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ABSTRACT
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway play 
a significant role in the production of inflammatory cytokines and type I interferons. This study 
aims to develop a cGAS-STING pathway-related genes (CSRs) prediction model to predict prog-
nosis in gastric cancer (GC). In the present study, we used The Cancer Genome Atlas (TCGA), Gene 
Expression Omnibus databases (GEO), CIBERSORT and Tumor Immune Estimation Resource data-
bases (TIMER). The risk model based on five hub genes (IFNB1, IFNA4, IL6, NFKB2, and TRIM25) was 
constructed to predict the overall survival (OS) of GC. Further univariate Cox regression (URC) and 
multivariate Cox regression (MCR) analyses revealed that this risk scoring model was an indepen-
dent factor. The results were verified by GEO external validation set. Multiple immune pathways 
were assessed by Gene Set Enrichment Analysis (GSEA). TIMER analysis demonstrated that risk 
score strongly correlated with Macrophage, B cells and CD8 + T cells infiltration. In addition, 
through ‘CIBERSORT’ package, the higher levels of infiltration of T cell follicular assistance 
(P = 0.011), NK cells-activated (P = 0.034), and Dendritic cells resting (P = 0.033) exhibited in high- 
risk group. Kaplan–Meier (K-M) survival analysis illustrated T cells CD4 memory resting and T cells 
follicular helper infiltration correlated with overall survival (OS) of GC patients in TCGA and GEO 
databases. Altogether, the risk score model can be conveniently used to predict prognosis. The 
immunocyte infiltration analysis provided a novel horizon for monitoring the status of the GC 
immune microenvironment.
Abbreviations:TCGA: The Cancer Genome Atlas databases; GEO: Gene Expression Omnibus 
databases; GC: Gastric cancer; CSRs: cGAS-STING pathway-related genes; DECSRs: Differential 
expressed cGAS-STING pathway-related genes; PCSRs: Prognosis related cGAS-STING pathway 
genes; URC: Univariate Cox regression analyses; MCR: Multivariate Cox regression analyses GSEA: 
Gene set enrichment analysis; TIIC: Tumor-infiltrating immune cell.
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Introduction

Gastric cancer (GC) is a deadly disease ranking 
the third leading cause of cancer-related death 
[1,2]. Most GC patients are already in the mid-
dle to late stage when diagnosed due to the 
occult onset and difficult to early diagnosis, 
leading to 5-year survival outcome is lower 
than 25% [3,4]. Despite advances in various 
therapeutic strategies the survival of remains 
poor. Hence, it is urgently needed to explore 
new credible prognostic-stratification tool 
which could be applied to clinical risk assess-
ment. It would help them in identifying GC 
patients that are at higher risk for relapse and 
that might be suitable for closer follow-up.

The cGAS-STING DNA sensing pathway has 
emerged as a key component of the innate 
immune response. The STING is in these 
tumor immune interactions and has pleiotropic 
effects on tumors [5]. The enzyme cGAS is 
a universal innate sensor for double-stranded 
DNA (dsDNA). Upon binding cytosolic 
dsDNA, cGAS catalyses the synthesis of cyclic 
GMP-AMP (cGAMP 2ʹ3ʹ), which in turn 
engages STING to triggers a series of cellular 
signaling events that consequently lead to the 
production of type I interferons (IFNs) and 
inflammatory mediators [1,6,7]. Recently, studies 
revealed that the cGAS-STING pathway is clo-
sely related to tumor immunity. For instance, 
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cGAS-STING pathway activation with antigen- 
presenting cells leads to production of Tap2 
and MHC-I, which may enhance the tumor 
immune surveillance [8]. Stimulation of the 
cGAS-STING signaling pathway increased type 
I IFNs and tumor-infiltrating lymphocytes 
(TILs) levels to trigger an immunogenic 
response [9]. cGAS-STING-mediated type 
I interferon signaling augmented stem cell-like 
CD8 T cell differentiation and promotes antitu-
mor T cell therapy. These findings suggest that 
cGAS-STING pathway genes are potential ther-
apeutic target and may be associated with 
immune infiltration in patients with GC. 
However, the prognostic value of CSRs is cur-
rently lacking in GC.

In our study, we aimed to develop a CSRs pre-
diction model to predict prognosis in GC. 
Subsequently, survival analysis, ROC curve, 
Nomogram, univariate and multivariate Cox 
regression analyses revealed that this risk scoring 
model was an independent factor. The results were 
verified by GEO external validation set. Our study 
may help monitoring the status of the GC immune 
microenvironment and provide potential targets 
for the immunotherapy.

Materials and methods

Data processing

The work-flow of this study is illustrated in Figure 
S1A. 375 GC samples and 32 normal tissues gene 
expression (RNA-seq) were retrieved from TCGA 
(https://www.cancer.gov/) [10].In addition, the 
validation cohort microarray (GSE84437) were 
obtained from the GEO database(https://www. 
ncbi.nlm.nih.gov/geo/) [11]. The clinical informa-
tion is shown in the flow Table 1.

CSRs extract and DIfferential expressed genes 
(DEGs) analysis

117 CSRs were identified via the ‘cGAS-STING’ 
gene set from the PathCards database (https://path 
cards.genecards.org/). The differential expressed 
cGAS-STING pathway-related genes (DECSRs) 
were screened with the cutoff: |logFoldChange 
(logFC)| > 0.5 and adjusted P value < 0.05. 

‘ggplot2’ and ‘pheatmap’ packages generated 
Volcano plots and heat maps, respectively.

Function enrichment analysis of DECSRs

We also performed Gene Ontology (GO) functional 
annotations and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis use 
of ‘clusterProfiler’ package in DECSRs [12]. The 
diagram was made by the R language tool.

Establishment and validation of the model

We next adopted UCR was used to estimate over-
all survival (OS) of CSRs. Afterward, MCR was 
carried out to construct our prognostic risk 
model and correlation coefficient. Finally, the risk 
score was calculated as follows: the risk score = ∑i =   
1 n(Expi*Coei).

Independence of the risk model

URC and MRC analysis were conducted to iden-
tify independent risk factors for survival. The 
‘SurvivalROC’ of R package was constructed to 
assess the survival differences between groups. 
The nomogram was established to assess the sur-
vival probability for GC patients at 1, 2, and 
3 years.

Table 1. The clinical characteristics of the patients.

Items

Databases

TCGA GEO

age >65 204 150
≤65 163 283

Unknow 3 -
Gender Female 133 137

Man 237 296
M M0 327 -

M1 25 -
Mx 18 -

N N0 108 80
N1 96 188
N2 74 132
N3 74 33
Nx 16 -

Stage I 49 11
II 111 38
III 149 92
IV 38 292

Treatment Pharmaceutical Therapy 185 -
Radiation Therapy 185 -
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GSEA

GSEA was also used to analyze the differences 
pathways between the high-risk and low-risk 
groups. The C2.cp.kegg.v7.0.symbols.gmt dataset 
was obtained from the Molecular Signatures 
Database (MsigDB). NOM P-value <0.05, |NES| 
>1 and FDR q < 0.25 were considered statistically 
significant.

Immune infiltration analysis

TIMER database calculated the infiltration level 
of 6 immune cells in tumor samples from TCGA 
database, including B cell, T cell CD4+, T cell 
CD8+, Neutrophil, Macrophage, and Myeloid 
dendritic cell [13]. It was used to explore the 
association of the risk scores and the abundance 
of six immune cells types (https://cistrome.shi 
nyapps.io/timer/).

Analysis of immune infiltration in high and 
low-risk groups

The CIBERSORT applied to estimate the propor-
tions of tumor-infiltrating immune with 
a deconvolution algorithm. Violin plots were uti-
lized to visualize the distribution of the differences 
in 22 types of infiltrating immune cells [14].

Statistical analysis

R software (version 4.0.3) and SPSS software 
(version 24.0) were used to complete all the 
statistic work. The survival curve was con-
structed using survival package via the 
K-M method. The R package ‘survivalROC’ was 
employed to analyze prediction efficiency in two 
groups. P value < 0.05 was considered the cutoff 
value for significance.

RESULTS

This study aimed to develop a CSRs prediction 
model to predict prognosis in GC. Then, UCR 
and UCR analyses revealed that this risk scor-
ing model was an independent factor. The 
results were verified by GEO external validation 
set. Finally, TIMER analysis demonstrated that 

risk score strongly correlated with immune 
infiltration. Our study may help monitoring 
the status of the GC immune microenviron-
ment and provide potential targets for the 
immunotherapy.

Various genes differentially expressed with GC 
progression

In the study, we collected 32 normal tissues and 
375 tumors of GC from TCGA database. The 
49 differentially expressed CSRs, 46 genes were 
upregulated, while 3 genes were downregulated 
and drawing differential heatmap and volcano 
plot (Figure 1a and b). UCR analysis deter-
mined that nine prognosis-related cGAS- 
STING pathway genes (PCSRs) were indepen-
dently associated with GC patient OS 
(Figure 1c).

Gradually upregulated/downregulated genes 
involved in multiple immune-related functions 
and pathways

To better understand the biological significance, 
we conducted enrichment analysis of the 49 differ-
entially expressed CSRs. In molecular function 
(MF), the main functions of these genes were 
catalytic activity, acting on RNA, nucleotidyltrans-
ferase activity, RNA polymerase activity, and 5ʹ−3ʹ 
RNA polymerase activity. Cellular component 
(CC) mainly involved transferase complex, trans-
ferring phosphorus−containing groups, RNA poly-
merase III complex, nuclear DNA−directed RNA 
polymerase complex, and DNA−directed RNA 
polymerase complex. In biological processes (BP), 
the functions of these genes were mainly involved 
in positive regulation of cytokine production, reg-
ulation of type I interferon production, type 
I interferon production, positive regulation of 
type I interferon production, and response to 
virus (Figure 2a). Besides, KEGG pathway annota-
tion showed that these differentially expressed 
CSRs were significantly enriched in Cytosolic 
DNA−sensing pathway, RNA polymerase, RIG−I 
− like receptor signaling pathway, Toll−like recep-
tor signaling pathway and NF−kappa B signaling 
pathway (Figure 2b).
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Figure 1. Prognostic differentially expressed CSRs. a. Heatmap of differentially expressed CSRs. b. Volcano plots of differentially 
expressed CSRs. c. UCR analysis for the CSRs identification in the TCGA patient cohort.

Figure 2. Biological function analysis of differentially expressed CSRs: GO analysis (a) and KEGG pathways analysis (b).
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Establishment and validation of the prognostic 
risk model

The nine genes were further analyzed by MCR 
analysis, and finally, five genes (IFNB1, IFNA4, 
IL6,NFKB2 and TRIM25) related to the prognosis 
of GC were obtained. The coefficients of each gene 
are shown in Table 2. Risk scores = (2.180× IFNB1 

Exp) + (4.871× IFNA4 Exp) + (0.135× IL6 Exp) + 
(−0.366× NFKB2 Exp) + (−0.466× TRIM25 Exp). 
Patients were divided into high-risk (n = 185) and 
low-risk (n = 185) groups according to the media 
risk score. Low-risk patients had a significantly 
longer OS compared with the patients in high- 
risk group (Figure 3a). The riskScore plot and 

Table 2. The coefficients of each gene.
id coef HR HR.95 L HR.95 H pvalue

IFNB1 2.180261 8.848614 0.556624 140.6657 0.122384
IFNA4 4.871504 130.517 0.371338 45,873.81 0.103366
IL6 0.135794 1.145446 1.015096 1.292535 0.027592
NFKB2 −0.36677 0.692966 0.526914 0.911348 0.008687
TRIM25 −0.46663 0.627114 0.462248 0.850782 0.002715

Figure 3. Risk score, reflecting overall survival, based on the CSRs signature comprising five genes, in the training and validation 
cohorts. (a–b) Kaplan-Meier curve for OS of patients with high- and low risk scores in the training and validation cohorts. (c–d) Risk- 
score distribution in the training and validation cohorts. (e–f) The survival status plot associated with risk score in the training and 
validation cohorts. (g–h) Heatmap of the expression of the five CSRs in the high- and low-risk groups and the training and validation 
cohorts.
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survival time and status plot are shown in Figure 
3c and 3e, respectively. In addition, to better know 
the expression level of the five genes in the train-
ing set are plotted in Figure 3g. All these evidences 
were displayed in the GEO validation data set and 
showed this five genes model was practicable in 
other independent datasets (Figure 3b, d, f, and h).

Independent prognostic value of the risk model

The UCR analysis revealed that patients in the 
high-score group had significantly shorter survi-
val than patients in the low-score group (HR: 
1.670; 95% CI: 1.361 − 2.051; P < 0.001). In 
addition, the clinical variables included age, 
stage, and stage were significantly associated 
with survival. A MCR further showed that the 
risk score (HR: 1.884; CI: 1.518 − 2.339, 
P < 0.001) was an independent prognostic indi-
cator (Figure 4a and b).

Prognostic nomogram for the prediction of 1-, 
2-, and 3-year overall survival of patients with GC 
was constructed base on prognostic model and 
clinical characteristics. (Figure 5b). The total 
points of each patient provided the estimated 1-, 
2-, and 3-year survival times. indicated an ideal 
fitting and excellent accuracy of the nomogram. 
These results indicated that the nomogram 
demonstrated good accuracy prediction of GC 
patients. Moreover, we also plotted the ROC 
curves were performed to evaluate the accuracy 
of the models, with the area under the curve 

(AUC) scores ranged from 0.539 to 0.630 
(Figure 5a).

The efficacy of the prognostic model was vali-
dated by another independent cohort GSE84437, 
we applied the same formula to verification cohort 
from the GEO cohort. This finding was consistent 
with the results of the training cohort (Figure 4c 
and d) (Figure 5c and d).

High risk group involved in multiple 
immune-related pathways

KEGG-GSEA suggested that high-risk group was 
markedly negatively related with immune-related 
biological processes, including The B cell recep-
tor signaling pathway, Chemokine signaling 
pathway, RIG-I-like receptor signaling pathway, 
T cell receptor signaling pathway and Toll-like 
receptor signaling pathway (Figure 6 and 
Table 3).

Risk scores association with immune infiltration

We observed that risk scores had a positive rela-
tionship with the infiltrating levels of the macro-
phages (r = 0.203 P = 1.026e-4) (Figure 7d). In 
contrast, CD4 + T cells (r = −0.138 P = 0.009) 
(Figure 7c) and B cells (r = −0.116 P = 0.027) 
(Figure 7a) had a negative relationship with risk 
scores (P < 0.05), which may provide a novel 
horizon for investigating the GC immune 
infiltration.

Figure 4. The model was combined with a regression analysis of clinical indicators. (a-b) Assessment of the contribution of each 
factor to GC survival by UCR and MCR analysis in training cohort. (c, d) Assessment of the contribution of each factor to GC survival 
by UCR and MCR analysis in verification cohort.
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Figure 6. The GSEA of possible pathways of high-risk groups in GC.

Figure 5. The ROC curves and nomograms for predicting survival rate of GC. (a, c) ROC curves (receiver operating characteristics). (b, 
d) Nomogram.
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Table 3. cGAS-STING pathway related gene sets that associated with high-risk group.
NAME NES NOM p-val FDR q-val FWER p-val

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY −1.904 0.006 0.069 0.163
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY −1.760 0.031 0.113 0.404
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY −1.736 0.025 0.130 0.458
KEGG_CHEMOKINE_SIGNALING_PATHWAY −1.566 0.048 0.184 0.743
KEGG_APOPTOSIS −2.238 0.000 0.003 0.002
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY −2.194 0.000 0.003 0.004

ES, enrichment score; NES, normalized enrichment score; NOM, nominal; FDR, false discovery rate. 

Figure 7. Correlation analysis of the risk score model and immune cell infiltration. (a) B cells, (b) DCs, (c) CD4 + T cells, (d) 
macrophages, (e) CD8 + T cells, (f) Neutrophils.
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Analysis of risk groups immune 
microenvironment

The relationship between risk groups and the 
tumor immune microenvironment was further 
analyzed. As a result, the results indicated that 
many immune cell types were significantly 
altered among groups, including B cells mem-
ory, T cell follicular assistance, NK cells acti-
vated, and Dendritic cells resting (P = 0.001, 
0.011 0.034, and 0.033, respectively) in TCGA 
dataset (Figure 8a). Similarly, T cells CD8, 
T cells CD4 memory resting, T cells CD4 mem-
ory activated, T cells follicular helper, 
Macrophages M1, Macrophages M2, Dendritic 
cells activated, Mast cells activated and Mast 
cells resting (P = 0.0001, 0.003, 0.001, 0.004, 
0.018, 0.0001, 0.036, and 0.034, respectively) 
(P = 0.045) were significantly altered among 
groups in GEO dataset (Figure 8b).

Identification of prognostic subtypes of 
tumor-infiltrating immune cells (TIICs) in GC

Several studies have already demonstrated that 
TIICs correlates with prognosis in several malig-
nancies [15]. Thus, we performed K-M analysis 
that tried to investigate the prognostic subtypes 
of TIICs. The outcome uncovered that T cells 
follicular helper (P = 0.039) and T cells CD4 
memory activated (P = 0.042) were positively 
associated with worse OS of GC patients in 
TCGA datasets (Figure 9a and b). In GEO data-
sets, T cells follicular helper (P = 0.003) and 
T cells CD4 memory activated (P = 0.023) were 
positively associated with worse OS (Figure 9c 
and d). However, B cells memory (P = 3.373e-4) 
and Mast cells activated (P = 0.027) were nega-
tively associated with worse OS (Figure 9e 
and f).

Discussion

The cGAS-STING pathway has emerged as 
a potential mechanism to induce inflammation- 
mediated tumorigenesis. Actually, persistent 
activation of this pathway and its downstream 
effectors, such as TBK1, has been connected 
with chronic inflammation and cancer 

progression [2, 16]. The development of GC is 
a multistep process that involves continuous 
inflammatory damage. Some studies have 
observed correlations between cGAS-STING 
pathway members, the tumor microenviron-
ment, and cancer immunotherapy. Recent stu-
dies have analyzed that the STING activation 
promotes natural killer (NK) cells and CTLs 
responses against tumors [17]. The activation 
of STING pathway is accompanied by down- 
expression of several immune inhibitory fac-
tors, including PD-L1, IDO, and FOXP3 [18]. 
Lower expression level of STING, and STING 
expression levels are positively correlated with 
prognosis, that is, a higher STING expression 
level results in a better prognosis in GC 
patients. Therefore, the expression of CSRs 
was dysregulated in GC and played a crucial 
role in progression and prognosis of GC 
patients.

In our study, UCR and MCR analyses were 
applied to construct an CSRs risk model. 
Subsequent K-M analysis revealed that patients 
with higher risk scores exhibited lower OS. We 
further validated the sensitivity and accuracy of 
the model in the GEO database. Furthermore, 
our GSEA data analysis revealed that the 
immune pathways were significantly enriched 
in the high-risk group, such as The B cell 
receptor signaling pathway, Chemokine signal-
ing pathway, T cell receptor signaling pathway 
and Toll-like receptor signaling pathway.

IFNB1 and IFNA4 belong to the type I IFNs. 
IFN-β1 direct anti-angiogenic, and anti-tumor 
on the one hand, and stimulate immune pro-
duction on the other hand [19]. Recently, 
a vesicular stomatitis virus expressing IFN-β1 
was able to create a ‘comfortable’ tumor micro-
environment for immune checkpoint inhibition 
[20]. IL6 is a pro-inflammatory cytokine, which 
acts in the initiation of innate immune 
responses [21]. Moreover, stromal IL6 pro-
motes cancer immune-evasive microenviron-
ment through metabolic reprogramming [22]. 
NFKB2 gene is part of the NFKB pathway 
family genes, which is an important regulator 
in immune reactivity in various types of cancer 
including GC [23]. Notably, it has been shown 
that NFKB directly regulates PD-L1 
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transcription by binding to the PD-L1 promo-
ter [24]. One of the TRIM family members, 
TRIM25, participates in the regulation of bio-
logical processes, including tumor cell prolif-
eration, invasion and migration [25,26]. In 
addition, decreased TRIM25 expression in 
tumor tissues were positively correlated with 
poor prognosis of GC patients [27].

Another important finding in the present study 
that there is a significant correlation between the 
risk scores and the macrophages, CD4 + T cells 
and B cells infiltration. Moreover, we identified 
differential expression of three types of immune 
cells between High- and Low-Risk groups. In addi-
tion, two types of TIICs are associated with OS of 
GC patients. Recent studies have shown that the 
higher CD4 + T cell density and CD4/CD8 ratio 
were associated with worse OS in tumor, including 
ductal carcinoma in situ, glioblastoma, and GC 
[28–30]. Tumor-infiltrating B cells play a critical 
role in regulating the anti-tumor immune response 
in melanoma, and the absence of B cells is asso-
ciated with a poor response to immune checkpoint 
inhibitors (ICIs) [31,32]. CD8 + T cells constitute 
an important part of the immune response to 

tumors and play a critical role in killing tumor 
cells [33]. Macrophages could display antitumour 
M1 and protumour M2 phenotypes, and high 
density of M1 macrophages was associated with 
better overall survival in GC [34]. This implies that 
cGAS-STING related genes prognostic model may 
act as potential prognostic indicators, as well as 
reflect the immune status. Collectively, this newly 
identified cGAS-STING-related genes risk score 
signature based on the combination of five genes 
could significantly predict the prognostic risk and 
might provide insight into immunotherapy in GC.

Conclusion

In summary, we developed a cGAS-STING path-
way-related prognostic index of GC and the risk 
score model can be conveniently used to predict 
prognosis, and we found that the underlying mole-
cular mechanisms may affect immune-related bio-
logical processes and TIICs, which may provide 
novel insights into the relationship between GC 
and tumor immune infiltration. However, these 
results need to be further validated in future 
studies.

Figure 8. Immune landscape of patients from High- and Low-Riskgroups. Differences of 22 subtypes of immune cells between two 
groups of TCGA dataset(a), and GEO database (b).
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Highlights

(1) A cGAS-STING pathway-related prognostic index to pre-
dict the prognosis of GC was constructed.

(2) The prognostic index is an independent index for GC 
prognosis.

(3) The prognostic index may affect immune-related bio-
logical processes and TIICs.
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