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Decades of focused cancer research have demonstrated the oncogenic process to be frustratingly complex. 
Despite many triumphs in scientifi c and clinical understanding, we still do not understand the formation 
of most solid tumors at a basic level. Each newly discovered molecular signature or profi le brings to 
attention several exceptions in the form of mutations or histological subtypes that signifi cantly change 
the applicability of the new knowledge to clinical practice. This has hampered improvements in detec-
tion, diagnosis, and treatment strategies.

Most solid tumors arise from a spectrum of genetic, epigenetic, and chromosomal alterations. The 
volume of such observations from both patient samples and tumor models in the cancer literature is 
overwhelming. Despite this, the variations in the molecular alterations that can give rise to cancer can 
be broadly grouped into a handful of traits that cancer cells must acquire for malignant transformation 
to occur. The original description by Hanahan and Weinberg of the “hallmarks” of cancer remains a 
seminal description that looks beyond the detailed molecular discoveries governing malignant trans-
formation, and integrates them into a conceptual framework underlying all cancers (Hanahan and 
Weinberg, 2000). This framework simply but insightfully states that molecular alterations can be clas-
sifi ed by dysfunction in as many as six different regulatory systems that must be perturbed for a normal 
cell to become cancerous (Khalil and Hill, 2005). These include many diverse and seemingly non 
overlapping biological processes, including (1) self-suffi ciency in growth signals, (2) insensitivity to 
anti-growth signals, (3) evasion of apoptosis, (4) limitless replicative potential, (5) sustained angiogen-
esis, and (6) tissue invasion and metastasis. They defi ne genetic instability as an “enabling characteristic” 
that facilitates the acquisition of other mutations due to defects in the repair of DNA. Although some 
cancer subtypes are defi ned by a single genetic alteration leading to a primary defect in one of the above 
listed processes, most solid tumors responsible for the largest burden of human illness are heterogeneous 
lesions characterized by many if not all defects observable simultaneously. This includes lung, breast, 
prostate, colon, and central nervous system tumors among others. In our attempts to understand tumor-
igenesis by reductionism, much work has gone into the study of individual biologic processes referred 
to as the “hallmarks” of cancer. Increased understanding for many of these biologic modules has unfor-
tunately not generated parallel understanding of the root cause of cancers and how best to treat them.

The concept of cancer as a system failure and the potential to use systems biology approaches to 
understand the disease is generating signifi cant discussion in the literature as investigators grapple with 
how to do this (Kitano, 2002; Alberghina, Chiaradonna et al. 2004; Spencer, Berryman et al. 2004; 
Khalil and Hill, 2005; Hornberg, Bruggeman et al. 2006). The mere recognition of cancer as a systems 
biology disease is a key fi rst step. This hypothesis views the individual defects observable in solid 
tumors cumulatively as system failures either at the cellular or multicellular level. A systematic study 
and understanding of oncogenic network rewiring (Pawson and Warner, 2007) opens the potential to 
use systems biology approaches to generate testable models of different tumors, an exciting and as of 
yet unexplored realm of cancer biology.

System level understanding, the approach advocated in systems biology, requires a change in our 
notion of “what to look for” in biology (Kitano, 2002). While an understanding role of individual genes 
and proteins continues to be important, the focus is superseded by the goal of understanding a systems 
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structure, function and dynamics. This evolution 
in thought in the life sciences has produced a 
profound transformation at the threshold of what 
is widely regarded as the century of biology 
(Kafatos and Eisner, 2004). From a collection of 
narrow, well-defi ned, almost parochial disciplines, 
they are rapidly morphing into domains that span 
the realm of molecular structure and function 
through to the application of this knowledge to 
clinical medicine. The results of teams of individual 
specialists dedicated to specifi c biological goals 
are providing insight into system structures and 
function not conceivable a decade ago. 

Identifying all the genes and proteins in an 
organism is analogous to creating a list of all parts 
of a complex device or machine, such as an 
airplane. While such a list provides a catalog of 
individual components, it alone is not suffi cient to 
understand the complexity underlying the engi-
neered object (Kitano, 2002). One cannot readily 
build an airplane or understand its functional intri-
cacies from a parts list alone. One needs to under-
stand how these parts are assembled to form the 
structure of an airplane. This is biologically analo-
gous to drawing an exhaustive diagram of gene-
regulatory interactions and their biochemical 
interactions, as these diagrams would provide a 
limited knowledge of how changes in one part of 
the system may affect other parts. To understand 
how a particular system functions, how the indi-
vidual components interact during operation and 

under failure must be examined fi rst. From an 
engineering perspective, answers to key questions 
become critical, such as, what is the voltage on 
each signal line? How are the signals encoded? 
How is the voltage stabilized against noise and 
external fl uctuations? How do the circuits react 
when a malfunction occurs in the system? What 
are the design principles and possible circuit 
patterns, and how can they be modifi ed to improve 
system performance? (Kitano, 2002)

Why has systems biology received so much 
recent attention? In short, it is because the key fi rst 
step of defining system structures has quickly 
advanced from fantasy to reality in the post-genomic 
era. The achievement of full genome sequencing 
projects in many organisms, including Homo 
sapiens, has defi ned the “parts list” for growth, 
development, and normal physiologic function. The 
technological development associated with these 
achievements has spawned the nascent fi elds of 
genomics, proteomics, and multiple ”-omic” disci-
plines defined by their systematic, data-driven 
approaches to biological experimentation. These 
approaches are increasingly being applied to the 
question of understanding cancer.

The volume of data generated by multiple high-
throughput platforms has outpaced the computa-
tional and mathematical models to integrate this 
information for advances in true biologic under-
standing (Figure 1). This will continue to be a 
bottleneck for the near future.
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Figure 1. Estimating cancer research growth and utilization of diverse high-throughput platforms as measured by number of Medline refer-
ences. The apparent decline in 2006 could be explained by not fi nalized references in Medline (February 9, 2007).
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We review a number of relevant observations 
in the context of the “hallmarks” of cancer and 
discuss the issue of data integration in performing 
systems-level experiments. 

Angiogenesis
One line of support for cancer as a system failure 
is the evidence for the angiogenic phase of tumor-
igenesis being a critical component of tumor 
progression once lesions reach a certain size. A 
tumor cannot typically grow beyond a volume of 
approximately 106 cells without neo-angiogenesis 
taking place to supply blood to the tumor 
(Folkman, 1990). In this framework, the acquisi-
tion of mutations due to genetic instability leads 
to the transformation of normal cells in our body 
into cancer cells. This phase is not inherently lethal, 
and generally results in a microscopic tumor. The 
second phase involves a switch to the angiogenic 
phenotype, involving the constant recruitment of 
new blood vessels to the tumor. This converts the 
nonlethal in situ lesions into an expanding mass 
that is potentially lethal. A number of critical 
factors have been identifi ed with the capacity to 
launch angiogenesis and enter a lethal phase of 
cancer, including basic FGF, VEGF, PDGF, throm-
bospondin, tumstatin, canstatin, endostatin, and 
angiostatin. Interestingly, there is a very low inci-
dence of solid tumors in patients with Down 
Syndrome, who circulate elevated levels of 
endostatin, an endogenous angiogenesis inhibitor, 
due to an extra copy of chromosome 21. Tumor 
progression clearly depends on the balance 
between the in situ tumor’s total angiogenic output 
and an individual’s total angiogenic defense 
(Folkman, 1990).

In a similar vein, the balances holding an in situ 
lesion in check before it advances to a focal tumor 
involve a balance between a high rate of tumor cell 
division and cell death. A number of immune 
surveillance mechanisms are postulated to be 
involved in such a balance. For example, autopsies 
of individuals dying of trauma often reveal 
microscopic colonies of cancer cells, also known 
as in situ tumors. Virtually all autopsied individuals 
aged 50 to 70 have in situ carcinomas in their 
thyroid gland, whereas only 0.1% of individuals 
in this age group are diagnosed with thyroid cancer 
during this period of their life. It has long puzzled 
clinicians and scientists why this cancer develops 
and progresses to be lethal only in a very small 

percentage of people. The realization that a lot of 
us carry in situ tumors, but do not develop the 
disease, suggests that these microscopic tumors 
are mostly dormant, and need additional signals to 
grow (Folkman, 1990).

Aberrant Cell Signaling
As we learn more and more about the signal trans-
duction pathways governing cell growth and divi-
sion, it has become clear that the majority are not 
linear pathways acting in isolation. A large amount 
of cross-talk exists within and between pathways. 
Individual components have the potential to act in 
multiple pathways, creating unexpected events 
when mutated. How these networks and their 
regulatory constraints are controlled is a signifi cant 
research challenge.

One of the prominent pathways mutated in many 
tumor types is the EGFR-ras-MAPK pathway. 
Epidermal growth factor receptor (EGFR) was 
identifi ed as a candidate for therapeutic control of 
cancer more than two decades ago. It is expressed 
in most patients with non-small cell lung cancer 
(NSCLC), and has a role in cellular proliferation, 
inhibition of apoptosis, angiogenesis, metastatic 
potential, and chemoresistance (Blackhall, Ranson 
et al. 2006). Activation of the EGFR pathway is 
able to promote tumor growth and progression, 
stimulating cancer cell proliferation, production of 
angiogenic factors, invasion and metastasis, and 
inhibiting apoptosis. 

Ras mutations occur in approximately 30% of 
lung adenocarcinomas, with some data to suggest 
that prognosis can be infl uenced by the presence 
or absence of a ras mutation. Mouse models of lung 
cancer harboring germline activating ras mutations 
develop lethal lung adenocarcinoma. Tumors from 
these animals develop a number of subsequent 
genetic alterations as a downstream consequence 
of ras activation. However, many questions remain 
unanswered; specifi cally the immediate down-
stream molecular events associated with aberrant 
ras signaling. Why germline activating ras muta-
tions produce predominantly lung cancer suggests 
some element of tissue context to ras activation 
that remains to be discovered.

The protein-protein interaction network 
surrounding EGFR—RAS signaling contains a 
number of well-characterized proteins, as shown 
on an example from the EBI SMBL Model 
Repository (Oda, Matsuoka et al. 2005; Le Novere, 
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Bornstein et al. 2006) in Figure 2, and visualized 
in CellDesigner 3.5.1 (http://www.systems-
biology.org/cd/). Information from protein-protein 
interaction databases, such as OPHID/I2D ((Brown 
and Jurisica, 2005); http://ophid.utoronto.ca/i2d), 
further extends the potential to study and model 
these pathways under specifi c stimuli or in different 
tissues. Figure 3 shows one such visualization in 
NAViGaTor 1.1 (http://ophid.utoronto.ca/navi-
gator), highlighting only core proteins, and 
suppressing other details by using alpha-blending. 
Individual nodes in the graph represent proteins, 
while edges correspond to known and predicted 
interactions. The color of individual nodes (except 
for red-highlighted ones) denotes different 
GeneOntology biological functions.

In non-small cell lung cancer (NSCLC), the 
initial studies of epidermal growth factor receptor 
(EGFR) tyrosine kinase inhibitors (TKIs) brought 
signifi cant enthusiasm for targeted therapeutic 
approaches. Initial studies demonstrated that EGFR 
inhibition could lead to dramatic tumor regression 
in 10% to 15% of all treated patients. However, 
not all patients seemed to benefi t from this treat-
ment. A careful examination of patients who 

benefi ted from single-agent EGFR TKIs in phase 
II clinical trials, including unselected patients and 
those treated in the AstraZeneca gefitinib 
expanded access program, revealed clinical char-
acteristics associated with an increased likelihood 
of a clinical or radiographic response. Patients 
most likely to achieve a radiographic response to 
EGFR TKIs were women, lifetime non-smokers, 
patients with adenocarcinomas, and those of 
Japanese ethnicity.

In the spring of 2004, two simultaneously 
published studies examined case series of patients 
who had had dramatic clinical and/or radiographic 
responses to gefi tinib (Lynch, Bell et al. 2004; Paez, 
Janne et al. 2004). Thirteen of 14 patients were found 
to have somatic activating mutations in the EGFR 
kinase domain, whereas none of the 11 patients who 
progressed on gefi tinib had these EGFR mutations. 
Subsequently, EGFR mutations have been investi-
gated in several series of NSCLC tumors from 
surgically resected patients or in patients treated 
with gefi tinib or erlotinib. The mutation frequency 
appears to vary based on different patient charac-
teristics, but very much mirrors the clinically defi ned 
subgroups deemed likely to achieve radiographic 
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Figure 2. EGFR signaling pathway (Oda, Matsuoka et al. 2005) from EMBL-EBI Systems Biology Markup Language curated model 
repository ((Le Novere, Bornstein et al. 2006); http://www.ebi.ac.uk/compneur-srv/biomodels-main/publ-models.do?cmd=MODELS:
SRT&sof=nam & sod=asc#models), visualized using CellDesigner 3.5.1 (http://www.systems-biology.org/cd/).
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responses to EGFR TKIs. EGFR mutations are typi-
cally found in the fi rst four exons of the tyrosine 
kinase domain of EGFR. Three types of mutations 
have been described: (1) deletions in exon 19 
account for about 60% of all mutations; (2) a 
common missense mutation in exon 21 (L858R) 
accounts for another 25%; and, fi nally, (3) rare point 
mutations in exons 18, 20, and 21 and insertion/
duplications in exon 20 account for the remainder 
(Johnson and Janne, 2005).

One of the startling aspects of the Paez et al. 
paper was that despite sequencing of the exons 
encoding the activation loops of 47 of the 58 human 
receptor tyrosine kinase genes in the human 
genome in 58 NSCLC samples, only 3 of the 
tumors, all lung adenocarcinomas, showed hetero-
zygous missense mutations in EGFR not present 
in the DNA from normal lung tissue from the same 

patients (Paez, Janne et al. 2004). No mutations 
were detected in amplicons from other receptor 
tyrosine kinase genes. All three tumors had the 
same EGFR mutation, predicted to change leucine-
858 to arginine. Why EGFR is the sole RTK 
mutated in NSCLC is surprising and points to the 
important role of the receptor and its signaling 
axis.

The EGFR TKI example demonstrates the 
potential for targeted agents directed in a person-
alized manner using molecular substaging. 
Clearly, this is only the tip of the iceberg for 
targeted therapies in NSCLC. Integration of these 
with other agents targeting different pathways 
may herald the age of multi-targeted small-
molecule inhibitors that may come to supercede 
selective mono-targeted agents (Blackhall, 
Ranson et al. 2006).

Figure 3. EGFR—RAS protein interaction network from OPHID (Brown and Jurisica, 2005), visualized in NAViGaTor ver. 1.1 (http://ophid.
utoronto.ca/navigator) in a 3D mode.  Although EGFR, hRAS, kRAS and p53 are not directly linked, these major hubs in the network are 
highly mutually interconnected.  Nodes in the graph are proteins, while edges correspond to interactions.  Node color corresponds to 
GeneOntology biological function, except for highlighted EGFR, p53, p73, hRAS and kRAS.  To reduce graph complexity, nodes except for 
highlighted ones, and related edges are partially translucent using alpha-blending option in NAViGaTor. 
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DNA Damage and Repair
Normal growth and development is dependent on 
the accurate transmission of genetic information 
from one cell to its progeny. Faithful transmission 
requires not only accurate replication of DNA, but 
also the ability to survive spontaneous and induced 
DNA damage while minimizing the number of 
heritable mutations (Zhou and Elledge, 2000). To 
achieve this fi delity, mammalian systems have 
evolved sophisticated surveillance mechanisms 
that monitor the structure of chromosomes and 
coordinate repair and cell-cycle progression. The 
genome is constantly exposed to exogenous DNA 
damaging events in the form of radiation, viral 
infection and chemicals. Endogenous processes 
such as DNA replication and free radical formation 
also threaten the integrity of the genome. DNA 
damage is directly deleterious to cells, and if left 
unrepaired, plays a direct role in the initiation and 
progression of many tumor types (Zhou and 
Elledge, 2000).

There are multiple cellular mechanisms for 
correcting or repairing incorrect, damaged, or 
broken DNA sequences, but in mammalian cells, 
nucleotide excision repair is the major pathway for 
removing damaged bases from DNA. Much of our 
knowledge of the nucleotide excision repair 
process comes from studies of Xeroderma pigmen-
tosum, in which inherited mutations of certain 
crucial nucleotide excision repair genes disable the 
repair of DNA damage from ultraviolet light, a 
defect that results in multiple skin cancers of 
various types in skin that has been exposed to the 
sun (Cleaver, 2005).

Platinum-based chemotherapeutic regimens 
have become the mainstay of treatment for many 
tumor types, particularly non-small cell lung 
cancer. Platinum compounds exert their cytotoxic 
effects by binding covalently to genomic DNA, 
forming adducts that result in altered forms of 
DNA. Such couplings activate the DNA-repair 
process, and unless these adducts are repaired 
before the DNA replicates, they can lead to nucle-
otide substitutions, deletions, and chromosome 
rearrangements that are propagated in daughter 
cells, or to activation of cell-signaling pathways 
that result in cell death via apoptosis. 

Cisplatin molecules bind covalently to genomic 
DNA, forming a bulky, helix-distorting adduct. In 
chemosensitive cells with low nucleotide excision 
repair activity, apoptosis usually follows, while in 
chemoresistant cells with high nucleotide excision 

repair activity, the adduct may be excised and the 
DNA repaired. The adduct is fi rst recognized, and 
proteins of the nucleotide excision repair complex 
are assembled at the adduct site. The heterodimeric 
protein excision repair cross-complementation 
group 1 (ERCC1)–XPF is the last component to 
be assembled and appears to be the rate-limiting 
step in this process. The excised segment is repaired 
by polymerases and the accessory replication 
proteins PCNA, RPA, and RFC. The integrity of 
the damaged strand is restored by DNA ligase. The 
protein ribonucleotide reductase M1 (RRM1), 
although not an integral part of the repair complex, 
catalyzes the biosynthesis of deoxyribonucleotide 
from the corresponding ribonucleotides, providing 
the building blocks for reconstitution of the excised 
oligonucleotide (Gazdar, 2007).

Two recent high-profi le papers point to the 
clinical importance of these pathways. Olaussen 
et al. for the IALT Bio Investigators used immu-
nohistochemical analysis to determine the expres-
sion of the excision repair cross-complementation 
group 1 (ERCC1) protein in operative specimens 
of NSCLC (Olaussen, Dunant et al. 2006). The 
patient cohort consisted of those enrolled in the 
International Adjuvant Lung Cancer Trial, thereby 
allowing a comparison of ERCC1 expression with 
the effect of adjuvant cisplatin-based chemo-
therapy on survival. Adjuvant cisplatin-based 
chemotherapy is known to improve survival among 
patients with completely resected NSCLC, but 
there is no validated clinical or biologic predictor 
for the potential benefi t of chemotherapy. Among 
761 tumors, ERCC1 expression was positive in 
335 (44%) and negative in 426 (56%). A benefi t 
from cisplatin-based adjuvant chemotherapy was 
associated with the absence of ERCC1. Adjuvant 
chemotherapy, as compared with observation, 
signifi cantly prolonged survival among patients 
with ERCC1-negative tumors but not among 
patients with ERCC1-positive tumors. Among 
patients who did not receive adjuvant chemo-
therapy, those with ERCC1-positive tumors 
survived longer than those with ERCC1-negative 
tumors. The authors concluded that patients with 
completely resected NSCLC and ERCC1-negative 
tumors appear to benefi t from adjuvant cisplatin-
based chemotherapy, whereas patients with 
ERCC1-positive tumors did not.

In contrast, recent evidence suggests that 
RRM1, the regulatory subunit of ribonucleotide 
reductase, is involved in carcinogenesis, tumor 
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progression, and the response of NSCLC to treat-
ment. Using an automated quantitative determina-
tion of the RRM1 protein in routinely processed 
histologic specimens, Zheng et al. measured the 
expression of RRM1 and two other proteins rele-
vant to NSCLC (Zheng, Chen et al. 2007). This 
included the ERCC1 and the phosphatase and 
tensin homologue (PTEN). The results were 
compared with the clinical outcomes in 187 
patients with early-stage NSCLC who had received 
only surgical treatment. RRM1 expression corre-
lated with the expression of ERCC1 but not with 
the expression of PTEN. The median disease-free 
survival exceeded 120 months in the group of 
patients with tumors that had high expression of 
RRM1 and was 54.5 months in the group with low 
expression of RRM1. The overall survival was 
more than 120 months for patients with tumors 
with high expression of RRM1 and 60.2 months 
for those with low expression of RRM1. Among 
these 187 patients, the survival advantage was 
limited to the 30% of patients with tumors that had 
a high expression of both RRM1 and ERCC1. The 
authors concluded that both RRM1 and ERCC1 
are determinants of survival after surgical treatment 
of early stage NSCLC.

The paradox highlighted by these two papers is 
the possibility that the immunohistochemical pres-
ence of ERCC1 in conjunction with RRM1 may 
actually be beneficial in early stage NSCLC; 
however, this may not translate into benefi t from 
receiving platinum-based adjuvant chemotherapy. 
In other words, translational utilization of ERCC1 
as a NSCLC biomarker would suggest that its 
presence in early stage disease implies a good 
prognosis, whereas its absence in later stages, where 
platinum-based chemotherapy may be a treatment 
option, would provide a better prognosis.

An Atlas of Cancer Genes
It has been suggested that 5–10% or more of the 
~25,000 putative genes encoded in the human 
genome probably contribute to oncogenesis 
(Strausberg, Simpson et al. 2003). However, a 
recent exhaustive census based on an updated list 
from the Sanger Centre has compiled only 354 
experimentally validated genes that are causally 
implicated in neoplasia development (Futreal, Coin 
et al. 2004). This accounts for only about 1% of 
all predicted human genes. These cancer genes 
have historically been identifi ed in a step-wise 

manner by the positional cloning of individual 
familial susceptibility loci, the discovery of viral 
and mutated forms of cellular proto-oncogenes, or 
by the association of specifi c chromosome anom-
alies with gain- or loss-of-function alleles of select 
genes (Hu, Bader et al. 2007). This contrasts with 
the actual burden of disease, where solid tumors 
of unknown genetic aetiology account for most 
cancer cases—for example, lung, colon, breast, 
prostate and pancreatic tumors lead to ~55% of all 
cancer mortality in the United States based on 
statistics from the American Cancer Society, 
equating to 316,305 of 564,830 cancer deaths 
predicted for 2006.

A protein-protein interaction network for the 
cancer gene census demonstrates that most of these 
proteins are highly interconnected, as shown in 
Figure 4.

Comprehensive analyses of interaction networks 
has suggested that links between hub proteins are 
systematically suppressed (Maslov and Sneppen, 
2002). Such networks would be theoretically more 
robust by reducing the likelihood of cross-talk 
between functional modules, which in turn would 
localize effects of deleterious perturbations. Inter-
estingly, contrary to these earlier results, the “onco-
hubs” are highly interconnected, suggesting 
signifi cant cross-talk between associated pathways. 
To what degree publication bias has infl uenced 
network topology is unclear. One hypothesis is that 
these onco-modules are heavily utilized for normal 
growth, development, and function; hence, heavily 
buffered against the effects of perturbation. Even 
exceptionally low error rates, however, have 
dramatic consequences in the context of solid tumor 
formation over time. We (Homo sapiens) were 
unfortunately not designed to live to 100 years of 
age problem-free.

Integrative Cancer Informatics–A 
Systems Approach to Cancer
Despite the increasing introduction of novel and 
diverse chemotherapeutic agents, most cancers remain 
diseases with devastating mortality rates. The accu-
mulation of data from systematic high-throughput 
experiments has brought the potential to construct 
models of how biological systems work at the cell and 
whole organism level. However, to ensure more accu-
rate modeling of biological systems, we need to 
improve data integration, visualization, and intertwine 
biological experimentation with computational 
analysis. 
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To address complexities of systems level under-
standing of cancer, Deisboeck et al. motivate the 
need for an integrated infrastructure for tracking 
ongoing research related to modeling cancer 
research in a systematic way. A series of web inter-
faces are provided to illustrate the existing range 
of functionalities provided by the CViT (Center 
for the Development of a Virtual Tumor), which is 
one of the National Cancer Institute’s recently 
established Integrative Cancer Biology Programs. 
CViT focuses on: 1) tools for communal informa-
tion exchange between cancer researchers; 2) a 
desktop environment linking users with integrated 
resources housed by the CViT centre; and 3) a 
repository for existing digital models of cancer. 

Levine et al. 2006 tackle the problem of 
mathematical modeling of signal transduction, namely 

the formation of an avascular tumor based on the loss 
by gene mutation of the tumor suppressor function of 
p53. While the model is complex, there are still addi-
tional variables that could have important roles in the 
initiation of tumor growth. It is the intertwined 
biologic experimentation and computational 
modeling/analysis that will drive transformation 
of these initial models into more accurate and 
useful computational cancer models.

Reif et al. introduce an application of Explor-
atory Visual Analysis (EVA), a bioinformatics tool 
for exploring statistical analysis results rather than 
raw data in a visual manner. The main aim is to 
provide a simple, yet integrated view, and enable 
interpretation of p-values in the context of Gene 
Ontology, biochemical pathways, protein domains, 
chromosomal locations, or phenotypes. The authors 

Figure 4. Mapping of 354 oncogenes (Futreal, Coin et al. 2004) to an OPHID database (Brown and Jurisica, 2005) to produce an oncogene 
protein-protein interaction network. Visualization is done in NAViGaTor 1.1. using a 3D mode (http://ophid.utoronto.ca/navigator). A Oncogene 
interaction network with oncogenes highlighted in red (202 of the 354 oncogenes had an interaction in OPHID). The resulting network com-
prises 2,411 proteins and 4,019 interactions. B Top 1% of hubs (highly connected proteins) in the network is highlighted in green (n = 26).  
C The oncogene interaction network contains 12 highly connected subgraphs, highlighted by different colours. D A small EGFR subnetwork 
with related top 1% hubs highlighted in red, generated by inducing the graph on EGFR and its immediate interacting partners.

A B

C D
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provide an evaluation of EVA using publicly 
available microarray datasets of high-grade 
glioblastoma multiforme tumors and indolent, 
low-grade pilocytic astrocytomas.

Do et al. present a comparison of two clus-
tering techniques: a mixture model based on an 
Expectation Maximization (EM) algorithm 
called EMMIX-GENE, and a GeneClust algo-
rithm that uses the gene shaving method. The 
main focus is to diminish the problems in high 
dimensional domains—large number of vari-
ables and small number of samples. Both algo-
rithms are evaluated on two, publicly available 
microarray datasets, by comparing measures of 
accuracy and speed.

Quayle et al. describe a computational approach 
for selecting sets of gene targets for cancer therapy. 
This approach involves building interaction 
networks for cancers and corresponding normal 
samples, and attempting to select a set of targets that 
cause a greater disruption in a cancer network 
compared to normal. Using both human curated and 
predicted protein interaction networks, the authors 
confi rm the fi nding that curated data is highly biased 
towards known and disease-related targets. It would 
be useful to see how the results change by integrating 
with the larger human interactome, from curated, 
predicted, and high-throughput experiments, such 
as in the Interologous Interaction Database I2D 
(http://ophid.utoronto.ca/i2d).

The future—Data integration 
to systems-level experiments
Integrating across multiple systems is a formidable 
challenge. Each area alone is extremely complex. 
However, as system structures are now being defi ned, 
the key fi rst steps toward system level integration are 
becoming possible. Much work remains, however, 
prior to being able to feasibly study multiple system 
modules as a whole. The role of computational biology 
and mathematical modeling as an integral part of these 
advances is becoming increasingly clear. The next 
round of major advances will clearly arise from the 
combined efforts of integrated study groups with 
expertise in both computational and biologic experi-
mentation.
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