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Investigating the network 
consequences of focal brain lesions 
through comparisons of real 
and simulated lesions
Yuan Tao* & Brenda Rapp

Given the increased interest in the functional human connectome, a number of computer simulation 
studies have sought to develop a better quantitative understanding of the effects of focal lesions 
on the brain’s functional network organization. However, there has been little work evaluating the 
predictions of this simulation work vis a vis real lesioned connectomes. One of the few relevant studies 
reported findings from real chronic focal lesions that only partially confirmed simulation predictions. 
We hypothesize that these discrepancies arose because although the effects of focal lesions likely 
consist of two components: short-term node subtraction and long-term network re-organization, 
previous simulation studies have primarily modeled only the short-term consequences of the 
subtraction of lesioned nodes and their connections. To evaluate this hypothesis, we compared 
network properties (modularity, participation coefficient, within-module degree) between real 
functional connectomes obtained from chronic stroke participants and “pseudo-lesioned” functional 
connectomes generated by subtracting the same sets of lesioned nodes/connections from healthy 
control connectomes. We found that, as we hypothesized, the network properties of real-lesioned 
connectomes in chronic stroke differed from those of the pseudo-lesioned connectomes which 
instantiated only the short-term consequences of node subtraction. Reflecting the long-term 
consequences of focal lesions, we found re-organization of the neurotopography of global and local 
hubs in the real but not the pseudo-lesioned connectomes. We conclude that the long-term network 
re-organization that occurs in response to focal lesions involves changes in functional connectivity 
within the remaining intact neural tissue that go well beyond the short-term consequences of node 
subtraction.

Along with the very rapid increase in graph-theoretic approaches to the analysis of healthy connectome data 
(structural and functional), there have been increasing applications of this approach to investigating the neural 
underpinning of various brain diseases, such as stroke (e.g.1–3), schizophrenia (e.g.4–6), and Alzheimer’s disease 
(e.g.7–10). In addition, these approaches have also been applied to understanding the neuroplasticity that supports 
recovery of function after neural damage11–13; for reviews also see14–16. In the context of focal lesions, a number of 
computer simulation studies have been directed at developing a better quantitative understanding of the effects 
of focal lesions on the brain’s network organization. However, little work has been done to evaluate whether the 
predictions of this simulation work are observed in empirical data (for a review, see15). In fact, in one of the 
few studies that report relevant data, Gratton et al.2 presented findings from real focal lesions that only partially 
confirm the simulation predictions. In the current investigation, we first replicate the Gratton et al.2 findings and 
then carry out further analyses to test our hypotheses that these discrepancies arise due to long-term functional 
re-organization which is not captured by traditional simulation approaches.

Discrepancies between simulated and real lesioned networks.  To date, the most common approach 
adopted in simulation studies of focal lesions has involved developing a functional connectome (sometimes 
referred to as a “network”) based on human or animal data and then simulating lesions by systematically deleting 
nodes and/or connections from the network and, then, assessing the functional properties of the remaining net-
work. The functional activity of the nodes are either simulated with mathematical models17–24 or based on real 
functional neuroimaging data (25,26; for a review see15). These studies have provided strong convergent evidence 
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that: (a) focal lesions can have distant effects on the brain’s functional connectivity and that (b) this is especially 
true when the lesions affect brain regions that involve “hubs”, i.e., nodes that have widespread strong connections 
(functional or structural) to multiple regions. Furthermore, damage to different types of hubs has been shown to 
have distinctive effects on global network properties (Fig. 1)18,23,27.

Gratton et al.2 tested whether these simulation predictions were upheld in connectomes of resting-state 
fMRI data from a group of individuals with focal brain lesions (stroke, tumor and TBI). They confirmed the 
simulation predictions that focal damage can result in far-reaching disruption of the brain’s functional modular 
structure, even in the intact hemisphere. Furthermore, they showed that the extent of this disruption was related 
to the connectivity properties of the nodes that were affected. In other words, the nature of the disruption was 
determined by the extent to which focal damage primarily affected nodes that connect across multiple modules 
or mainly within one module (these two are often referred to, respectively, as connector and provincial hubs, and 
here we will refer to them as global and local hubs, see Fig. 1). Gratton et al.2 found that, as predicted, lesions 
that primarily affected global hubs had greater impact on overall functional modularity than did lesions that 
primarily affected local hubs. However, they did not find the predicted directionality of the relationships between 
global and local hub damage and modularity (Fig. 1): Simulation studies had predicted that greater damage to 
global hubs should increase modularity as damage to global hubs reduces communication/integration across 
the network, thus increasing module segregation and overall network modularity (e.g.18,23,27). However, Grat-
ton et al.2 found the reverse relationship in real lesions such that greater global hub damage resulted in lower 
modularity (less overall segregation). With regard to local hub damage, the prior simulation work predicted that 
greater damage to local hubs should decrease modularity (Fig. 1) since damage to local hubs reduces commu-
nication/integration within the affected module, thus reducing overall network modularity. However, Gratton 
et al.2 found no significant relationship between the magnitude of local hub damage and overall modularity in 
real lesions. The focus of the Gratton et al. conclusions was on their confirmation that real lesions to global hubs 
can cause widespread disruption of the brain’s functional modular structure. Nonetheless, they did note that 
the discrepancies between their results and the simulation predictions with regard to the directionality of effects 
implied that “the loss of global hubs does not simply cause the loss of a select number of edges, but rather leads 
to a re-organization of the graph… (2 p. 1280)”.

In the current investigation, we followed-up on the discrepancy between predicted and observed functional 
connectome properties that Gratton et al.2 reported. We hypothesized that the effects of focal lesions consist 
of two phases (or components): short-term node subtraction and long-term functional re-organization (Fig. 2). 
Subtraction involves the removal of lesioned nodes and connections, while long-term re-organization involves 
additional dynamic changes that might occur throughout the brain over time in response to the subtraction. 
With few exceptions, the modelling of focal lesions has been limited to the subtraction phase (but see20) in which 
lesions have been simulated as the subtraction of network nodes and connections. According to our hypothesis, 
the reason that the Gratton et al.2 findings were not consistent with previous simulation studies is because at 
least some of the network properties observed following real lesions do not arise from the subtraction phase but, 

Figure 1.   A theoretical framework for understanding the effects of focal damage on modular organization. 
Focal lesions are modelled as node and connection subtraction. Global hubs are nodes with strong 
connections between modules (also referred to as connector hubs). Damage to global hubs results in increases 
in network modularity. Local hubs are nodes with strong connections to other nodes within a module (also 
referred to as provincial hubs). Damage to local hubs results in decreased modularity.
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instead, from the long-term re-organization phase (Fig. 2). As stated in a review by Aerts et al.15 “… mere removal 
of nodes and their links – used to simulate random brain lesions – does not capture the complexity of how disease 
processes affect the connectome” (15 p. 3079).

To evaluate the node subtraction + re-organization hypothesis, we analyzed the functional connectomes of a 
group of individuals with chronic stroke (N = 25) who suffered from written and spoken language impairments as 
well as from age-matched healthy controls (N = 10 and a second validation group N = 13). We used “background 
connectivity” to compute the functional connectomes. This approach uses the time-course from task-based fMRI 
after accounting for task-related activation (e.g.28,29; also see a similar approach in30–33. See “Functional connectiv-
ity estimation”). Various studies have shown that background connectivity is qualitatively similar to resting-state 
functional connectivity (FC) with subtle task-related modulations31–34. Therefore, we assume that the task-based 
FC we report in this work largely resembles the FC observed at rest, and additionally may be more likely than 
resting-state FC to reflect features associated with the language deficit/s shared by the stroke participants. Note, 
however, that it is not a goal of the current investigation to evaluate a specific characterization of task-based FC. 
Using these functional connectomes, we evaluated the same network measures examined by Gratton et al.2, i.e., 
modularity (note that we used the italicized modularity to refer to the specific graph-theoretic measure, Newman’s 
Q35; unitalicized use of the term refers to the general concept of modularity), and two nodal measures PC and 
WD. The latter two, PC (participation coefficient) and WD (within-module degree z-score) serve to measure the 
extent to which nodes can be considered global and/or local hubs, respectively (36 see Fig. 1).

We carried out three analyses to evaluate the hypothesis that the effects of focal lesion on functional con-
nectomes are not limited to the effects of short-term node subtraction but instead involve long-term functional 
re-organization (Fig. 2). The goal of Analysis 1 was to replicate prior computer simulation studies (e.g.18) that 
examined the effects of targeted lesions on functional modularity. A key difference from the previous work is 
that we used human connectome data rather than mathematically based or data from animal studies. However, 
similar to previous studies we simulated targeted lesions to specifically examine the roles of global or local hubs 
(Fig. 1) by selectively removing these hubs within the connectomes of healthy individuals. Analysis 2 was the 
central analysis of this work as its goal was to evaluate our hypothesis that the effects of real lesions cannot be 
reduced to node subtraction. To do so, we simulated the effects of node subtraction by creating pseudo-lesions 
and then compared their network properties with those of the real lesion connectomes. Pseudo-lesions were 
created using healthy control connectomes from which we removed the specific nodes (and their connections) 
that were lesioned in the real stroke participants. We assumed that pseudo-lesioned connectomes should have 
the network properties predicted by node subtraction only. On this basis, we predicted that if node subtraction 
is not an adequate explanation of the effects of focal lesions, then the network characteristics of real-lesion con-
nectomes should be inconsistent with the network properties of the pseudo-lesioned ones (as in Gratton et al.2). 
In other words, we assumed that discrepancies between the real-lesioned and the pseudo-lesioned connectomes 
primarily reflect the effects of the long-term re-organization phase of the brain’s response to focal lesions. In 
Analysis 3, to further substantiate the notion of functional network re-organization in real lesions, we evaluated 
whether and how the neurotopographical distribution of nodes that acted as global and local hubs differed in 

Figure 2.   Schematic illustration of the hypothesis under consideration. The effects of focal lesion consist of two 
phases: short-term node subtraction and long-term re-organization that unfolds over time. In the specific example 
depicted, following global hub subtraction, network modularity increases due to reduced communication 
between modules. During re-organization, modularity decreases due to connectivity changes between the 
remaining nodes (modularity was quantified by Newman’s Q).
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the real and pseudo-lesions. This analysis served to characterize the types of specific network changes that go 
beyond what is observed following short-term node subtraction and, thus, reflect long-term re-organization 
of real functional connectomes subsequent to focal lesions. The procedure of generating the different types of 
lesioned connecotomes is depicted in Fig. 4.

Methods
Participants.  Twenty-five individuals (nine females) who had suffered a single left hemisphere stroke 
(> 1  year post stroke, mean 79  months, SD = 57) participated in the study. The mean age of the participants 
with lesions (referred to as the Real-Lesion Group) at the time of data acquisition was 61.6 (SD = 10) and years 
of education from 12 to 19. Before the stroke, all but three participants self-reported being right-handed as 
assessed by the Edinburgh Handedness Inventory37. The distribution of the lesions followed a typical lesion pat-
tern of middle cerebral artery (MCA) strokes that involved the greatest density of damage in the left insula (Supp 
Fig. 1). Two groups of healthy controls were scanned with the same protocol as the participants with lesions. The 
first group (HC Group) consisted of 10 age- and education-matched, neurologically healthy individuals (eight 
females, mean age = 60.7, SD = 12, years of education: 12–18 years, all were right-handed). The second healthy 
control group was used as the validation dataset (HCv Group, reported in Supplementary Information Sect. 3), 
which consisted of 13 participants (ten females, age: 57 ± 7.39, with 12–18 years of education, three were left-
handed). All participants provided informed consent following procedures approved by Johns Hopkins Univer-
sity Institutional Review Board.

Cognitive/language assessment.  The lesioned participants were recruited for a study on post-stroke 
written language production deficits and they also exhibited other language and motor deficits. The participants 
were administered an extensive battery of cognitive and language tests. Prior reports on subsets of these indi-
viduals include13,38,39.

Functional magnetic resonance imaging (fMRI) data acquisition.  All participants were scanned 
with multiple structural and functional MRI scanning protocols, including a spelling task and T1-weighted 
structural imaging and, additionally, a T2-weighted fluid-attenuated inversion recovery MRI (FLAIR) was 
obtained for the stroke participants. While scanning was carried out both before and after a 12-week dysgraphia 
rehabilitation period, this investigation evaluated only pre-treatment data. Each participant was scanned for 
four runs (7.7-min each) of a spelling task (see Sect. 1 in “Supplementary Information” for details) distributed 
over two scanning sessions for the Real Lesion Group and one session for the HC Groups, generating a total of 
30.8 min of data for the functional connectivity (FC) analysis.

All MRI data were collected using a Phillips 3T scanner at the F.M. Kirby Research Center for Functional Brain 
Imaging (Baltimore, MD). The acquisition parameters for all participant groups were as follows: TR = 1500 ms, 
TE = 30 ms, FOV = 216 × 120 × 240 mm (ap, fh, rl), flip angle = 65°, voxel dimension = 1.875 × 1.875 × 3 mm 
(1.5 mm interslice gap), data matrix = 128 × 128 × 27. One run contained 308 TRs (7.7 min). The T1-weighted 
structural MRI acquisition parameters were as follows: TR = 6 ms, TE = 2.91 ms, FOV = 256 × 256 × 176 mm (ap, 
fh, rl), flip angle = 9°, voxel dimension = 1 × 1 × 1 mm, data matrix = 256 × 256 × 176. The acquisition parameters 
of the stroke participants’ FLAIR images were TR/TE/TI = 9000/90/2500 ms, FOV = 220 × 175 × 220 mm (ap, fh, 
rl), voxel dimension = 0.86 × 0.86 × 5 mm (no interslice gap), data matrix = 256 × 228 × 35.

MRI data analysis.  Preprocessing.  FMRI data preprocessing and functional connectivity estimation (see 
“Functional connectivity estimation”) were identical to our previous study13. Functional data were preprocessed 
with FEAT in FSL 5.0.940 with the following pre-processing steps: removal of the first 4 volumes of each run, 
motion correction with MCFLIRT, slice-timing correction, non-brain tissue removal with BET, spatial smooth-
ing using a 5 mm FWHM Gaussian kernel, grand-mean intensity normalization, high-pass temporal filtering 
(0.01 Hz). Registration was carried out with FSL’s two-step method: functional images were first registered to 
the subject’s T1 image with the boundary-based registration (BBR) method, then to standard MNI space (spatial 
resolution 2 mm). A lesion mask for each participant was manually drawn by a trained image analyst on the 
original T1 image with MRIcron (http://​people.​cas.​sc.​edu/​rorden/​mricr​on/​index.​html). The masks were then 
aligned to standard MNI space using the transformation calculated with the T1 image. The lesion distribution 
map is shown in Supp. Fig. 1).

Functional connectivity estimation.  First, a standard general linear model (GLM) analysis was carried out with 
FEAT in FSL40 and all task-related regressors were convolved with a double-gamma hemodynamic response 
function provided in FSL. To account for task-related co-activation, we then estimated functional connectivity 
(FC) using the residuals of the GLMs, an approach that has been referred to as “background connectivity” (e.g.28) 
and is often used in task-based FC studies (e.g.31,32). The Python package Nilearn was used for FC estimation and 
visualization (http://​nilea​rn.​github.​io). We used the 264 locations identified by Power et al.41, excluding 29 loca-
tions in subcortical areas based on the segmentation template provided in FSL (MNI152_T1_2mm_strucseg.nii). 
For the remaining 235 locations, we extracted the averaged time-series from 5 mm-radius spheres centered at 
each location. Prior to calculating pairwise-connectivity, we additionally regressed out the first derivatives of the 
six motion parameters and the averaged time-series of the brainstem, the cerebellum, the basal ganglia, and the 
ventricles defined by the segmentation template in FSL. For each run (7.7 min), we calculated pairwise Pearson 
correlations (with Fisher’s z-transform) for the 235 nodes (and fewer for each Real-Lesion Group participant, see 
below). For each participant, the correlation matrices of the four runs were averaged to yield one connectivity 
matrix per participant.

http://people.cas.sc.edu/rorden/mricron/index.html
http://nilearn.github.io


5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2213  | https://doi.org/10.1038/s41598-021-81107-9

www.nature.com/scientificreports/

Identifying the reference modular organization.  We identified a “reference” modular organization which was 
used in calculating the graph-theoretic properties that were evaluated in subsequent analyses. This modular 
organization was reported previously in13. Briefly, it was derived by applying hierarchical clustering (agglomera-
tive) with Ward’s criterion implemented in SciPy (https://​scipy.​org) to the averaged correlation matrix of the 
HC Group. We used a 10-cluster clustering solution (Fig. 3) and the ten clusters were assigned the following 
neuroanatomical labels: (1) prefrontal, (2) ventral frontoparietal, (3) dorsal frontoparietal, (4) medial occipital, 
(5) occipitoparietal, (6) posterior parietal, (7) temporal, (8) ventral occipitotemporal (VOT), (9) ventromedial 
prefrontal, and (10) perisylvian.

Calculating graph‑theoretic measures and identifying reference hubs.  All graph-theoretic analyses were carried 
out with the brain connectivity toolbox42. A proportional threshold was first applied to each connectivity matrix 
to preserve the top connections and then the thresholded connectivity matrix was binarized to create an undi-
rected binary graph. A set of commonly used proportional threshold values were applied (e.g.2,12), i.e., 10%, 
20%, 25%, 30%, 40%, and to maximize stability, the results reported here were obtained by averaging across the 
thresholds (except when examining specific hub distributions, see “Analysis 3: The neurotopography of global 
and local hubs in pseudo and real lesions”).

First, whole-brain modularity (Newman’s Q35) based on the reference modular organization (as described in 
Sect. Identifying the reference modular organization, Fig. 3) was calculated for each participant in the HC and 
Real-Lesion groups, as well as for the different kinds of artificial lesions (see “Analysis 1: Replication of simulated 
targeted-lesions” and “Analysis 2: Comparison of pseudo and real lesions: modularity, PC and WD” for the artifi-
cial lesion calculations). In addition, we also calculated modularity per hemisphere using only within-hemisphere 
connections (note that all ten clusters were bilateral). Second, we computed the two nodal measures, participation 
coefficient (PC) and within-module degree z-score (WD)36 for each node in each matrix. Third, based on the PC 
and WD measures from the HC Group, we identified “reference” global and local hubs. To do so, we first aver-
aged the PC and WD values for each node across the HC Group to generate PC and WD whole-brain templates. 
Then, for the two templates, we identified the global and local hubs as those nodes with PC or WD values that 
were greater than one standard deviation above the mean of all the nodes in the respective templates.

Analysis 1: Replication of simulated targeted‑lesions.  We simulated previously reported “targeted attacks” to 
evaluate if these would yield the same effects18,26,27 using our data set of healthy functional connectomes. Spe-
cifically, we examined if, as reported in this earlier work, removing the global nodes would increase system 
segregation (i.e., higher modularity) while removing local hubs would have the opposite effect (Fig. 1). We used 
the reference global and local hubs identified as described above in “Calculating graph-theoretic measures and 
identifying reference hubs” (see the identified hubs in “Analysis 3: Functional re-organization after brain dam-
age involves changes in hub distribution: “Lost” and “new” global and local hubs” and Fig. 8a), and we removed 
those targeted hub nodes and their connections from each HC participant’s connectivity matrices (i.e., func-
tional connectomes) to create targeted global and local hub attacks, respectively. We refer to these as “simulated 
targeted lesions” (Fig. 4). Modularity values were then computed for each Simulated Targeted-Lesion connectome 
using the same methods as described in “Calculating graph-theoretic measures and identifying reference hubs”, 
and then compared these values to modularity calculated from the intact healthy connectomes (HC group) with 
paired t-tests.

Figure 3.   The reference modular organization. Using the Healthy Control Group connectomes (HC, N = 10), a 
10-cluster clustering solution was calculated via hierarchical clustering analysis. The color-coding scheme and 
the neuroanatomical labels of each cluster are described in “Identifying the reference modular organization”. The 
figure was generated with BrainNet Viewer.

https://scipy.org
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Analysis 2: Comparison of pseudo‑ and real‑lesions: modularity, PC and WD.  The procedure  for generating 
the lesioned connectomes is illustrated in Fig. 4. We first identified nodes (i.e., 5mm-radius spheres) that had 
more than 25% voxels damaged according to  the lesion delineated on the structural scans of each of the 25 
participants in the Real-Lesion Group. We considered these to be “lesioned nodes” and each set of these nodes 
constituted a lesion mask. For each of the 25 participants with lesions (the Real-Lesion Group), those lesioned 
nodes and all their connections were removed from the connectome. After applying the lesion masks, the num-
ber of remaining nodes ranged from 184 to 232. Then, to generate the “pseudo-lesioned” connectomes, we 
removed the lesioned nodes/connections of each of the 25 lesion masks from each of the connectivity matrices 
(connectomes) of the ten individuals in the HC Group, resulting in a total of 25 × 10 pseudo-lesion connectomes 
(referred to as the Pseudo-Lesion Group hereafter). Note that, unlike the simulated targeted lesions where the 
neurotopography of the artificial lesions was based on the distribution of nodal attributes (PC and WD), for the 
pseudo-lesions the damage was obtained from real stroke participants and concentrated in the middle cerebral 
artery (MCA) territory (Supp Fig. 1), the most commonly damaged area in stroke. Using the Real- and Pseudo-
Lesion as well as Healthy Control (non-lesioned) connectomes the network analyses proceeded as follows.

First, modularity values were computed for each Healthy Control (n = 10), Real-Lesion (n = 25) and Pseudo-
Lesion connectome (n = 250, 25-lesion-mask by 10-HC) with the same methods as described in “Calculating 
graph-theoretic measures and identifying reference hubs”. Differences across the three groups were examined 
with independent t-tests.

Second, for each lesion mask, we calculated two damage scores to quantify the extent of damage to the global 
and local hubs respectively, following the approach used in2. Specifically, using the PC and WD whole-brain 
templates derived from the HC Group (described in “Calculating graph-theoretic measures and identifying 
reference hubs”), for each lesion mask, we averaged the PC or WD values of the damaged nodes to obtain a PC/
WD damage score for each lesion mask. For example, if a lesion mask included nodes with high PC values in 
the PC template derived from the healthy control group, this lesion mask would have a high PC damage score, 
indicating greater extent of global hub damage. Then the relationships between PC/WD damage scores and 
modularity values across the 25 lesion masks were characterized using Pearson correlation for both the Real- 
and the Pseudo-Lesion Groups. Specifically, for the Pseudo-Lesion Group which consisted of 25-lesion-mask by 
10-HC modularity values, we calculated the correlation between the 25 modularity values derived from the 25 
lesions and the 25 PC/WD damage scores separately for each of the 10 HC participants, resulting in ten correla-
tion values. Significance of the correlation values for each group was evaluated using 10,000 permutation testing.

Figure 4.   Procedures for generating Real-Lesion, Pseudo-Lesion, and Simulated Targeted-Lesion functional 
connectomes (FC). For each participant, their functional connectome was calculated based on 235 gray matter 
ROIs (10 mm-radius spheres), resulting in a 235-by-235 pairwise Pearson correlation matrix (see “Functional 
connectivity estimation”). Real-Lesion FC (bottom-left): for each participant, a lesion mask was first manually 
drawn on the structural image, then the lesion mask was co-registered to the MNI standard space to identify the 
“lesioned nodes” (see “Preprocessing” and “Analysis 2: Comparison of pseudo and real lesions: modularity, PC 
and WD”) and, the correlation values of the lesioned nodes (rows and columns of the matrix, marked as blank 
in the figure) were excluded from subsequent analyses. Pseudo-Lesion FC (bottom center): for each healthy 
control’s connectome, correlation values corresponding to the “lesioned nodes” were excluded from subsequent 
analyses. The FC from one healthy control is depicted in which the same rows and columns as in the Real-
Lesion FC are left blank. Simulated Targeted-Lesion FC (bottom right): for each healthy control’s connectome, 
correlation values of the identified global/local hub nodes (Fig. 8a) were excluded from subsequent analyses.
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In addition, the difference in correlation values between the Real-Lesion and the Pseudo-Lesion Group was 
assessed with a bootstrapping resampling method: ten correlation values from the Pseudo-Lesion Group were 
randomly selected (with replacement) and the bootstrap group mean was computed; the procedure was repeated 
10,000 times, yielding a bootstrap distribution of 10,000 correlation values. Then, the Real-Lesion Group’s cor-
relation value was compared against the bootstrapped distribution of correlation values to obtain the p-value.

We also repeated the same analyses for each hemisphere using hemispheric modularity, i.e., modularity calcu-
lated for each hemisphere considering only within-hemisphere connections. Note that analyses of the right-hem-
isphere (RH) for the Pseudo-Lesion group are omitted because the lesions were limited to the left hemisphere and 
hence there were no nodes or connections removed from the right hemisphere Pseudo-Lesion connectivity 
matrices. In other words, for the pseudo-lesion connectomes, since there is no “node subtraction” in the right 
hemisphere, the RH connectomes for the Pseudo-Lesion Group are identical to those of the Healthy Control 
Group, and hence results of RH modularity for the Pseudo-Lesion group are not reported.

We also examined different thresholds for identifying the “lesioned nodes”. As mentioned above, in the main 
analyses, we identified nodes with more than 25% of their voxels damaged as “lesioned”. We also examined dif-
ferent values of this threshold (i.e., 10%, 20%, 30%) and report the results in Supplementary Information 4. The 
results were highly consistent across the different values examined.

Analysis 3: The neurotopography of global and local hubs in pseudo and real lesions.  To better understand the 
mechanisms of re-organization, we identified global and local hubs in the Real- and Pseudo-Lesion Groups 
using the same method as was used to identify the reference hubs in the undamaged HC connectomes (i.e., 
nodes with nodal hub measures (PC or WD) greater than one standard deviation above the mean. See “Calculat-
ing graph-theoretic measures and identifying reference hubs”). Then we directly compared the topographical 
distributions of the global and local hubs of the Pseudo- and the Real-Lesion groups to identify “lost” hubs (i.e., 
local or global hubs present in the Pseudo-Lesion Group but not in the Real-Lesion Group) and “new” hubs (i.e., 
local or global hubs present in the Real-Lesion Group but not in Pseudo-Lesion Group).

Evaluation of white matter hyperintensities (WMH).  The functional connectomes were constructed 
based on gray matter nodes only (see “Functional connectivity estimation”) and, hence, only the consequences 
of gray matter damage were evaluated. However, gray matter signals could potentially be indirectly affected 
by other factors, including white matter damage and other pathological changes after stroke (see the “General 
discussion” for further discussion of this topic). White matter hyperintensities (WMH) are one factor that has 
received considerable attention in the literature, although their impact on functional connectivity has not been 
established and is still under investigation (see review by43). To examine this possibility, for each participant in 
the Real-Lesion Group we evaluated their T2-weighted fluid-attenuated inversion recovery MRI (FLAIR) scans 
for the presence of white-matter hyperintensities (WHMs). We visually inspected the FLAIR scans following 
the Fazekas guidelines44. Given that evaluation of tissue properties in the ipsi-lesional hemisphere can be com-
plicated by the lesion, we focused on the contra-lesional hemisphere to identify WMHs present in the periven-
tricular spaces and/or the deep white matter. Each WMH (periventricular or deep white matter) was rated using 
the 0–4 Fazekas scale. Then for the participants for whom both periventricular and deep white matter ratings 
were below 2, we categorized the participant’ as absent/mild WMH, and those with either rating equal or above 
2 were categorized as moderate/severe WMH. To examine whether the presence of WMHs had an effect on the 
functional connectivity properties examined in this study, we compared the two groups (absent/mild vs. moder-
ate/severe) in terms of modularity as well as age, since WMHs have been most often associated with aging.

Results
Analysis 1: Simulated targeted attacks result in functional network changes consistent 
with simulation predictions.  Analysis showed that the simulated lesions targeting either the global or 
local hubs caused modularity to change in the predicted directions (Fig. 1). As shown in Fig. 5, removing the 
global hubs from the HC Group’s connectomes led to higher modularity (paired t-test t(9) = 10.58, Bonferroni 
p = 4.52e − 06), while, in contrast, removing the local hubs resulted in lower modularity (t(9) = − 25.14, Bonfer-
roni p = 2.4e − 09). The results matched the model and simulation predictions (Fig. 1) such that by removing 
global hubs and their inter-module connections, the modules become more segregated, increasing overall brain 
modularity. Conversely, removing local hubs and their intra-module connections degrade the individual mod-
ules, reducing overall brain modularity.

Analysis 2: Comparisons between pseudo‑ and real‑lesions modularity, PC and WD.  Modu-
larity in real and pseudo‑lesions.  We compared modularity values for the three groups (HC, Real-Lesion and 
Pseudo-Lesion). As shown in Fig.  6a, neither the Real- nor the Pseudo-Lesion Group differed from the HC 
group (HC vs. Pseudo: t(258) = − 0.31, HC vs. Real: t(33) = 0.91, both p > 0.1 with Bonferroni correction), al-
though Real-Lesion Group modularity was significantly lower than for the Pseudo-Lesion Group (t(273) = 2.97, 
Bonferroni p = 0.01).

We also evaluated modularity for each hemisphere by considering only the within-hemisphere connec-
tions. In the ipsi-lesional hemisphere (LH), we found no differences across the three groups (HC vs. Pseudo: 
t(258) = − 0.88, HC vs. Real: t(33) = − 1.01, Pseudo vs. Real: t(273) = − 0.74, all p > 0.1, Bonferroni corrected). 
For the contra-lesional hemisphere (RH), as explained in “Analysis 2: Comparison of pseudo and real lesions: 
modularity, PC and WD”, because there were no lesions in the RH from which to generate Pseudo-Lesions, we 
only compared the HC and the Real-Lesion Group. Similar to what was observed for the whole-brain and the 
LH, the two groups did not differ (t(33) = 1.01, p = 0.32).
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Figure 5.   Modularity resulting from simulated targeted lesions. Modularity values of the Healthy Control 
Group (HC, N = 10) compared (via paired t-tests) to modularity values resulting from the two types of targeted 
attacks (removal of global or /local hubs from healthy control connectomes). Left to right: HC, simulated global 
hub lesions, simulated local hub lesions. As predicted by the model (Fig. 1), damage to global hubs caused an 
increase in modularity, whereas damage to the local hubs caused a modularity decrease. *****p < 10e − 06.

Figure 6.   Whole brain modularity and global (PC) and local hub (WD) damage in healthy controls (HC), 
Pseudo- and Real-Lesions. (a) Modularity of the Healthy Control (HC, N = 10), Pseudo-Lesion (N = 250), and 
Real-Lesion Groups (N = 25). Neither Pseudo- nor Real-Lesion Groups differ from the HC Group, but the Real-
Lesion Group shows lower modularity than the Pseudo-Lesion Group. (b) Relationship between modularity and 
the magnitude of PC (left) and WD damage (right) for the Pseudo-Lesion Group. In both panels, each of the 
ten lines corresponds to the correlation between the PC/WD damage of the 25 lesion masks and the resulting 
modularity values obtained after applying the lesion masks to one (of  the 10) HC participant’s functional 
connectome (note that the plotted modularity values here were centered to zero for visualization purposes). For 
the Pseudo-Lesion Group, PC damage scores are positively correlated with modularity and that the relationship 
for WD damage is negative, consistent with model predictions (Fig. 1). (c) Relationship between modularity and 
magnitude of PC (left, triangles) and WD damage (right, squares) for the Real-Lesion Group. In contrast to the 
Pseudo-Lesion Group shown in (b), PC damage scores for the Real-Lesion Group are negatively correlated with 
modularity, while WD damage and modularity are not correlated. *p < 0.05, **p < 0.01.
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Finally, for the Real-Lesion Group, modularity did not differ between males and females (whole-brain: 
t(23) = 1.21, p = 0.24; LH: t(23) = 0.8, p = 0.43, RH t(23) = 1.39, p = 0.18) and did not correlate with lesion volume 
(whole-brain: r = 0.03, p = 0.44; LH: r = 0.16, p = 0.2; RH: r = − 0.004, p = 0.5).

Different relationships between PC or WD damage and modularity in real compared to pseudo‑lesions.  To exam-
ine the relationship between hub damage and modular organization in real and pseudo-lesions, we computed 
correlations between the PC and WD damage scores (i.e. extent of global and local hub damage respectively) and 
modularity values for the Real and Pseudo-Lesion Groups for the whole brain as well as for each hemisphere. 
We found that for the Pseudo-Lesion Group, global hub damage scores (PC damage) were positively correlated 
with modularity (mean r = 0.41, p = 0.0038, Fig. 6b) as predicted by the model, prior simulation studies and the 
results of Analysis 1, such that as more global hubs were damaged, system segregation increased (Fig. 1). In con-
trast, for the Real-Lesion Group, modularity was negatively correlated with the degree of PC damage (r = − 0.37, 
p = 0.038, Fig. 6c), contradicting model predictions (difference between Real- and Pseudo-Lesion correlations: 
p < 0.0001 by 10,000 bootstrapping test). With regard to the relationship between WD damage and modularity, 
for the Pseudo-Lesion Group, the WD damage was negatively correlated with modularity (r = − 0.29, p = 0.0352, 
Fig. 6b), again consistent with the model predictions that removing local hubs will produce deterioration of the 
targeted modules and result in a decrease in overall modularity (Fig. 1). However, for the Real-Lesion Group, no 
significant correlation was found between WD damage and modularity (r = − 0.13, p = 0.28, Fig. 6c), which was 
significantly different from the Pseudo-Lesion group (p = 0.0003 by 10,000 bootstrapping test).

Similar patterns were observed for the relationships between PC and WD damage scores and modularity in 
the ipsi-lesional hemisphere (LH, Fig. 7a, left). First, for the Pseudo-Lesion Group, PC damage was positively 
correlated with modularity (r = 0.37, p = 0.0049), while for the Real-Lesion Group the correlation was negative 
(r = − 0.14, p = 0.26). Although the latter result did not reach significance, it differed significantly from the correla-
tions of the Pseudo-Lesion Group (p < 0.0001). For WD damage (Fig. 7a, right), in the left hemisphere, similar to 
the whole brain, the Pseudo-Lesion Group exhibited a marginally significant negative correlation with modularity 
(r = − 0.23, p = 0.07), whereas the Real-Lesion Group did not (r = − 0.12, p = 0.28). Importantly the correlations 
of the two groups were also significantly different from one another (p = 0.0023).

Regarding RH (contra-lesional) modularity, for the Real-Lesion Group, we found the same results as observed 
in the whole brain such that PC damage was negatively correlated with modularity (r = − 0.41, p = 0.02) and WD 
damage was not correlated with modularity (r = − 0.18, p = 0.20, Fig. 7b). Note that as the Pseudo-Lesion Group 
did not have nodes and connections removed from the RH, the RH analysis was not possible for the Pseudo-
Lesion Group.

In summary, although effects of the simulated targeted lesions (“Analysis 1: Simulated targeted attacks result 
in functional network changes consistent with simulation predictions”) and the relationships between PC, WD 
and modularity in pseudo-lesions were as predicted by the model (Fig. 1), the predictions were not confirmed 
in individuals with real lesions even though the same sets of nodes and connections were removed from the 
functional connectomes in both Real- and Pseudo-Lesion Group. This discrepancy between real and pseudo-
lesions indicates that real lesions result in connectivity changes that can not be fully accounted for by simple node 
subtraction, signaling the presence of long-term re-organization, examined in the next analysis.

Analysis 3: Functional re‑organization after brain damage involves changes in hub distribu-
tion: “Lost” and “new” global and local hubs.  As described in “Calculating graph-theoretic measures 
and identifying reference hubs”, we identified the global and local hubs as the nodes with the top PC/WD scores, 
for each group. The results were consistent across the proportional thresholds, but for efficiency we present the 
results with a proportional threshold of 25%. With regard to global hubs, in both the HC Group and the Pseudo-
Lesion Groups, these were concentrated in the bilateral parietal lobes (Fig. 8a,b, left); On the other hand, for 
the Real-Lesion Group a larger total number of nodes were identified as global hubs (44 compared to 21) and, 
furthermore, the distribution extended more anteriorly and inferiorly, especially in the RH (Fig. 8c, left panel, 
median values of the MNI coordinates: HC and Pseudo-Lesion [10, − 65, 42], Real-Lesion [11, − 57, 37]). In 
terms of local hubs, again the HC and the Pseudo-Lesion Groups had very similar distributions, with local hubs 
found in most modules and distributed bilaterally (Fig. 8a,b, right panel). In contrast, the local hubs in the Real-
Lesion Group showed a rather different distribution such that, compared to both the HC and the Pseudo-Lesion 
Groups, the Real-Lesion Group “lost” hubs bilaterally and recruited new hubs either in the RH or around the 
midline, resulting in a more strongly right-lateralized distribution with 65% of local hubs in the RH for the Real-
Lesion Group (chi-square = 3.33, p = 0.07), compared to 54% of the Pseudo-Lesion Group (chi-square = 0.243, 
p = 0.62, Fig. 8, right panel). Note that these differences between the Real-Lesion and Pseudo-Lesion groups 
cannot be explained by volume shifts due to the lesions because: (a) the fact that the Real-Lesion group had a 
greater number of global hubs indicates changes in functional connectivity rather than shifted locations and (b) 
spatial shift would not affect the RH and, for local hubs, the Real Lesion groups had multiple new hubs in the RH. 
To summarize, the Pseudo-Lesion Group showed very little change in the topographical distribution of global 
and local hubs relative to the Healthy Control Group while, conversely, the Real-Lesion Group exhibited a more 
extended distribution of the global hubs (although they were found in the same general area), and a shift of local 
hubs to the right hemisphere.

Validation with a second healthy control cohort.  We validated all of the findings reported in Analy-
sis 1–3 with a second age-matched HC cohort (N = 13) whose data were not used in identifying the reference 
modular organization or the reference global or local hubs. We used this data set to generate new pseudo-lesions 
and to replicate the analyses reported in the previous sections (note that we refer to these groups as the HCv and 
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Pseudov Groups where “v” signifies “validation”). These analyses yielded the same results as observed with the 
first HC cohort. Details of the participants and results are reported in the Supplementary Information 3 (Supp 
Figs. 2, 3 and 4), here we summarize the main findings briefly.

First, regarding the simulated targeted lesions, as with the first HC cohort (Fig. 5), damage to the global hubs 
resulted in an increase in modularity (t(12) = − 10.0, p = 3.57e − 07), whereas simulated damage to the local hubs 
resulted in a decrease in modularity (t(12) = 17.59, p = 6.20e − 10). Second, there was no difference in whole brain 
modularity between HCv and Pseudov (t(336) = − 0.52, p = 0.60) in the whole brain as well as in the ipsi-lesional 
hemisphere (i.e., LH: t(336) = 0.05, p = 0.976). Third, regarding the correlation between the PC/WD damage 
scores and modularity, we observed similar results as we reported with the first HC cohort, namely that modu-
larity was positively correlated with PC damage (whole-brain: r = 0.37, p = 0.0049; LH: r = 0.34 p = 0.0111) and 
(marginally) negatively correlated with WD damage (whole-brain: r = − 0.20, p = 0.09; LH: r = − 0.20, p = 0.10). 
Finally, in terms of the hub distributions, the HCv Group also showed very similar distributions of global and 
local hubs as was observed with the first HC cohort.

Evaluation of white matter hyperintensity (WMH).  Given that the gray matter fMRI signals that 
were used to compute functional connectivity could have been affected by white-matter lesions, we also evalu-
ated white matter hyperintensity (WMH) in the stroke participants (i.e., Real-Lesion Group, n = 25). We found 
seven participants with moderate to severe WMH, and 18 participants who showed no or only mild WMH. 
For  these two subgroups, we did not find any differences in modularity (whole-brain: t(23) = − 0.67, p = 0.52; 
LH: t(23) = − 0.74, p = 0.47; RH: t(23) = − 1.09, p = 0.29) and the relationships between modularity and PC/WD 

Figure 7.   Relationship between hemispheric modularity and hub damage. (a) Relationship between left 
hemisphere (LH, ipsi-lesional) modularity and PC (left) and WD damage (right) for the Pseudo-Lesion (top) 
and the Real-Lesion (bottom) Groups. Similar to the whole-brain results (Fig. 6), the two groups show different 
relationships between modularity and hub damage. (b) Relationship between right hemisphere (RH, contra-
lesional) modularity and PC (left, triangles) and WD damage (right, squares) for the Real-Lesion Group. Note 
that because there are no damaged RH nodes, for the Pseudo-Lesion Group (see “Analysis 2: Comparison of 
pseudo and real lesions: modularity, PC and WD”), this analysis is omitted. *: p < 0.05, **: p < 0.01, ~ : p < 0.1.
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damage reported in “Different relationships between PC or WD damage and modularity in real compared to 
pseudo-lesions” (Fig. 6c) were also seen in the 18 participants with absent/mild WMH after excluding the 7 par-
ticipants with moderate/severe WMH  (modularity—PC damage: r = − 0.48, p = 0.02, modularity—WD damage: 
r = 0.11, p = 0.29). With regard to the relationship between WMHs and age, we found that the moderate/severe 
group was significantly older than the absent/mild group (t(23) = 2.91, p = 0.0078). This finding is consistent with 
the consensus that one of the most prominent risk factors for WMHs is age. However, we found no evidence that 
WMHs affect the functional connectivity measures that we evaluated in this study.

Discussion
In this study, we investigated the effects of focal brain lesions on functional network properties by comparing 
real stroke lesions to artificial lesions that were created by removing nodes from the connectomes of healthy 
participants. We considered two types of artificial lesions: simulated targeted lesions that were designed to evalu-
ate the effects of the targeted removal of specific node types (global or local hubs), and pseudo-lesions that 
corresponded to the removal of nodes that were lesioned in individuals with post-stroke language impair-
ments (n = 25). While simulated targeted lesions have been well investigated in computational neuroscience, to 
our knowledge, comparisons of real and pseudo-lesions have not been previously carried out (except by12 who 
did so for very different reasons than those pursued in this study). Our specific goal was to follow up on the 
Gratton et al.2 observation that certain network properties of connectomes of individuals with real focal lesions 
did not conform to key predictions of previous lesion simulation work as shown in Fig. 1. As discussed in the 
Introduction, we hypothesized that this discrepancy was due to the fact that previous simulations involved only 
node subtraction while, in the case of real lesions, node subtraction is followed by or occurs concomitantly with 
long-term network re-organization (Fig. 2). Given that pseudo-lesions involve simple node subtraction but not 
long-term re-organization, we predicted that the network properties of the connectomes with real lesions should 
differ from those with pseudo-lesions. Our findings clearly support these predictions and, while the results are 
perhaps not unexpected, they have important implications for future simulation studies. Furthermore, because 
the pseudo-lesions match with real lesions in node subtraction, the pseudo- vs. real-lesion comparison approach 
allows us to identify changes specifically due to long-term network re-organization, and has important implica-
tions for understanding post-stroke network re-organization.

Evaluating the subtraction + re‑organization hypothesis.  Following Gratton et  al.2, we focused 
on whole-brain functional modularity as measured by the graph-theoretic measure modularity, also known as 
Newman’s Q35, as well as the nodal properties of participation coefficient (PC) and within-module degree z-score 

Figure 8.   Global hubs (triangles, left) and local hubs (squares, right) identified for each group. (a–c) Healthy 
Controls (HC), Pseudo-Lesions, Real-Lesions. The colors indicate module membership as in Fig. 3 (“Identifying 
the reference modular organization”). The hubs identified for the HC Group (a) are also referred to as reference 
hubs. The number of left hemisphere (LH) hubs are indicated in parentheses. The visualization was created with 
Nilearn (https://​nilea​rn.​github.​io).

https://nilearn.github.io
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(WD)36. Evaluating the subtraction + re-organization hypothesis involved three steps. (1) Using connectomes 
from healthy control participants, we replicated previous findings from lesion simulation18,23,26,27, see Fig. 1), 
namely that: (a) simulated lesions specifically targeting global hubs (high PC nodes) had the effect of reducing 
communication between modules, resulting in increased overall network modularity and (b) simulated lesions 
specifically targeting local hubs (high WD nodes) had the effect of collapsing individual modules, resulting in 
reduced overall network modularity (Fig. 5). This replication served to confirm that predicted changes resulting 
from simulating node subtraction (Fig. 1) were also seen in our functional connectivity dataset from healthy 
controls, which formed the basis of the subsequent analyses. (2) We evaluated whether the network properties 
observed in individuals with real post-stroke lesions could simply be explained by node subtraction by directly 
comparing the relationships between modularity and hub damage (global or local) in the real and pseudo-
lesioned connectomes. When we did so, we found that the pseudo-lesioned connectomes showed the relation-
ships predicted by the model, previous simulation research, and the results of Analysis 1 (Fig. 6b), whereas the 
opposite pattern was seen in the real-lesion connectomes (Fig. 6c) in which: (a) greater damage to the between-
module, global hubs (PC damage) was associated with lower modularity and (b) no systematic association was 
found between modularity and damage to the within-module, local hubs (WD damage). These discrepancies 
between the real and pseudo-lesioned connectome properties directly support the claim that the consequences 
of focal lesions involve more than node subtraction and imply long-term network re-organization. (3) If, as we 
hypothesized, the findings in (2) correctly indicate that long-term functional re-organization has taken place 
subsequent to real lesions, then we expect significant changes in nodal roles within the remaining functional 
connectome. Consistent with this prediction, we found that the neurotopographic distribution of global and 
local hubs differed between the real and pseudo-lesioned connectomes (Fig. 8).

Focal lesions and network re‑organization.  Node subtraction corresponds to the deletion of the nodes 
and their functional connections, with no changes in the functional coupling among the remaining nodes (Fig. 2). 
However, if re-organization is a dynamic long-term process that allows for the creation/strengthening and the 
weakening/removal of connections  in the remaining network, then more radical changes in network organi-
zation would be expected following focal lesions. To evaluate this possibility, we examined the topographical 
distribution of the global and local hubs in real-lesion connectomes compared to those of the pseudo-lesioned 
connectome (which instantiated only static node subtraction). As shown in Fig. 8, we found that the real and 
pseudo-lesioned connectomes differed considerably in the distribution of both local and global hubs. While the 
pseudo-lesioned connectomes (implementing node subtraction) scarcely differed from the non-lesioned healthy 
connectomes in terms of the number and distribution of local and global hubs, the real lesion connectomes 
exhibited clear and striking differences from the healthy and the pseudo-lesioned connectomes. With regard to 
global hubs, the Real-Lesion Group exhibited a larger number of “new” global hubs. These correspond to nodes 
with PC levels that qualified them as global hubs in the Real-Lesion Group, although they had not served in that 
role in the Pseudo-Lesioned or the Healthy Control Group (HC). In terms of location, these new global hubs 
were concentrated in the same posterior parietal areas as in the HC and the pseudo-lesions (Fig. 8, left) although 
with greater anterior and ventral extension. With regard to local hubs, we found that the newly recruited hubs 
were especially concentrated in the contra-lesional right hemisphere (Fig. 8c, right). These findings document 
that hub re-definition is at least one aspect of the long-term re-organization that may follow focal lesions, further 
underscoring the point that re-organization cannot be understood as simple node subtraction. Future work on 
this topic should go beyond documenting these differences between real and pseudo-lesioned networks and seek 
to understand the bases of these long-term changes in nodal characteristics and neurotopography.

Modelling and understanding dynamic, longitudinal re‑organization.  Our findings highlight 
that while there may be acute changes to the functional connectome due to node subtraction, there is also long-
term re-organization that occurs in response to the subtraction. This re-organization is presumably directed at 
restoring brain function in the most optimal manner given: (a) the constraints and limitations created by the 
node subtraction, (b) the dynamic neural mechanisms that influence network change and (c) experiential and 
environmental factors that include rehabilitation, environmental stimulation, and so on. The brain’s response to 
a focal lesion is a dynamic process that unfolds over time and longitudinal network changes should be expected.

Only a very small number of simulation studies have specifically considered the dynamic longitudinal trajec-
tory of neural network development and recovery. For example, Stam et al.20 who were primarily interested in the 
evolution/development of hierarchically structured network organization, posited and modelled two fundamental 
processes: growth dependent plasticity (GDP) and synchronization dependent plasticity (SDP). GDP was driven 
by distance-dependent decay, which has the effect of strengthening connections between nearby areas, while 
SDP is a form of Hebbian learning which strengthens connections between areas with synchronized activity. 
To emphasize the relevance of these two types of principles, they pointed out that “dynamic processes change 
connectivity, connectivity constrains dynamics” (p. 2). In addition to examining the role of these principles in 
network evolution they simulated their role in recovery from focal lesions. Those simulations demonstrated 
great network resilience and recovery over time and, on that basis, Stam et al.20 suggested that network recovery 
may mimic network development. In another work, Stam et al.45 proposed two types of network re-organization 
such that in the acute phase there is a shift from local to global processing, whereas the opposite occurs in the 
chronic phase. This would be consistent with reports of low modularity in the acute post-stroke phase followed 
by increased modularity at later post-stroke time-points12 or in response to treatment11,13. These observations 
underscore that future simulation work and network analyses of simulated and real lesions will need to investigate 
the dynamic long-term changes that are triggered by the focal lesion and the initial node subtraction.
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Task‑based vs. rest‑state functional connectivity.  One major difference between the current study 
and much of the work in the literature is that rather than using resting-state functional connectivity (RSFC) 
we examined functional connectivity (FC) obtained from task-based fMRI (after removing task-related activa-
tion)—sometimes referred to as “background connectivity” (e.g.28). As we mentioned in the Introduction, sev-
eral studies have looked into the relationship between background connectivity and RSFC, and concluded that 
they were qualitatively similar31–34. For instance, Cole et al.31 systematically compared RSFC and task-based FC 
and concluded that both types of FC were governed by a shared intrinsic organization, with subtle task-related 
alterations. Moreover, the same “unexpected” relationship between modularity and hub damage in pseudo- and 
real-lesions that we have documented in this paper was also reported in an RSFC study2, indicating that our 
findings are not likely to be specific to the tasked-based FC that we used. Nonetheless, it will be important to 
validate in the future whether all of the effects we have reported are also observed for RSFC in the same and other 
cohorts. This would help to elucidate the possibility that brain connectivity associated with different cognitive 
processes may make different contributions to network re-organization after brain damage.

Similar global modularity between the Healthy, Pseudo‑, and Real‑Lesion connectomes.  We 
found that, although modularity levels differed between Pseudo- and Real-Lesion Groups, in both cases modu-
larity levels were comparable to those of healthy controls (Fig. 6a, “Modularity in real and pseudo-lesion”). This 
raises various questions that we discuss here.

The finding that the Pseudo-Lesion Group did not differ from the Healthy Control Group may seem, at 
first glance, to be surprising. However, first, it is important to note that the pseudo-lesions used in the current 
investigation were generated by deleting the actually lesioned nodes identified in the actual stroke lesions and, 
therefore, affected very different locations compared to the simulated targeted lesions, which did have signifi-
cant effects on modularity (Fig. 5). The pseudo-lesions reflected the typical damage pattern of unilateral mid-
dle cerebral artery (MCA) strokes, with most of the lesions centered in the left perisylvian areas including the 
ventral pre- and post-central gyrus and insula (Supp. Fig. 1). In effect, the pseudo-lesions resemble “random 
attacks” against which modular organizations have been shown to be highly resilient19,25,26,46. For example, Als-
tott et al.19 showed in simulated connectomes that random (rather than targeted) node removal did not affect 
global network integrity (measured by global efficiency, average path length, etc.) until a very large proportion 
of the nodes had been deleted (see also25 for similar results). Relatedly, the left perisylvian region was not the 
main site for hubs in healthy controls (Fig. 8a), and hence the pseudo-lesions would not have been expected to 
strongly affect modularity.

The Real-Lesion Group (chronic stage, 1–10 years post-stroke onset) also showed comparable levels of modu-
larity as the Healthy Control Group (Fig. 6a), although its modularity levels were statistically lower than those 
of the Pseudo-Lesion Group. This result is consistent with the findings in12, a longitudinal study that found 
that modularity was initially lower than in healthy controls at the sub-acute post-stroke stage (< 2 weeks), and 
returned to normal after 3 months. However, although the previous argument regarding random attacks also 
applies to the Real Lesion Group, we see that, in contrast to the Pseudo-Lesion Group, the distributions of local 
and global hubs were considerably affected in the Real-Lesion Group (Fig. 8), illustrating that similar levels of 
global modularity can be achieved by different nodal connectivity distributions. The lesson is that findings of 
similar global values should be interpreted with that understanding. Notwithstanding this point, the finding of 
comparable global modularity values between the Pseudo- and the Real-Lesion Group raises the possibility that 
the re-organization that we have documented represents the brain’s attempt to achieve a certain degree of global 
modularity that is optimal for a specific task (e.g.47,48). Further understanding of this possibility will require 
research examining similarities and differences in modular organization following lesions that affect different 
cognitive domains and lesion locations.

Finally, it is important to emphasize that although global modularity may be robust to focal damage, it does 
not preclude that disruption at the level of local modules can seriously affect the cognitive function(s) the module 
carries out and can produce long-lasting domain-specific deficits. In a previous study from our lab that examined 
treatment-induced recovery in a subset of the current stroke group13, we found that both the severity of their 
dysgraphia and their treatment-based improvements in spelling were specifically associated with the functional 
connectivity properties of the ventral occipital-temporal (VOT) area, corresponding to Cluster #8 in this study 
(Fig. 3, dark red), an area that forms a key part of the spelling network49,50.

Clinical significance of lesion simulation.  Recently, lesion simulation approaches have been used in 
clinical neuroscience to inform treatment plans and prognoses. One field in which lesion simulation has gained 
attention is epilepsy. Drug-resistant epilepsy often requires resection of the epileptic focus, yet the safety, preci-
sion, and efficacy of the procedure have long been challenging. In recent years, researchers have shown that 
simulating the effects of resection with sophisticated resection-simulation modelling can retrospectively predict 
surgery outcomes and may help develop more accurate personalized surgical plans in the future (e.g.51–53. Also 
see54 for similar methodology for tumor resection). In stroke recovery, where the goal has been to understand the 
neural responses to the lesions, only a few studies have directly focused on clinical applications of lesion simula-
tion. Some of these studies have used The Virtual Brain (TVB, www.​thevi​rtual​brain.​org) platform that provides 
modelling methods to generate simulated functional connectivity  incorporating dynamic mechanisms55–57, 
offering a way to investigate the underlying neural mechanisms of post-stroke re-organization. For instance, 
in the context of pre/peri-natal stroke, on the basis of dynamic simulation modelling, Adhikari et al.51 argued 
that early injury might not have sustained consequences and, therefore, that individuals with early stroke might 
achieve full functional recovery. Using a similar methodology, Falcon et al.57 found that in adult chronic stroke, 
the functional connectome could be best explained by higher values of the “local dynamics” parameter which 

http://www.thevirtualbrain.org


14

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2213  | https://doi.org/10.1038/s41598-021-81107-9

www.nature.com/scientificreports/

were related to better treatment-induced motor recovery outcomes. This work is still in early stages, however, 
and much more empirical research is needed to make progress on the instantiation of the dynamic models and 
the interpretation of findings. In sum, the dynamic re-organization mechanisms involved in stroke recovery are 
still largely unexamined, and identifying the mechanisms that govern longitudinal re-organization at different 
stages (acute, subacute and chronic) can be expected to benefit stroke rehabilitation, including the localization 
of optimal sites for neuro-stimulation intervention (e.g., tDCS, TMS).

Limitations.  Defining hubs, modular organization and characterizing the functional connectome.  In this 
study, we examined damage to two types of “hub” regions: global connector hubs quantified by participation 
coefficient (PC), and local provincial hubs quantified by within-module degree z-score (WD)36. Although these 
two graph-theoretic measures are widely used, a variety of other centrality measures have also been used in the 
literature to define hubs such as degree, betweenness, etc., which measure slightly different aspects of a node’s 
connectivity profile (see58 for a summary of findings with different hub measures). Here we examined “hubs” de-
fined by PC and WD because these two modular organization, which was the focus of the current investigation. 
Additionally, these two measures were the ones used in the previous studies that motivated the current study2,27. 
We should also point out that the specific modularity measure (i.e., Newman’s Q) that we used requires defining 
a reference modular organization in order to identify the degree to which all the nodes are grouped into differ-
ent modules. This reference modular organization can be identified in a variety of ways and from a variety of 
sources. Sources can include previous literature, individual participant connectomes or, as in this study, a control 
group. Although the use of a healthy control connectome for this purpose allowed us to assess the various lesions 
in a more consistent way, the approach may have certain limitations. More generally, in future work it will be 
useful to examine whether or not different hub and modularity definitions will reveal similar patterns or will, 
instead, reveal other aspects of the neural consequences of focal lesions.

Characterizing the lesions.  In this paper, we have proposed an approach to understanding the long-term func-
tional network consequences of focal lesions that involves comparisons of real to pseudo-lesioned connectomes. 
The success of this type of endeavor clearly rests on the degree to which the artificial lesions capture the key 
characteristics of the real lesions that are relevant to functional network connectivity. Following previous work 
in this area, we have simulated the focal lesions via node subtraction which creates a “neuroantomical match”. 
However, it is possible that focal lesions in general (or in our sample in particular) are associated with other brain 
changes that could independently impact the functional network properties. While work on this topic has been 
extremely scarce, there are some possibilities that are worth discussing. For example, it has been reported that 
stroke can cause hypoperfusion (e.g.59) and changes in the hemodynamic response function of the BOLD signal 
(e.g.60,61). However, it is worth noting this type of physiological change seems to resolve over time. For instance, 
Siegel et al.61 showed widespread hemodynamic lag of the BOLD signals at the subacute stage followed by a rapid 
normalization within the first 3 months. Further, Thompson et al.59 reported that in chronic stroke, hypoperfu-
sion was only seen in perilesional tissue. Therefore, given that the stroke participants in our study were in the 
chronic stage (1–10 years post-stroke), we do not expect them to exhibit these types of anomalies. Addition-
ally, it is not at all obvious how high-level functional network characteristics (such as the relationship between 
modularity and cortical hub damage (Figs. 6b and 7) would arise from hypoperfusion. Nevertheless, given the 
complex interplay between neural, vascular, and metabolic factors, understanding the consequences of vascular 
abnormalities for functional connectivity remains an important direction of future research.

Another area of interest are the white matter abnormalities indicated by white matter hyperintensity seen on 
T2-weighted scans outside the lesioned area. In principle, it is possible that these types of abnormalities could 
(in addition to the simulated node subtraction) contribute to characteristics of the functional connectome. 
White matter hyperintensity (WMH) is considered an indicator of chronic ischemic damage to periventricular 
and/or subcortical white matter. While mild WMH is not uncommon in an aging population and its clinical 
relevance has yet to be decided, pathological levels of WHM has been associated with small vessel disease and 
general cognitive decline (for a review see43). While currently it is not known if or how WMH and functional 
connectivity are related to each other, it is clearly another important area for future research. Given its possible 
relevance, we did evaluate the potential role of white matter hyperintensities. As we reported in “Evaluation of 
white matter hyperintensity (WMH)” and “Evaluation of white matter hyperintensity (WMH)”, for each of the 
participants with stroke, we identified WMHs based on FLAIR scans. We divided participants into two groups 
corresponding to those with absent/mild and those with moderate/severe WMHs. While, as expected, the two 
groups did differ in age (with older participants more likely to be in the moderate/severe group), the groups did 
not differ in terms of modularity and the other network measures we examined.

In sum, as we move forward in using computer simulation to further our understanding of the consequences 
of brain lesion, it will certainly be very important to have a comprehensive characterization of relevant lesion 
characteristics so that the effects can be accurately simulated.

Characteristics and size of participant groups.  First, the sizes of the participant groups in this study were modest 
(25 participants with stroke with 10 and 13 in the healthy control groups). It will be important in future work 
to have larger sample sizes to better understand the reliability and generalizability of findings. Second, it is, of 
course, important that control and experimental groups be matched on relevant variables. In this study, impor-
tance was given to matching for age and education. However, we would want to be as confident as possible that 
the reported differences in functional networks between the Real-Lesion and Pseudo-Lesion Groups are attrib-
utable to the effects of the lesions and not to the other factors that might distinguish the groups. As we discussed 
in the last section, although the two groups might have different vascular characteristics, we did not find this to 
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be a likely source of the differences we found between Real and Pseudo-Lesioned Groups. Another potentially 
confounding factor is sex. In our sample, 36% of the stroke participants were female, while 80% and 77% were 
female for the two healthy control groups. However, we did not find differences in modularity between men and 
women (“Modularity in real and pseudo-lesion”) and thus it is unlikely that gender differences could have caused 
the effects we reported involving modularity. Nonetheless, it is desirable to obtain more gender balanced cohorts.

Relatedly, it is important to establish that observed differences between groups cannot be explained by inter-
individual differences. To that end, in the analyses comparing the Real and Pseudo-Lesion Groups, we charac-
terized the findings of interest (modularity and the relationship between modularity and PC and WD damage, 
“Analysis 2: Comparison of pseudo and real lesions: modularity, PC and WD”) in a manner that preserved 
inter-individual differences across the healthy controls. We then evaluated the statistical significance of the 
between-group differences taking into account the inter-individual differences. In other words, the between-
group differences for the Real and Pseudo-Lesion Groups (e.g., the positive correlation for the Pseudo-Lesion 
Group between PC damage and modularity and the negative correlation for the Real Lesion Group) were consist-
ently observed across the individuals in the Pseudo-Lesion sample (Fig. 6b,c, also see Supplementary Information 
3 for validation with a second HC cohort). This analysis approach increases confidence that reported effects are 
indeed due to the lesions and not to pre-existing inter-individual differences.

Conclusions
We examined some of the consequences of focal lesions for functional network organization through a series 
of analyses comparing the characteristics of functional connectomes subjected to real and artificial lesions. We 
proposed that the brain’s response to focal lesions involves the effects of both node subtraction and dynamic long-
term network re-organization. We used pseudo-lesioned connectomes to instantiate the consequences of node 
subtraction, and our findings that the real and pseudo-lesions differed in a number of respects strongly support 
the conclusion that the effects of focal lesions extend beyond node subtraction. These results advance our under-
standing of the consequences of focal lesions and underscore that future simulation work must include principles 
of dynamic re-organization in order to provide a more adequate model of brain damage and disease. Such future 
work will allow us to better understand the underlying neural mechanisms of network re-organization observed 
in different kinds of brain damage, and whether those changes are necessary for restoring network functionality, 
or are simply an undesirable consequence of brain lesions.

Data availability
The data and analysis scripts that support the findings of this study are available on https://​osf.​io/​thjn6.
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