplementary Table 1), which are 
also clinical hallmarks of IGF-1/IGF-1R defects [36–38]. 
Further studies are needed, also taking advantage of the 
recently developed CDG animal models [28], to evaluate 
the impact of glycosylation defects on each component 
of the IGF-1 system. This, in turn, will help to clarify 
the association between clinical CDG features and IGF-1/
IGF-1R signaling abnormalities. Interestingly, a case study 
showed that treatment with recombinant IGF-1 prompted 
linear growth in a child with PMM2-CDG [39], suggesting 

the potential of IGF-1 therapy in the improvement of 
clinical outcome of CDG patients. However, taking into 
account our data together with previous findings [27], the 
residual IGF-1R activity should be measured before start-
ing a recombinant IGF-1 therapy.

Although typical clinical features of CDG were present 
in patients whose fibroblasts we studied, clinical manifesta-
tions and severity have a wide spectrum, which is probably 
related to the specific gene variants and/or enzyme residual 
activity [30 and Supplementary Table 1]. Global quantita-
tive protein glycosylation performed with lectins that have 
specific affinity for different types of N-glycans (ConA and 
PHA-L) failed to highlight difference between different 
CDG fibroblast subtypes. We found a modest, and not sig-
nificant, decrease of PHA-L reactivity, indicating reduced 
levels of β1–6 branching structures and complex N-glycans. 
A positive association between IGF-1 secretion and PHA-L 
binding was found. In addition, the analysis of ER-stress-
related gene expression showed a slight increase of CHOP/
DDIT3, uXBP1 and ATF4 mRNA level in CDG compared to 
CTR fibroblasts, which negatively correlate with fibroblasts 
IGF-1 secretion. A correlation between ER stress and IGF-1 
system alterations has been proposed in several neurodegen-
erative diseases that share as common feature the accumula-
tion of misfolded proteins [40]. Although further studies are 
needed, the broad modification of protein N-glycosylation 
patterns and the mild ER-stress in CDG fibroblasts might 
also have contributed to the IGF-1/IGF-1R impaired signal-
ing observed in CDG fibroblasts [40, 41].

Fig. 5  ER-stress markers' 
mRNA expression in CDG 
fibroblasts. Quantification of 
the expression level of selected 
ER-stress-related genes: CHOP/
DDIT3, sXBP1, uXBP1, HSPA5, 
CEBPB, CHAC1, MAP1LC3B 
and ATF4 in CTR (mean 
of three technical replicates 
for each of five biological 
replicates) and CDG (mean of 
three technical replicates for 
each of 12 biological replicates) 
fibroblasts. *significantly dif-
ferent from CTR fibroblasts, 
**p < 0.01, *p < 0.05
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Conclusions

In this study, we have shown that primary fibroblasts from 
CDG patients have reduced levels of proIGF-1Ea and IGF-
1R proreceptor glycosylation. The decreased glycosylation 
of IGF-1/IGF-1R signaling pathway components reduced 
the IGF-1 bioactivity in CDG fibroblasts. Thus, our molec-
ular data provide new insight into CDG pathogenesis and 
suggest that both IGF-1 production (circulating/local) and 
bioactivity might be compromised in CDG due to reduced 
N-glycosylation.

These findings pave the way to future studies focused on 
the impact of CDG on the different IGF-1 system components, 
which include IGF-1, IGFBPs and the IGF-1R. More efforts 
will be needed to clarify the correlation between reduced 
IGF-1/IGF-1R signaling in CDG patients and their clinical 
manifestations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 022- 04180-x.
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