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More than a hundred biochemical species, activated by neurotransmitters binding to transmembrane
receptors, are important in long-term potentiation (LTP) and long-term depression (LTD). To
investigate which species and interactions are critical for synaptic plasticity, many computational
postsynaptic signal transduction models have been developed. The models range from simple
models with a single reversible reaction to detailed models with several hundred kinetic reactions.
In this study, more than a hundred models are reviewed, and their features are compared and
contrasted so that similarities and differences are more readily apparent. The models are classified
according to the type of synaptic plasticity that is modeled (LTP or LTD) and whether they include
diffusion or electrophysiological phenomena. Other characteristics that discriminate the models
include the phase of synaptic plasticity modeled (induction, expression, or maintenance) and
the simulation method used (deterministic or stochastic). We find that models are becoming
increasingly sophisticated, by including stochastic properties, integrating with electrophysiological
properties of entire neurons, or incorporating diffusion of signaling molecules. Simpler models
continue to be developed because they are computationally efficient and allow theoretical
analysis. The more complex models permit investigation of mechanisms underlying specific
properties and experimental verification of model predictions. Nonetheless, it is difficult to fully
comprehend the evolution of these models because (1) several models are not described in
detail in the publications, (2) only a few models are provided in existing model databases, and
(3) comparison to previous models is lacking. We conclude that the value of these models for
understanding molecular mechanisms of synaptic plasticity is increasing and will be enhanced
further with more complete descriptions and sharing of the published models.

Keywords: computational model, kinetic model, long-term depression, long-term potentiation, plasticity, postsynaptic
signal transduction model
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1. INTRODUCTION

Synaptic plasticity is an activity-dependent change in the strength
or efficacy of the synaptic connection between a pre- and postsy-
naptic neuron. It is induced with brief periods of synaptic activ-
ity, for example, using tetanic, high-frequency neuronal activity.
Changes in synapses, in general, can last from milliseconds into
years. These long-lasting changes, which require protein synthesis
and gene transcription, are suggested to lead to learning and for-
mation of memories.

The long-term activity-dependent strengthening and weaken-
ing of synapses are known as long-term potentiation (LTP; Bliss
and Gardner-Medwin, 1973; Bliss and Lemo, 1973) and long-term
depression (LTD; Ito et al., 1982; Ito, 1989; Dudek and Bear, 1992),
respectively. Frequency-dependent LTP and LTD in the cornu
ammonis 1 (CA1) region of the hippocampus, triggered by acti-
vation of N-methyl-p-aspartate (NMDA) receptors (NMDARs),
are the most studied forms of long-term plasticity (see, e.g.,
Malenka and Bear, 2004; Citri and Malenka, 2008). In addition
to hippocampal NMDAR-dependent LTP and LTD, diverse forms
of LTP and LTD have been discovered in different brain regions.
One example of non-NMDAR-dependent plasticity is cerebellar
LTD. Some forms of LTP require neither the NMDA nor the non-
NMDA ionotropic glutamate receptors (non-NMDARs include
kainate receptors and o-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid receptors, AMPARs), but do require activation of
metabotropic glutamate receptors (mGluRs). This form is found,
for example, in the CA1 region of the hippocampus (Lanté et al.,
2006). Despite the variation in NMDAR dependence, all forms
of synaptic plasticity are calcium ion (Ca*")-dependent; only the
mechanisms for Ca** elevation vary.

Two broad types of computational models, phenomenological
and biophysical models, have been developed to understand the
pre- and postsynaptic events in LTP and LTD. Phenomenological
models use abstract equations to describe a relationship between
neuronal activity and synaptic plasticity. Biophysical models include
electrophysiological models, biochemical models, and models that
include both electrophysiological properties and biochemical reac-
tions (signaling pathways) underlying the relationship between
neuronal activity and synaptic plasticity, though even these include
simplifications because all the mechanisms cannot be modeled in
detail. The focus of the present study is on biophysical models which
concentrate on postsynaptic biochemical reactions.

This review presents an overview of 117 postsynaptic signal
transduction models, categorizes them so that similarities and dif-
ferences are more readily apparent, and explains how these models
can be used to identify key molecules and address questions related
to mechanisms underlying LTP and LTD. Section 2 presents the
biological background of synaptic plasticity, Section 3 classifies
the computational postsynaptic signal transduction models, and
Section 4 summarizes the directions and trends of this field.

2. SYNAPTIC PLASTICITY

Many different classification schemes for synaptic plasticity exist.
Synaptic potentiation can be classified into three main types:
short-term potentiation (STP), which lasts as long as 30—45 min;
early phase LTP (E-LTP), which lasts for 1-2 h; and late phase LTP
(L-LTP), which persists for considerably more than 2 h (Sweatt,

1999; Soderling and Derkach, 2000; Citri and Malenka, 2008).
Synaptic depression, on the other hand, is typically classified into
two types: short-term depression (STD) and LTD (Ito, 2001);
though there appears to be an early and late phase LTD (E-LTD,
L-LTD) also (Kauderer and Kandel, 2000). In addition, all types of
plasticity involve three processes: induction, in which the mecha-
nisms leading to plasticity are engaged; expression, which involves
mechanisms allowing the plasticity to be exhibited and measured,;
and maintenance, which involves processes occurring after the
induction phase is complete and allowing the plasticity to persist
for long periods of time (Sweatt, 1999).

2.1. MECHANISMS TO TRIGGER SYNAPTIC PLASTICITY

Many different plasticity induction protocols have been developed.
In general, potentiation is induced by a high-frequency stimula-
tion and depression by a low-frequency stimulation of a chemical
synapse, but there are variations in the experimental procedures
depending on the cell type. Short-term plasticity is triggered typi-
cally by short trains of stimulation (Citri and Malenka, 2008).
LTP is typically triggered with longer 1 s trains of high-frequency
(100 Hz) stimulation (Citri and Malenka, 2008). One train trig-
gers only E-LTP, whereas repetitive trains trigger L-LTP (Citri and
Malenka, 2008). L-LTD is typically triggered with prolonged repet-
itive low-frequency (1 Hz) stimulation (Citri and Malenka, 2008).
Theta stimulation consists of short bursts of trains repeated with
200 ms intervals and produces L-LTP, even though the number
of pulses is more similar to that producing E-LTP. Spike-timing-
dependent plasticity (STDP) is another protocol to trigger LTP as
well as LTD. In STDP, pre- and postsynaptic neurons are stimu-
lated independently and the timing between pre- and postsynap-
tic spikes determines whether potentiation or depression occurs
(Markram et al., 1997; Bi and Poo, 1998; Bi and Rubin, 2005; Dan
and Poo, 2006).

2.2. MOLECULAR MECHANISMS OF SYNAPTIC PLASTICITY

There are various mechanisms, both pre- and postsynaptic, that
lead to changes in synaptic strength, for example changes in
neurotransmitter release, conductance of receptors, numbers of
receptors, numbers of active synapses, and structure of synapses
(Hayer and Bhalla, 2005). Several reviews about the molecular
mechanisms underlying synaptic plasticity have been published
(see, e.g., Bliss and Collingridge, 1993; Malenka and Nicoll, 1999;
Sweatt, 1999; Soderling and Derkach, 2000; Ito, 2002; Lisman
et al., 2002; Malenka and Bear, 2004; Blitzer et al., 2005; Cooke
and Bliss, 2006; Wang et al., 2006; Bruel-Jungerman et al., 2007;
Citri and Malenka, 2008; Santos et al., 2009). Cytosolic Ca** is
inarguably the most critical factor: chemical buffering of Ca** or
pharmacological blocking of Ca** influx prevents both potentia-
tion and depression. There are several sources of Ca?*, depending
on the brain region and the cell type. Influx through NMDARSs is
the most common source for LTP; influx through Ca**-permeable
AMPARSs, voltage-gated Ca** channels, or release from intracellular
stores (triggered by mGluRs which are G protein-coupled recep-
tors) are important in many cell types. Ca?* can activate, both
directly and indirectly, protein kinases and phosphatases leading to
phosphorylation—dephosphorylation cycles and, ultimately, to LTP
and LTD. The next paragraphs focus on the molecular mechanisms
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behind NMDAR-dependent LTP and LTD, as well as cerebellar
LTD, because these forms of plasticity have been studied the most
both experimentally and computationally.

NMDAR-dependent potentiation is triggered by release of the
neurotransmitter glutamate from the presynaptic neuron and sub-
sequent binding to NMDARs on the postsynaptic neuron (Bliss
and Collingridge, 1993; Malenka and Nicoll, 1999; Sweatt, 1999;
Malenka and Bear, 2004; Citri and Malenka, 2008). After NMDARs
are activated, Ca®* can flow into the cell if the postsynaptic mem-
brane is sufficiently depolarized to relieve the magnesium ion block
from NMDAR. NMDAR-dependent LTP requires a large increase
in postsynaptic Ca** concentration which triggers several events
inside the cell. One of the most important events is Ca** binding to
calmodulin, which then activates Ca?*/calmodulin-dependent pro-
tein kinase IT (CaMKII), leading to phosphorylation of AMPARSs,
increase in single-channel conductance of AMPARs, and incorpo-
ration of additional AMPARs into the postsynaptic density (Citri
and Malenka, 2008). Ca*" also binds to protein kinase C (PKC)
which is involved in E-LTP in some cell types (Malinow et al., 1989;
Klann et al., 1993). In the hippocampus, the calmodulin-4Ca*
complex (CaMCa,) further activates adenylyl cyclase, leading to
activation of cyclic adenosine monophosphate (cAMP)-dependent
protein kinase (PKA) which is required for some forms of L-LTP
(Woo et al., 2003).

Transcription and also somatic and dendritic protein synthesis
are required for induction of L-LTP (Bradshaw et al., 2003b), but
it is unclear whether protein synthesis is required for induction of
E-LTP. These nuclear and somatic events involve Ca?*/calmodulin-
dependent protein kinase IV (CaMKIV), mitogen-activated protein
kinase (MAPK, ERK), and PKA. For maintenance of L-LTP, the
atypical PKC isozyme (PKME), which is an autonomously active
form of PKC, is required in addition to local dendritic protein
synthesis (Serrano et al., 2005).

NMDAR-dependent LTD needs only a modest increase in Ca**
concentration (instead of the large Ca** increase for LTP). This mod-
estincrease in Ca?* concentration leads to preferential activation of
protein phosphatase 2B also known as calcineurin, because it has a
much higher affinity for CaMCa, than CaMKIT has. Activation of
protein phosphatases leads to dephosphorylation and endocytosis
of AMPARSs located on the plasma membrane (Citri and Malenka,
2008), and thereby the expression of LTD. Protein translation may
be needed for expression and maintenance of L-LTD (Citri and
Malenka, 2008), but otherwise mechanisms behind maintenance of
NMDAR-dependent LTD have not been studied extensively. Some
forms of LTD also require Ca**-dependent production of endocan-
nabinoids which travel retrogradely to produce changes in presynap-
tic release of neurotransmitters (Gerdeman and Lovinger, 2003).

Cerebellar LTD, the best studied form of non-NMDAR-depend-
ent LTD, is observed at the parallel fiber to Purkinje cell synapse.
Purkinje cells form synapses with several thousand parallel fibers
and also receive many synaptic contacts from a single climbing fiber
(Ito, 2002; Citri and Malenka, 2008). Cerebellar LTD is induced
when parallel fibers and a climbing fiber are activated simulta-
neously. Glutamate released by parallel fibers activates mGluRs
which in turn activate phospholipase C (Ito, 2002). Phospholipase
C catalyzes the reaction producing diacylglycerol and inositol tri-
sphosphate (IP,). Diacylglycerol activates PKC, and IP, causes the

release of Ca** from endoplasmic reticulum through IP, receptors
(IP,Rs). Phospholipase A , which is activated by an elevation in Ca**
concentration, produces arachidonic acid which more persistently
activates PKC that is transiently activated by diacylglycerol. PKC
phosphorylates AMPARs and this leads to endocytosis of AMPARSs
from the plasma membrane. As in hippocampal LTP, protein syn-
thesis is needed for L-LTD (Ito, 2001).

Given that Ca* activates multiple processes and enzymes, such
as endocannabinoid production, calcineurin, and CaMKI], it is still
not clear why some stimulation protocols produce depression and
some produce potentiation. Non-linear interactions between mul-
tiple pathways make a quantitative understanding difficult solely
from experiments. Computer modeling synthesizes information
from myriad studies ranging from plasma membrane level phe-
nomena to intracellular phenomena. Simulations therefore provide
deeper insight into mechanisms underlying plasticity and this is
why modeling studies have become more and more popular dur-
ing the last 10 years.

3. COMPUTATIONAL MODELS

Many computational models have been developed to understand
pre- and postsynaptic events in LTP and LTD. Several focused
reviews that include models of a specific neural system or type of
plasticity have appeared during the last 20 years (Brown et al., 1990;
Neher, 1998; Hudmon and Schulman, 2002a,b; Bi and Rubin, 2005;
Holmes, 2005; Worgotter and Porr, 2005; Ajay and Bhalla, 2006;
Klipp and Liebermeister, 2006; Zou and Destexhe, 2007; Morrison
et al., 2008; Ogasawara et al., 2008; Bhalla, 2009; Ogasawara and
Kawato, 2009; Tanaka and Augustine, 2009; Urakubo et al., 2009;
Castellani and Zironi, 2010; Gerkin et al., 2010; Graupner and
Brunel, 2010; Hellgren Kotaleski and Blackwell, 2010; Shouval et al.,
2010); however, a comprehensive review on postsynaptic signal
transduction models for LTP and LTD is lacking.

In this study, an analysis of altogether 117 postsynaptic signal
transduction models published through the year 2009 is presented
(see Table 1). We limit the present analysis to models of postsyn-
aptic signal transduction pathways that are defined using several
characteristics. First, the output of the model needs to be a postsyn-
aptic aspect of the neuron. Second, some part of intracellular signal-
ing is explicitly modeled. Thus, models in this review are required
to include at least mechanisms for postsynaptic Ca?* dynamics,
Ca*" buffers, phosphorylation—dephosphorylation cycles, LTP and
LTD related enzymes, retrograde signals, or synaptic strength that
depends on Ca?* concentration. Alternatively, models that explic-
itly include the kinases and phosphatases underlying changes in
AMPAR phosphorylation or synthesis of plasticity-related proteins
are included. Models which have intracellular signaling pathways
in neurons but do not address plasticity are excluded. Models of
AMPAR and NMDAR activation alone, or models including only
anchoring and scaffolding proteins as intracellular molecules are
excluded. Lastly, purely phenomenological models of plasticity
are excluded. These strict criteria are needed because of the large
number of models. In addition, a few models published during
2010 are excluded (see, e.g., Clopath et al., 2010; Kim et al., 2010;
Kubota and Kitajima, 2010; Nakano et al., 2010; Pepke et al., 2010;
Qi et al., 2010; Rackham et al., 2010; Santamaria et al., 2010; Tolle
and Le Novere, 2010a).
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Table 1| List of postsynaptic signal transduction models published each year.

Year Models No.
1985 Lisman (1985) 1
1987 Gamble and Koch (1987) 1
1988 Lisman and Goldring (1988a,b) 2
1989 Lisman (1989) 1
1990 Holmes (1990), Holmes and Levy (1990), Kitajima and Hara (1990), Zador et al. (1990) 4
1993 De Schutter and Bower (1993), Migliore and Ayala (1993) 2
1994 Gold and Bear (1994), Kotter (1994), Michelson and Schulman (1994) 3
1995 Matsushita et al. (1995), Migliore et al. (1995), Schiegg et al. (1995) 3
1996 Dosemeci and Albers (1996), Fiala et al. (1996) 2
1997 Coomber (1997), Holmes and Levy (1997), Kitajima and Hara (1997), Migliore et al. (1997) 4
1998 Coomber (1998a,b), Markram et al. (1998), Murzina and Silkis (1998) 4
1999 Bhalla and lyengar (1999), Kétter and Schirok (1999), Kubota and Bower (1999), Migliore and Lansky (1999a,b), Volfovsky et al. (1999) 6
2000 Holmes (2000), Kitajima and Hara (2000), Li and Holmes (2000), Okamoto and Ichikawa (2000a,b), Zhabotinsky (2000) 6
2001 Castellani et al. (2001), Franks et al. (2001), Kubota and Bower (2001), Kuroda et al. (2001), Yang et al. (2001) 5
2002 Abarbanel et al. (2002), Bhalla (2002a,b), Hellgren Kotaleski and Blackwell (2002), Hellgren Kotaleski et al. (2002), Holthoff et al. (2002), 1
Karmarkar and Buonomano (2002), Karmarkar et al. (2002), Saftenku (2002), Shouval et al. (2002a,b)
2003 Abarbanel et al. (2003), Bradshaw et al. (2003a), dAlcantara et al. (2003), Dupont et al. (2003), Kikuchi et al. (2003) 5
2004 Ajay and Bhalla (2004), Holcman et al. (2004), Ichikawa (2004), Murzina (2004), Steuber and Willshaw (2004), Yeung et al. (2004) 6
2005 Abarbanel et al. (2005), Castellani et al. (2005), Doi et al. (2005), Hayer and Bhalla (2005), Hernjak et al. (2005), Miller et al. (2005), Naoki 10
et al. (2005), Rubin et al. (2005), Saudargiene et al. (2005), Shouval and Kalantzis (2005)
2006 Badoual et al. (2006), Lindskog et al. (2006), Miller and Wang (2006), Shah et al. (2006), Smolen et al. (2006), Zhabotinsky et al. (2006) 6
2007 Ajay and Bhalla (2007), Cai et al. (2007), Cornelisse et al. (2007), Delord et al. (2007), Gerkin et al. (2007), Graupner and Brunel (2007), 12
Ichikawa et al. (2007), Kubota et al. (2007), Ogasawara et al. (2007), Schmidt et al. (2007), Smolen (2007), Tanaka et al. (2007)
2008 Achard and De Schutter (2008), Brown et al. (2008), Canepari and Vogt (2008), Clopath et al. (2008), Helias et al. (2008), Keller et al. 14
(2008), Kubota and Kitajima (2008), Kubota et al. (2008), Pi and Lisman (2008), Santucci and Raghavachari (2008), Smolen et al. (2008),
Stefan et al. (2008), Urakubo et al. (2008), Yu et al. (2008)
2009 Aslam et al. (2009), Byrne et al. (2009), Castellani et al. (2009), Jain and Bhalla (2009), Kalantzis and Shouval (2009), Kitagawa et al. 9
(2009), Ogasawara and Kawato (2009), Schmidt and Eilers (2009), Smolen et al. (2009)
Al n7z

Altogether 117 models have been published between the years 1985 and 2009. For chosen criteria, see the beginning of Section 3.

3.1. MAIN CHARACTERISTICS OF MODELS

The lists of LTP models (Table 2), LTD models (Table 3), and dual
LTP and LTD models (Table 4) order the models alphabetically
by the first author and by the publication month and year. Dual
LTP and LTD models are able to simulate both forms of plasticity.
Characteristics listed under the methods include the computational
techniques: either deterministic ordinary and partial differential
equations (Det.) or stochastic techniques (Stoch.) which include,
for example, reaction algorithms such as the Gillespie stochastic
simulation algorithm (Gillespie, 1976, 1977) and diffusion algo-
rithms such as Brownian dynamics. A few studies also use so-called
hybrid methods where different techniques are combined. The
models are further classified according to the biochemical phe-
nomena that are modeled: some models only describe reactions
between chemical species (Reac.) and some also take into account
the diffusion of at least some chemical species (Diff.). In addition
to biochemical models, there are models which not only describe
intracellular events associated with synaptic plasticity, but also take

into account the associated plasma membrane and ion channel level
phenomena by modeling the membrane voltage; these models are
referred to as electrophysiological (Elect.). Tables 2—4 indicate the
simulation tool or programing language used when known, but
this piece of information is not always given in the publications.
Other characteristics included in Tables 2—4 are the cell type of the
model, which process of synaptic plasticity is modeled [induction
(Ind.), expression (Expr.), or maintenance (Maint.)] according to
the publications, time required for the dynamics of the model to
reach a steady state, the model outputs used to demonstrate the
change in synaptic strength, and the size of the model [less than
20 different chemical species or other model variables is defined
as small (S), between 20 and 50 is medium (M), and more than
50 is large (L)]. If several different types of models are used in one
publication, the size of the largest model is given. The time required
for the dynamics of the model to reach a steady state is suggestive
and it is not possible to compare all the models according to the
time because different models use, for example, different inputs.
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Table 3 | List of LTD models.

Model Methods Cell type Phases Time Outputs Size

Achard and De Schutter (2008) Det. Reac. Elect./GENESIS/ Cerebellar PC Ind. LTD 1s Ca* L
Kinetikit?

Brown et al. (2008) Det. Reac. Diff./Virtual Cell® Cerebellar PC LTD 04-2s IP, M

Doi et al. (2005) Det. Reac./GENESIS/ Cerebellar PC Ind. LTD 0.2-1s Ca* L
Kinetikit®

Fiala et al. (1996) Det. Reac. Elect. Cerebellar PC Ind. LTD 9, M

Hellgren Kotaleski and Det. Reac. Diff./XPP¢ Cerebellar PC LTD 1-5s Ca* S

Blackwell (2002)

Hellgren Kotaleski et al. (2002) Det. Reac. Diff./XPP¢ Cerebellar PC Ind. LTD 5-30's PKC M

Hernjak et al. (2005) Det. Reac. Diff./Virtual Cell® Cerebellar PC Ind. LTD 0.1-4s Ca? M

Holthoff et al. (2002) Det. Reac. Diff. Elect./ Neocortical Ind. LTD 05s Ca* S
MATLAB® layerV PN

Kuroda et al. (2001) Det. Reac./GENESIS/ Cerebellar PC Ind. STD/E-,-.LTD 15-100 min AMPAR L
Kinetikit?

Murzina (2004) Det. Reac. Diff. Elect. Cerebellar PC Ind. LTD Kinase, M

receptor

Ogasawara et al. (2007) Det. Reac. Diff. Elect. Cerebellar PC Ind./Expr./Maint. LTD 20-60 min AMPAR L

Ogasawara and Kawato (2009) Det. Stoch. Reac. Cerebellar PC Ind./Maint. LTD 10 sto 70 min Kinase S

Schmidt et al. (2007) Det. Reac. Diff./ Cerebellar PC Ind. LTD 0.2-4s Ca*,
Mathematica, FEMLAB CaM

Schmidt and Eilers (2009) Det. Reac. Diff./ Cerebellar PC Ind. LTD 0.04-3s Ca?, S
Mathematica CaM

Steuber and Willshaw (2004) Det. Reac. Elect. Cerebellar PC Ind. LTD Y. S

Tanaka et al. (2007) Det. Reac. Cerebellar PC Ind. LTD AMPAR M

Yang et al. (2001) Det. Reac. Elect./GENESIS/ Cerebellar PC Ind. LTD 10-100's PKC L

Chemesis¢

Models are in alphabetical order by the first author and according to the publication month and year. Tabulated characteristics are the method and model types (Det.,
Stoch., Reac., Diff., Elect., and simulation environment), cell type, phases of LTD, time required for the dynamics of the model to reach a steady state, model outputs,
and size of the model based on the number of different chemical species or other model variables (S, M, L). All abbreviations are given in the list of abbreviations.

sGENESIS/Kinetikit (http.//www.genesis-sim.org/GENESIS/; http://www.ncbs.res.in/index.phpoption=com_content&task=view&id=307,; Bower and Beeman, 1998,

Bhalla, 2002c).
bVirtual Cell (http://vcell.org; Schaff et al., 1997, Slepchenko et al., 2003).
°XPP (http.//www.math.pitt.edu/~bard/xpp/xpp.html; Ermentrout, 2002).

IGENESIS/Chemesis (http.//www.genesis-sim.org/GENESIS/; http.//krasnow.gmu.edu/CENIab/software.html; Bower and Beeman, 1998; Blackwell and Hellgren

Kotaleski, 2002).

3.2. CATEGORIZATION OF MODELS

In this study, models are further categorized (Figure 1) into models
for single pathways (Table 5), models for calcium mechanisms or
simplified intracellular processes (Table 6), and models for signal-
ing networks (Table 7). Models for single pathways involve at most
one kinase as a model variable and do not include any receptors,
ion channels, or pumps on the plasma membrane. Typically single
pathways contain a pathway involving calmodulin and CaMKII and
sometimes also phosphatases. Models for calcium mechanisms or
simplified intracellular processes include postsynaptic Ca** buffers
together with ion channels, receptors, or pumps, or simplified intra-
cellular processes. The last group of models, consisting of signaling
networks, takes into account interactions between at least two path-
ways and thus often have several protein kinases and phosphatases.
These models can also include ion channels, receptors, and pumps.
Several characteristics, such as model inputs, number and types
of morphological compartments, molecules, ion channels, and

receptors, are described for the models in the following sections.
In some cases it is difficult to determine the model inputs based on
the information given in the publications. For detailed biophysical
models, the input is typically coupled with the plasma membrane
level phenomena, such as membrane voltage. In these cases, we have
indicated the change in membrane current (Al ) or membrane
voltage (AV ) as the input. For more simplified models, a variety
of mathematical equations are used to describe the model and the
input. In these cases, we have indicated which physical property
the input equation represents, such as synaptic stimulus (causing
elevation in Ca?* concentration). See also Section 4 for further
comments on the presentation of input for models.

3.2.1. Models for single pathways

The models for single pathways typically focus on CaMKII (e.g.,
Dosemeci and Albers, 1996; Okamoto and Ichikawa, 2000a; Smolen
etal., 2009), though one model for cAAMP production (Kétter and
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Postsynaptic signal transduction models
Tables 2 - 4

!

Models for calcium mechanisms or
simplified intracellular processes
Table 6

Models for signaling networks
Table 7

Models for single pathways
Table 5

FIGURE 1 | Categorization of postsynaptic signal transduction models.

Schirok, 1999) exists and several models are focused on calmodu-
lin activation (e.g., Kubota et al., 2007; Stefan et al., 2008). Most
of these models use Ca** concentration as the input and include
reaction kinetics of CaMCa, binding and unbinding to CaMKII
subunits. Many of the models do not take into account the dodeca-
meric structure of the CaMKII holoenzyme nor the spatial aspect
of CaMCa,-dependent autophosphorylation of CaMKII between
adjacent subunits. Because of the importance of CaMKII in LTP,
most of these single pathway models address the same issues of
amplitude and frequency dependence of Ca**-bound calmodulin
or CaMKII activation; subsequent models usually build on previous
models and then advance the simulation technique (e.g., stochastic
instead of deterministic simulations), or incorporate new experi-
mental details on the CaMKII molecule.

Lisman (1985) presents one of the first models for LTP, which
shows that a simple switch model has two stable states, one in
which the kinase is dephosphorylated and the other in which it is
almost completely phosphorylated. Switch-like behavior,important
for memory formation, can be created even when reactions occur
stochastically (Smolen et al., 2009), using fast and slow feedback
loops. Another stochastic model (Miller et al., 2005) shows that the
highly phosphorylated state of CaMKII can remain stable for years,
another property which could be important for memory storage.

Okamoto and Ichikawa (2000a) demonstrate the crucial role of
competition for calmodulin between spines by modeling several
morphological compartments. They model CaMKII in a set of five
spines connected to a dendrite and show that after autophosphor-
ylation of CaMKII in a spine, calmodulin in the dendrite can diffuse
into that spine for CaMCa, trapping, which leads to competition
since there is a limited concentration of calmodulin. Most of cal-
modulin is taken by those spines that experience relatively large
increases in Ca®* concentration.

A few of the models contribute to understanding of CaMKII
activation though they do not explicitly model CaMKII. Delord
et al. (2007) use simple models for Ca**-controlled phosphoryla-
tion—dephosphorylation cycles with non-specific phosphoprotein
substrates. Despite the simplicity of these models, the fraction of
phosphorylated protein remains elevated for prolonged time periods
after Ca®* concentration returns to its basal level, representing a form
of memory storage. Furthermore, the substrate phosphorylation
persists in the presence of substrate turnover. Kubota et al. (2007)
demonstrate that neurogranin regulates the spatiotemporal pattern
of Ca**-bound calmodulin, which has important implications for
CaMKII activation and spatial specificity, by modeling diffusion of
single molecules in a spine using 3-D Brownian dynamics.

Several studies show the importance of phosphatases for per-
sistence of synaptic plasticity. Kubota and Bower (2001) show that
asymptotic Ca** frequency sensitivity of CaMKII depends on both

CaMKII and protein phosphatase 1 (PP1). Matsushita et al. (1995)
show that phosphatase concentration not only controls whether
CaMKII remains phosphorylated, but also controls the intensity of
the input required to switch on the persistently phosphorylated state.
Lisman and Zhabotinsky (2001) revisit this issue, and show that the
CaMKII and PP1 bistable switch activated during the induction of
LTP remains active despite the protein turnover. The bistable switch
allows CaMKII autophosphorylation to be maintained at low Ca**
concentrations, even after considering the effect of phosphatases and
protein turnover. On the other hand, Bradshaw et al. (2003a) show
that the presence of PP1 transforms the CaMKII bistable switch
into a reversible (ultrasensitive) switch because PP1 dephosphor-
ylates CaMKII when Ca** concentration is lowered to a basal level.
Coomber (1998a) studies autophosphorylation and dephosphoryla-
tion of CaMKII and includes autophosphorylation of an inhibitory
site caused by low-frequency stimulation. In this manner, either
LTP or LTD can occur. Though using different mechanisms, both
Dosemeci and Albers (1996) and Coomber (1998a,b) show that the
phosphorylation of CaMKII can be sensitive to the temporal pattern
of Ca?* pulses, and this may allow CaMKII in the postsynaptic den-
sity to act as synaptic frequency detectors. The large allosteric model
for calmodulin activation in the postsynaptic density by Stefan et al.
(2008) explains how different Ca** concentrations can trigger the
activation of either CaMKII or calcineurin.

3.2.2. Models for calcium mechanisms or simplified

intracellular processes

Models for calcium mechanisms or simplified intracellular proc-
esses are a diverse group of models which typically address the role
of Ca?* in producing changes in synaptic strength. Most of these
models focus on mechanisms controlling Ca?* dynamics, such as
Ca* buffers, pumps, glutamate receptors, or Ca**-permeable ion
channels. Another set of these models use more abstract equa-
tions representing intracellular processes and include an equation
describing the Ca**-dependent change in synaptic strength, in order
to evaluate whether LTP or LTD occurs with repeated patterns of
stimulation.

One of the most compelling questions in the field of LTP is
whether high-frequency stimulation increases the spine Ca** con-
centration more than low-frequency stimulation. This has been
addressed using models of Ca** dynamics in spines alone (see,
e.g., Gamble and Koch, 1987; Kitajima and Hara, 1990; Gold and
Bear, 1994; Volfovsky et al., 1999; Franks et al., 2001) or spines that
include NMDAR activation by electrical activity in models of an
entire neuron (see, e.g., Holmes and Levy, 1990; Zador et al., 1990;
Koch and Zador, 1993). Zador et al. (1990) further demonstrate
that spines compartmentalize Ca*" (i.e., the Ca?* signal is limited to
those spines that are stimulated), thus providing a mechanism for
spatial specificity. Holmes and Levy (1990) show that the frequency
sensitivity of LTP requires Ca?* buffers in addition to NMDAR
properties.

A variation of this question is the effect of spine geometry on
Ca*" concentration and synaptic plasticity. Both Volfovsky et al.
(1999) and Schmidt and Eilers (2009) test different spine-neck
lengths and show that a long neck isolates Ca?* signaling and cal-
modulin activation to the spine while stubby spines have a strong
coupling between spines and the dendrite. Cornelisse et al. (2007)
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Table 5 | Characteristics of models for single pathways.

Type Model Inputs Subunits/States/Residues lons and molecules
LTP Bradshaw et al. (2003a) Ca* 6/3?/Thr-286 Ca?%, CaM, CaMKll, PP1
LTP Dupont et al. (2003) Ca?, CaM, 5/5%/Thr-286 Ca?, CaM, CaMKII
CaMCa,
LTP Kubota and Bower (2001) Ca? 2-4/5%Thr-286, Th-305/306 Ca?, CaM, CaMKIl, PP1
LTP Kotter and Schirok (1999) Ca? No AC, ATP, Ca*, CaM, cAMP, PDE
LTP Lisman (1985) Kinase 1/2¢ 2 kinases, phosphatase’
LTP Lisman and Goldring (1988b) Ca? b/39 Ca?*, CaMKII, phosphate ion
LTP Lisman and Goldring (1988a) Ca? b/39 Ca?*, CaMKIl, phosphate ion
LTP Matsushita et al. (1995) CaMCa, 10/54Thr-286, Thr-305, Ser314 ATR, Ca?, CaM, CaMKII, phosphatase,
phosphate ion
LTP Michelson and Schulman (1994) Ca? 10/5%/Thr-286, Thr305/306 Ca?, CaM, CaMK
LTP Miller et al. (2005) Ca? 12/2¢/Thr-286/287 Ca*, CaM, CaMKII, CaN, I1, PKA, PP1
LTP Miller and Wang (2006) Ca* 12/2¢/Thr-286/287 Ca?%, CaM, CaMKll, PP1
LTP Okamoto and Ichikawa (2000b) Ca? b/4°Thr-286/287 Ca?, CaM, CaMKIl
LTP Okamoto and Ichikawa (2000a) Ca* 10/4"/Thr-286/287 Ca*, CaM', CaMCa,-binding protein, CaMKIl
LTP Smolen et al. (2009) Ca? 1/2¢ Ca?, CaMKIl or MAPK
LTP Zhabotinsky (2000) Ca? 10/3/Thr286 Ca?, CaM, CaMKII, CaN, 11, PKA, PP1
Dual Byrne et al. (2009) Ca? 12/6¢ Ca?, CaM, CaMKII'
Dual Coomber (1998a) Ca? 5/7™/Thr-286 ATR Ca?, CaM, CaMKIl, phosphatase (CaN)
Dual Coomber (1998b) Ca? 4/12/Thr-286, Thr305/306 ATR Ca?, CaM, CaMKIl, phosphatase (PP1)
Dual Delord et al. (2007) Ca? 1/2¢ Ca?, kinase, phosphatase, substrate
Dual Dosemeci and Albers (1996) Ca? 10/47/Thr-286, Thr305/306 Ca?*, CaM, CaMKIl, phosphatase
Dual Kubota et al. (2007) Ca? No Ca?, CaM°, Ng
Dual Stefan et al. (2008) Ca? 1/5° Ca?, CaM, CaMKIl, CaN

Models are in alphabetical order by the first author and according to the publication month and year. First all LTP models are listed and then all dual LTP and LTD
models. Tabulated characteristics are the model inputs, number of CaMKI| or kinase subunits, number of states for each subunit, specified threonine (Thr) and serine
(Ser) residues of CaMKI| that are phosphorylated, as well as ions and molecules whose interactions are modeled. Note that it is not always clear if all the subunits
and number of states mentioned in the publications are actually modeled and simulated. Molecules that are modeled as constants are also listed. All abbreviations
are given in the list of abbreviations.

aFirst three states of those mentioned under d below are modeled.

bIt is not clearly stated in the publication how many CaMKIl subunits are modeled.

¢Inactive, bound with CaMCa, bound with CaMCa, and autophosphorylated, Ca* dissociated from CaM bound to the phosphorylated form (trapped), and CaM
dissociated from the trapped form but remains phosphorylated (autonomous).

dInactive, bound with CaMCa,, bound with CaMCa, and autophosphorylated (trapped), CaMCa, dissociated from the trapped form but remains phosphorylated

(autonomous), and autonomous state secondary autophosphorylated (capped).
¢Inactive and phosphorylated.
'Ca? is not included in the model.

9lnactive, bound with Ca* and autophosphorylated, and Ca** dissociated but remains phosphorylated.

hFirst four states of those mentioned under d above are modeled.
'1-D CaM diffusion is modeled to five spines connected by a dendrite.

/Inactive, bound with CaMCa,, and bound with CaMCa, and phosphorylated or autophosphorylated.

“Inactive and bound with CaM, CaMCa,, CaMCa, CaMCa,, or CaMCa,.
'3-D CaM and CaM Kl diffusion are modeled in a spine.

mInactive, bound with CaMCa,, bound with CaMCa, and autophosphorylated, and autophosphorylated on any 1-4 sites.
"Inactive, bound with CaMCa, and autophosphorylated, autophosphorylated, and secondary phosphorylated.

°3-D CaM diffusion is modeled in a spine.
*lnactive and bound with CaMCa,, CaMCa, CaMCa,, or CaMCa,.

investigate the role of spine geometry compared to the dendrite.
In particular, they demonstrate that the surface area to volume
does not completely explain the difference in Ca** decay between
a spine and dendrite. Instead, a lower buffer capacity of the spine
is required to explain the experimental data.

Another important question is the role of various Ca?* buffers
in controlling Ca?* dynamics. Many models of Ca?* dynamics have
only one or two Ca**-binding proteins, instead of the many types
found in real neurons. Markram et al. (1998) show that competi-

tion among Ca**-binding proteins of various speeds and affinities
influences the differential activation of intracellular targets. Models
of Ca?* dynamics permit tight coupling between experiments and
models, but require the use of both intrinsic buffers, such as calbi-
ndin and parvalbumin, as well as Ca** indicators, such as Fura-FF,
which themselves are fast, highly diffusible buffers. Other models
have shown that buffer saturation is a crucial factor producing
supralinear increases in Ca** concentration (Hellgren Kotaleski and
Blackwell, 2002; Hernjak et al., 2005; Canepari and Vogt, 2008).
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Improvements in Ca** imaging techniques have been accompa-
nied by the development of sophisticated models that investigate
mechanisms underlying Ca** microdomains. Naoki et al. (2005)
take into account buffering by Ca*-binding proteins and show
that the diffusion coefficient of calmodulin has a strong effect on
calmodulin activation in the microdomain near NMDARs. Kubota
etal. (2008) investigate the Ca**-binding protein neurogranin which
increases Ca’* dissociation from calmodulin. Their results show
that with no Ca?* extrusion mechanism, neurogranin increases the
steady state concentration of Ca*"; however, in the presence of Ca?*
extrusion mechanisms, neurogranin instead enhances the decay
rate of Ca?*. Keller et al. (2008) use MCell (Stiles and Bartol, 2001;
Kerr et al., 2008) to develop one of the most advanced models of
Ca* dynamics in a spine, including Ca** pumps, and both volt-
age-gated Ca** channels and NMDA-type of glutamate receptors.
The voltage-dependent activation of the channels is coupled to a
NEURON (Carnevale and Hines, 2006) simulation of membrane
voltage. Keller et al. (2008) show that the Ca*" gradient and cal-
modulin activation in the postsynaptic density depend on the order
of glutamate release and action potential, and thus may explain the
results of STDP experiments.

Just as recent models of Ca** dynamics include additional bio-
physical details, other models explore how biophysical processes
related to, for example, glutamate receptors modulate LTP induc-
tion. Santucci and Raghavachari (2008) study the role of different
types of NMDAR NR2 subunits on subsequent CaMKII activation.
They show that though NR2B subunits have a more prolonged
time course, the higher open probability of NR2A subunits leads
to greater Ca** influx and CaMKII activation. The model of Li and
Holmes (2000) shows that the variability in NMDAR opening, the
spine-head Ca”" concentration, and levels of CaMKII activation
can play an important role in LTP induction. The spine model by
Schiegg et al. (1995) includes calcineurin and Ca** release from
stores, for example through IP_Rs, in the spine head. This study
shows that the inclusion of calcineurin alone, which is a Ca** sensi-
tive protein phosphatase important for synaptic depression, elimi-
nates LTP; further inclusion of Ca** release from stores is required
to restore LTP induction. Pi and Lisman (2008) study the role of
AMPAR trafficking, modeled by inserting and removing AMPARs
in the postsynaptic membrane with a rate that depends on phos-
phorylated CaMKII and dephosphorylated protein phosphatase 2A
(PP2A). Pi and Lisman (2008) show that CaMKII activity is high
during LTP, PP2A activity remains high during LTD, and neither
activity is high during a basal state; thus, LTD is not a reversal of
previous LTP, rather a distinct phenomenon. Clopath et al. (2008)
focus on synaptic tagging, an experimental concept important
for synaptic specificity of protein synthesis-dependent LTP. The
model includes production of plasticity-related proteins which
can be captured by tagged synapses. Non-tagged synapses can be
tagged stochastically in either a high or low state. They show that
synapses share protein synthesis processes which have an effect
on the stabilization of potentiated synapses during the transition
from E-LTP to L-LTP.

As with all computational models, verification by direct com-
parison with experimental data strengthens the ability to make
experimental predictions and resolve conflicting experimental
evidence. The study by Santucci and Raghavachari (2008) is an

excellent example on developing a computationally realistic
model from good quality data, using the model to resolve con-
flicting experimental evidence, and then making further experi-
mental predictions. Other examples of direct comparison with
experiments include studies by Markram et al. (1998), Volfovsky
et al. (1999), Cornelisse et al. (2007), and Schmidt and Eilers
(2009). In addition, the prediction that PP2A is critical for LTD
induction has been confirmed experimentally (Nicholls et al.,
2008). Caietal. (2007) demonstrate that including the stochastic
properties of synaptic transmission significantly affects the form
of STDP curves, and indeed is required to explain the experi-
mental data.

3.2.3. Models for signaling networks

Many LTP models for signaling networks are extensions of the
single pathway CaMKII models. The model by Lisman (1989) is
a landmark because it is one of the first to show that synaptic
strength stored by CaMKII could be bidirectionally modified by
physiological activity according to the postsynaptic Ca** concentra-
tion. Kubota and Bower (1999) predict that the CaMKII activity can
be sensitive to small changes in the timing of presynaptic signal to
the spine head and that CaMKII can exhibit temporal sensitivity
even in the presence of PP1. Kitagawa et al. (2009) evaluate the
effect of inhibitory G protein-coupled gamma-aminobutyric acid
(GABA) B receptor (GABAR) activation on LTP. They show that
a transient increase in Ca** concentration induces long-term acti-
vation of CaMKII, which is attenuated by GABA R activation due
to inhibition of PKA. They further show a role for a novel positive
feedback loop — one involving CaMKII-mediated downregulation
of phosphodiesterase type 1.

Bhalla and Iyengar (1999), Bhalla (2002a,b), Ajay and Bhalla
(2004,2007),and Hayer and Bhalla (2005) have modeled pathways
for several protein kinases and phosphatases to investigate infor-
mation processing. The first study (Bhalla and Iyengar, 1999) uses
synaptic stimulation of a compartmental neuron model (Holmes
and Levy, 1990; Traub et al., 1991; De Schutter and Bower, 1993)
to determine the Ca** concentration that is the input to signal-
ing network models. Simulations show that several properties not
present in individual pathways, such as feedback loops, thresholds,
and sensitivity to signal strength and duration, can emerge from the
interaction of pathways. Feedback loops and thresholds can give
rise to bistability, offering the possibility that information can be
stored within biochemical reactions in the signaling network. The
role of temporal sensitivity is further explored (Bhalla, 2002a). This
study shows that different input patterns are processed differently
by the signaling network, thus giving rise to different outputs (input
pattern discrimination). The role of the feedback loop involving
MAPK and PKC is further explored in additional studies that inte-
grate experiments and modeling (Bhalla, 2002b). The signaling
network models are further refined to include PKMC (Ajay and
Bhalla, 2004, 2007), diffusional processes (Ajay and Bhalla, 2007),
and electrical activity (Ajay and Bhalla, 2007) to explore mecha-
nisms underlying MAPK activation in LTP. Ajay and Bhalla (2007)
show that extracellular signal-regulated kinase (ERK, MAPK) type
II (ERKII) activation after an LTP-inducing stimuli is not explained
with reaction—diffusion alone but requires a distributed synaptic
input and activation of voltage-gated Ca?* channels. The model by
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Hayer and Bhalla (2005) shows that CaMKII and AMPAR phos-
phorylation form distinct bistable switches, allowing for multiple
stable states of the system.

The models of striatal medium spiny neurons (Kotter, 1994;
Lindskogetal., 2006) focus on integration of dopamine and gluta-
mate signals, and explore mechanisms which are important for
striatal learning. The model by Kotter (1994) is the first to investi-
gate signaling pathways underlying plasticity in the striatum, and
shows that, with Ca**-activated adenylyl cyclase, dopamine and Ca**
synergistically activate PKA. The model by Lindskog et al. (2006)
includes the striatal adenylyl cyclase type 5, which is inhibited by
Ca*,and shows that separate transient dopamine or Ca** elevations
each may increase the phosphorylation of cAMP-regulated phos-
phoprotein (DARPP32), due to Ca** activation of PP2A. Through
this mechanism, paired stimuli yield increased PKA activation
and DARPP32 phosphorylation compared to dopamine alone, in
contrast to the effect of prolonged stimuli in which Ca** decreases
DARPP32 phosphorylation. Fernandez et al. (2006) study the func-
tions of DARPP32 with a detailed signaling network model but they
do not address plasticity, thus this study is not included in Table 7.
However, their study may be used as a valuable model to build on
for future modeling efforts studying plasticity.

More recently models have been constructed to investigate
mechanisms underlying L-LTP, by incorporating molecules such
as CaMKIV, transcription factors, or the translation factor cyto-
plasmic polyadenylation element binding protein (CPEB1). Smolen
(2007) shows that long periods of decreased activity reset synaptic
strength to alow value, whereas episodic activity with short inactive
periods maintains strong synapses. Smolen et al. (2008) implement
a stochastic model to show that the feedback loop from MAPK to
MAPK kinase kinase (Raf) increases the robustness of both sta-
ble states of MAPK activity to stochastic fluctuations. Aslam et al.
(2009) show that the positive feedback loop between CaMKII and
CPEBI forms a bistable switch accounting for the protein synthesis
dependence of L-LTP. In addition, Jain and Bhalla (2009) are inter-
ested in protein synthesis dependence of L-LTP, and thus investigate
how the synaptic input pattern affects dendritic protein synthesis.
These types of models are likely to increase because behavioral
memories require protein synthesis.

Long-term depression is predominant for synapses in the cer-
ebellum; thus, most models of LTD describe signaling networks in
cerebellar Purkinje cells. Kuroda et al. (2001) investigate the mecha-
nism producing persistent phosphorylation of AMPARSs, required
for LTD. Simulations show that the initial phase of phosphoryla-
tion of AMPARs depends on the activation of PKC by arachidonic
acid, Ca*, and diacylglycerol, whereas a later phase depends on the
activation of a positive feedback loop and especially phospholipase
A, and arachidonic acid. Tanaka et al. (2007) further demonstrate
that disrupting the positive feedback loop between several protein
kinases can affect Ca** triggering of LTD. Brown et al. (2008) present
an elaborate three-dimensional model of a Purkinje cell dendrite
with spines to investigate the issue of whether sufficient phosphati-
dylinositol biphosphate (PIP2) is available in a single spine to achieve
the experimentally estimated concentrations of IP, required for Ca**
release and subsequent LTD. They elegantly show that a relatively
novel mechanism, namely stimulated synthesis of PIP2, is required
to account for experimental results. Three of the LTD models (Yang

et al., 2001; Ogasawara et al., 2007; Achard and De Schutter, 2008)
use the multi-compartment, multi-channel Purkinje cell model by
De Schutter and Bower (1994a,b) to simulate electrical activity lead-
ing to Ca*" influx through synaptic and voltage-gated ion channels.
Ogasawara et al. (2007) show that the nitric oxide concentration is
critical for induction of LTD and for its input specificity. Achard
and De Schutter (2008) re-evaluate the importance of conjunctive
parallel fiber and climbing fiber inputs. They show that both inputs
are required to produce a sufficient Ca** elevation to trigger LTD.

Because of the role of the cerebellum in eyeblink classical condi-
tioning, several signaling network models investigate whether tem-
poral characteristics of classical conditioning can be explained by
temporal characteristics of LTD in single Purkinje cells. Fiala et al.
(1996) have developed the first model to explain adaptive timing of
the eyeblink response in classical conditioning. They use a biochem-
ical variant of spectral timing for their parallel fiber inputs, and
also include the effect of Ca**-gated potassium channel activation
on membrane voltage. They show that the phosphorylation state of
target proteins responsible for LTD depends on the timing between
climbing fiber and parallel fiber stimulation. Hellgren Kotaleski
etal. (2002) include production of PKC activators by parallel fiber
and climbing fiber stimulation in order to evaluate the relationship
between LTD and behavior. Both Hellgren Kotaleski et al. (2002)
and Doi et al. (2005) show that IP,-dependent Ca** dynamics are
sensitive to temporal interval between parallel fiber and climbing
fiber stimulation. Hellgren Kotaleski et al. (2002) further demon-
strate that PKC activation is sensitive to temporal interval between
parallel fiber and climbing fiber inputs (which is analogous to
classical conditioning being sensitive to temporal interval). The
importance of conjunctive parallel fiber and climbing fiber inputs
for Ca** elevation is confirmed using a multi-compartment, multi-
channel Purkinje cell model by Ogasawara et al. (2007) which more
accurately simulates Ca*" influx through synaptic and voltage-gated
ion channels. Steuber and Willshaw (2004) show that replacing the
spectral timing mechanism with Ca**-dependent phosphorylation
of mGluRs allows a single Purkinje cell to learn the adaptive timing
of the eyeblink response.

More recent dual LTP and LTD models evaluate signaling
network activation using spike-timing-dependent protocols
(Graupner and Brunel, 2007; Urakubo et al., 2008). Urakubo
et al. (2008) show that Ca** influx through NMDARs does not
vary with spike timing (contrary to expectations) without sup-
pression of NMDARs by Ca**-bound calmodulin. Graupner and
Brunel (2007) have constructed models for Ca**/CaM-dependent
autophosphorylation of CaMKII and PP1-dependent dephos-
phorylation of CaMKII. Graupner and Brunel (2007) show that
CaMKII plays a central role in LTD because it is dephosphorylated
during induction of LTD. More importantly, their bistable model
can reproduce plasticity in response to STDP and high-frequency
stimulation, without requiring abnormally low Ca** concentra-
tions for dephosphorylation.

4. ANALYSIS AND DISCUSSION

This study provides an extensive overview of 117 computational
models for postsynaptic signal transduction pathways in synaptic
plasticity developed over the past 25 years through 2009. Our pur-
pose is to categorize the models so that similarities and differences
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are more readily apparent. Due to the large number of models,
many models, though valuable, are excluded since they do not reach
our criteria given in the beginning of Section 3. Some of the mod-
els included in this study are very simplified biochemical models
meaning that a specific phenomenon is expressed using only a

couple of reactions (see, e.g., Delord et al., 2007; Pi and Lisman,
2008). In the other extreme are the complex biophysical models that
include detailed reaction—diffusion systems coupled to neuronal
electrical activity (see, e.g., Bhalla, 2002a; Urakubo et al., 2008).
Though model complexity has been increasing (Figures 2 and 3),
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the simpler biochemical models remain a valuable approach. They
are relatively easy to construct, and the number of parameters to
be fine-tuned is small. Not only are they computationally efficient,
but they allow theoretical analysis and identification of which path-
way, or combination of pathways, produces which property. On
the other hand, models with detailed mechanisms are ideal for
investigating which of several candidate molecules and mechanisms
control or modulate a particular response. Furthermore, the direct
correspondence between a detailed model and real neuron allows
specific model predictions to be tested experimentally.

In our study, the emphasis is more on evaluating the model
components and on the significance of the models rather than
on comparison of the actual model responses. The comparison
of model responses is not trivial because all models would need
to be implemented and simulated before a comparative analysis
could be performed (see also Pettinen et al., 2005). Indeed, this
is not only time consuming, but impossible since many of the
models are neither described in sufficient detail nor provided in
model databases or by other open-access means (see Table 8). Even
qualitative comparison is difficult since only a few publications
provide a graphical illustration of the model components and in

many cases it is difficult to interpret the model input or stimulus.
These observations serve also as guidelines for reviewers evaluating
future publications and models: (1) all models should be described
in sufficient detail including equations, inputs, outputs, compart-
ments, variables, constants, parameters, and initial conditions; (2)
graphical illustration of the model should include only those model
components that actually participate in simulations; (3) the simu-
lation tool or programing language should be specified; and (4)
the model should be provided in a model database. Nordlie et al.
(2009) propose a good model description practice for neuronal
network models. A similar description practice is needed for signal
transduction models and our study is one step toward this, as is the
BioModels Database project (Le Novere et al., 2006).

Every computational model needs to be stimulated to study
evoked activity even though this aspect is not always clearly indi-
cated in the publications. In other words, an input similar to the
one given in experimental wet-lab studies or as in the physiologi-
cal in vivo state is required. In many cases, however, it is a chal-
lenge to mimic the input used in experiments. The construction
of input stimulus is quite straightforward in cases where biophysi-
cally detailed models and a high-frequency stimulation protocol are
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Table 8 | Models provided in databases or by other open-access means.

Model Simulation environment Databases
Ajay and Bhalla (2004) GENESIS/Kinetikit?, MATLAB®, SBML" DOQCSs®

SBML® BioModels Database?
Ajay and Bhalla (2007) GENESIS/Kinetikit?, MATLAB®, SBML" DOQCSs®

Aslam et al. (2009)
Badoual et al. (2006)
Bhalla and lyengar (1999)

Bhalla (2002b)

Brown et al. (2008)

Clopath et al. (2008)
Cornelisse et al. (2007)
dAlcantara et al. (2003)

Doi et al. (2005)

Gerkin et al. (2007)
Graupner and Brunel (2007)
Hayer and Bhalla (2005)

Hernjak et al. (2005)

Ichikawa (2004)

Ichikawa et al. (2007)

Jain and Bhalla (2009)

Kitagawa et al. (2009)

Kuroda et al. (2001)

Lindskog et al. (2006)
Migliore and Lansky (1999b)
Saftenku (2002)

Schmidt and Eilers (2009)
Stefan et al. (2008)

Urakubo et al. (2008)

SBML®

MATLAB®
NEURONe®
GENESIS/Kinetikit?
SBMLP

SBMLP
GENESIS/Kinetikit?
Virtual Cell

Python

CalC

SBML®
GENESIS/Kinetikit?
IGOR Pro
XPPAUT*
GENESIS/Kinetikit?
MATLAB®, SBML®
MathSBML™
MathSBML™
A-Cell"

A-Cell"

GENESIS/Kinetikits, GENESIS 3/MOOSE!

XML

SBMLP
GENESIS/Kinetikit?
GENESIS/Kinetikit?
SBMLP

XPPAUTX
QuickBASIC
NEURON®
Mathematica

, MATLAB®, SBML"

, MATLAB®, SBML"

, GENESIS 3/MOOSE/,

, MATLAB®, SBML"

BioPAXe, CellML®, SBML®, Scilab®,

Virtual Cell", XPP*
GENESIS/Kinetikit®
GENESIS/Kinetikit®

BioModels Database?
Supplementary material by Aslam et al. (2009)
ModelDB*

DOQCS®

BioModels Database!
CellMLe

DOQCS®

Virtual Cell"
ModelDBf

ModelDBf

BioModels Database?
ModelDB*

ModelDBf

ModelDB*

DOQCS®

Virtual Cell"

BioModels Database®
http://www.his.kanazawa-it.ac.jp/ ~ichikawa/
EnglishTop.html
http://www.his.kanazawa-it.ac.jp/ ~ichikawa/
EnglishTop.html

DOQCSs®

Supplementary material by Jain and Bhalla (2009)
Supplementary material by Kitagawa et al. (2009)
DOQCSs®

http://www.cns.atr.jp/neuroinfo/kuroda/
BioModels Database!

ModelDBf

ModelDBf

ModelDBf

Supplementary material by Schmidt and Eilers (2009)
BioModels Database®

ModelDBf
http://www.bi.s.u-tokyo.ac.jp/kuroda-lab/info/
STDP/index.html

sGENESIS/Kinetikit (http.//www.genesis-sim.org/GENESIS/; http://iwww.ncbs.res.in/index.php ?option=com_content&task=view&id=307, Bower and Beeman, 1998,

Bhalla, 2002c).
bSBML (http.//sbml.org/).

°DOQCS (http.//doqgcs.ncbs.res.in/; Sivakumaran et al., 2003).
9BioModels Database (http.//www.biomodels.net/; Le Novere et al., 2006).
eNEURON (http.//www.neuron.yale.edu/neuron/; Carnevale and Hines, 2006).

'ModelDB (http://senselab.med.yale.edu/modeldb/; Migliore et al., 2003, Hines et al., 2004).

9CellML (http.//www.cellml.org; Lloyd et al., 2008).
hVirtual Cell (http://vcell.org, Schaff et al., 1997, Slepchenko et al., 2003).
'CalC (http.//web.njit.edu/~matveev/calc.html; Matveev et al., 2002).

IIGOR Pro (http://www.wavemetrics.comy).

KXPR XPPAUT (http.//www.math.pitt.edu/~bard/xpp/xpp.html; Ermentrout, 2002).

!GENESIS 3/MOOSE (http://www.genesis-sim.org/GENESIS/; http://moose.sourceforge.net/).

mMathSBML (http.//sbml.org/Software/MathSBML).
"A-Cell (http://www.fujixerox.co.jp/crc/cng/A-Cell/; Ichikawa, 2001, 2005).
°BioPAX (http.//www.biopax.org/; Luciano and Stevens, 2007).

rScilab (http://www.scilab.org/; Gomez, 1999).
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used. In the other extreme are the models which use some function
mimicking synaptic stimulus. This input type is not adequately
described in many of the publications analyzed in the present study.
This makes the reproduction of simulation results and the com-
parison of the models impossible. Therefore, the description of
input stimuli should be taken into account when developing specific
description language solutions for computational neuroscience and
neuroinformatics.

Testing sensitivity to changes in parameter values is very impor-
tant because many of the model parameters are not sufficiently
constrained by experimental data. Table 9 highlights the models
that evaluate whether the simulation results are sensitive to changes
in parameter values. In this study, small-scale testing means that
values for 10 parameters or less (for example rate constants) are
varied, and large-scale testing means that values for greater than
10 parameters are varied. Table 9 shows that only a few models
employ the large-scale testing of sensitivity to changes in parameter
values. Publications that only test sensitivity to changes in input
parameter values or do parameter estimation to fit experimen-
tal data, without analyzing the different model responses, are not
included in Table 9.

In order to predict the future direction of the field, trends regard-
ing the development of models of postsynaptic signal transduction
pathways underlying LTP and LTD are illustrated (Figures 2and 3).
Figure 2 shows how different models reviewed in this study have
evolved from each other. Two models are connected in Figure 2 if
the publication either states directly that other models are used or
the publication uses a subset of the exact same equations appearing
in the older publications by the same authors. Models are excluded
from Figure 2 if there is no clear evidence that they have used some
other model as the basis, or if they are only based on models not
reviewed in this study. Figure 2 shows that the models by Holmes
and Levy (1990), Bhalla and Iyengar (1999), and Shouval et al.
(2002a) are most often used as a starting point when developing
new models. Zhabotinsky et al. (2006) and Graupner and Brunel
(2007) cite the largest number of models when developing their
models, but, on the other hand, they do not clearly state which parts
of their model are taken from which other models.

Though LTP models appeared first, most of the new models are
dual LTP and LTD models (Figure 3A), suggesting that these are
being developed to investigate which characteristics of synaptic

input patterns lead to LTP versus LTD. Despite limiting the review
to models of signaling pathways, the models are extremely diverse
in scope, with less than half including only reactions. Other models
combine reactions and diffusion, or reactions and electrophysi-
ological phenomena; about one-fifth have all three (Figure 3B).
About one-third of the models are size small, meaning that there
are less than 20 different chemical species or other model variables,
and about half of the models are size large meaning that there
are more than 50 different chemical species or other model vari-
ables (Figure 3C). The trend is toward increasing numbers of large
models, reflecting both the increase in computational power and
increasing knowledge of the biochemical pathways. Nonetheless,
the continued development of small models reflects their utility in
theoretical analysis. Most of the models are still deterministic even
though stochastic methods have been developed more and more
recently (Figure 3D). The scarcity of stochastic models compared
to large models may reflect the availability of software modeling
tools and analytic tools. However, several stochastic reaction—dif-
fusion simulation tools have appeared recently (see, e.g., Kerretal.,
2008; Wils and De Schutter, 2009; Andrews et al., 2010; Byrne et al.,
2010; Oliveira et al., 2010; Tolle and Le Novere, 2010b). Stochastic
methods are important because very small numbers of molecules
can have a dramatic effect on either strengthening or weaken-
ing the synapses and these effects should be taken into account.
Another possibility is to develop and use so-called hybrid simula-
tion methods where specific events are modeled as stochastic and
others as deterministic. Though not illustrated graphically, only
about one-fourth of the reviewed publications specify the simula-
tion tool or programing language used. Most often the simulation
tool used is GENESIS/Kinetikit (Bower and Beeman, 1998; Bhalla,
2002c¢), XPPAUT (Ermentrout, 2002), and NEURON (Carnevale
and Hines, 2006). Programing languages most often used are Java
and MATLAB".

The trends in Figure 3 lead to several predictions about the future
of signaling pathway modeling. The first prediction is that both
the number of large models and the size of the largest model will
continue to increase. Thus, existing models will be expanded to
include additional signaling pathways, in parallel with the increase in
experimental data of additional molecular mechanisms. Second, the
trend in Figure 3D suggests that increasing number of models will be
implemented stochastically or using hybrid deterministic—stochastic

Table 9 | Models testing sensitivity to changes in parameter values.

Testing Models

Small-scale Holmes (1990, 2000), Holmes and Levy (1990), Gold and Bear (1994), Matsushita et al. (1995), Migliore et al. (1995), Schiegg et al. (1995),
Dosemeci and Albers (1996), Fiala et al. (1996), Coomber (1998a,b), Volfovsky et al. (1999), Okamoto and Ichikawa (2000b), Zhabotinsky
(2000), Kuroda et al. (2001), Hellgren Kotaleski et al. (2002), Karmarkar and Buonomano (2002), Shouval et al. (2002a,b), Abarbanel et al.
(2003, 2005), dAlcantara et al. (2003), Kikuchi et al. (2003), Hayer and Bhalla (2005), Hernjak et al. (2005), Miller et al. (2005), Naoki et al.
(2005), Rubin et al. (2005), Lindskog et al. (2006), Smolen et al. (2006, 2008), Zhabotinsky et al. (2006), Cai et al. (2007), Cornelisse et al.
(2007), Delord et al. (2007), Graupner and Brunel (2007), Ogasawara et al. (2007), Smolen (2007), Brown et al. (2008), Kubota and Kitajima
(2008), Urakubo et al. (2008), Yu et al. (2008), Aslam et al. (2009), Castellani et al. (2009), Jain and Bhalla (2009), Kalantzis and Shouval (2009)

Large-scale Bhalla and lyengar (1999), Doi et al. (2005), Achard and De Schutter (2008), Kitagawa et al. (2009)

Small-scale testing means that values for 10 parameters or less (for example rate constants) are varied, and large-scale testing means that values for greater than

10 parameters are varied.
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methods. The stochastic part of the models in particular may focus
on events in the postsynaptic density and other multi-protein com-
plexes. The third prediction is that the scope of the models will
expand, with more models of dual LTP and LTD phenomena, in part
because both phenomena have been measured in most cell types,
and in part because the increase in size of the models is expanding
to include signaling pathways for both phenomena. Related to the
increase in scope of the models, more will blend reactions with dif-
fusion or electrophysiological phenomena in order to study spatial
aspects of signaling and also to better relate to experiments. In par-
ticular, modeling reactions alone is not sufficient for understanding
synaptic plasticity but also electrophysiological phenomena needs
to be taken into account by modeling neuronal networks (Hellgren
Kotaleski and Blackwell, 2010). Further development of simulation
tools (Pettinen et al.,2005; Alves et al., 2006) together with improve-
ments in parallel computing should help in this endeavor.
Though the trend is toward larger and more complex models,
this does not imply that all larger models are better than simpler
models. As explained above, the quality of a model depends on
many factors. Probably the most important criteria is whether
the model can address a question of general scientific interest.
For this reason, we have tried to organize our description of the
models in order to highlight the questions addressed. Another
related criteria is whether a model can make verifiable, i.e. falsifi-
able, predictions. Using these two criteria, models incorporat-
ing more biochemical details often appear superior, but only if
the parameters can be adequately constrained. However, models
which simplify the equations describing intracellular signaling
pathways are more easily integrated with whole neuron elec-
trophysiological models or able to simulate longer time frames.
From this perspective they may excel for investigating whether
different stimulation patterns change synaptic strength differ-
ently. It is important to note that earlier models may have been
groundbreaking at the time of publication, yet their perceived
quality decreases as more is learned about the interactions of
intracellular molecules. Only a couple of studies reduce com-
plex models to simpler ones and show comparative simulation
results between the models (see, e.g., Hayer and Bhalla, 2005;
Smolen, 2007). The reduction of model complexity will be an
important research area in the future because simplified models

that can capture relevant aspects of dynamics could be embed-
ded, for example, into biologically-inspired neuronal network
models when the activity of individual neurons is modeled in
more detail.

To fully understand synaptic plasticity, many different charac-
teristics of signaling pathways need to be considered. Temporal
and spatial aspects of signaling are crucially important because
they relate the cellular phenomenon of plasticity to the behavioral
phenomenon of learning. Not only do theoreticians and modelers
need to incorporate experimental findings, but also experimental
progress can be enhanced by using model simulations to select
the most promising experiments. Careful attention to these issues
should improve the utility of modeling approaches for investigating
molecular mechanisms of synaptic plasticity. The ultimate future
goal of LTP and LTD modeling is to find such models for different
brain regions and cells that can explain all the phases of synaptic
plasticity, and then use these models to explain the differences in
plasticity between brain regions or cell types. Many of the modeling
studies have so far concentrated on only one type of synaptic plas-
ticity. We believe that an analysis like the one provided by us will
help in this endeavor to make more predictive models for synaptic
plasticity in the future.
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