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Abstract

As soybean cultivars are adapted to a relatively narrow range of latitude, the effects of climate

changes are estimated to be severe. To address this issue, it is important to improve our under-

standing of the effects of climate change by applying the simulation model including both

genetic and environmental factors with their interactions (G�E). To achieve this goal, we

conducted the field experiments for soybean core collections using multiple sowing times in

multi-latitudinal fields. Sowing time shifts altered the flowering time (FT) and growth pheno-

types, and resulted in increasing the combinations of genotypes and environments. Genome-

wide association studies for the obtained phenotypes revealed the effects of field and sowing

time to the significance of detected alleles, indicating the presence of G�E. By using accumu-

lated phenotypic and environmental data in 2018 and 2019, we constructed multiple regression

models for FT and growth pattern. Applicability of the constructed models was evaluated by the

field experiments in 2020 including a novel field, and high correlation between the predicted and

measured values was observed, suggesting the robustness of the models. The models presented

here would allow us to predict the phenotype of the core collections in a given environment.
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1. Introduction

Soybean is one of the globally important crops that are rich in pro-
tein and lipid. Therefore, soybean has been used for food, oil, and in-
dustrial applications. As the demand has been highly increasing
along with world population growth, soybean is cultivated all over
the world. However, the cultivation area of each soybean cultivar is
restricted to a relatively narrow range of latitude to achieve its higher
yield based on the environment-dependent growth conditions, such
as flowering time (FT) and vegetative growth.1,2 Therefore, the effect
of climate changes is considered to be severe, and actually, the esti-
mation that seed yield of soybean would be decreased to one-fourth
by the 2080s relative to the 1980s has been reported.3 Considering
these situations, controlling FT and vegetative growth, which are de-
termined by multiple interactions between genes and environments,4

will be invaluable to maintain soybean yield under changing environ-
mental conditions.

To address this issue, two major strategies have been undertaken
to date; one is to develop cultivars that are tolerant to environmental
changes based on genetic information (G) by applying classical
breeding or genetic modification including genome-editing technol-
ogy.5 A wide variety of cultivars or accessions has been established
worldwide; 13,921 accessions have been collected throughout Japan,
whereas 111,482 soybeans have been conserved in the world in
2020 according to Food and Agriculture Organization of the United
Nations (http://www.fao.org/wiews). To enhance the studies on the
accumulated soybean cultivars and assist in finding novel traits for
crop improvement, mini core collections of Japanese soybean culti-
vars and world soybean cultivars have been established based on the
genetic and agronomic traits characterizations.6

The other is to develop growth simulation models by measuring
growth patterns in multiple environments (E). By applying environ-
mental factors into an ideal simulation model, it outputs a predicted
phenotype; such a simulation model allows us to make a planting
plan in preparation for future changes in the environment. Many
attempts have been made to construct growth simulation models of
soybean using various approaches, such as simulations based on ma-
chine learning methods,7 and eco-physiological process.8,9 However,
the number of genotypes or environments used to construct the
mathematical models was limited. For instance, Nakano et al.8 simu-
lated a soybean growth using only three genotypes, whereas
Setiyono et al.9 designed a model only based on mid-latitudinal re-
gion in the USA and few cultivars mainly cultivated in the tested
area. When the model constructed by Setiyono et al.9 was applied to
different maturity groups of cultivars grown in different environ-
ments, low accuracy of prediction performance has been observed,10

indicating that a wide variety of tested genotypes as well as environ-
mental conditions is crucial to accurately simulate growth patterns
and provide the model with robustness. Furthermore, not only the G
or E effect alone but also the interaction between G and E, termed
G�E, results in phenotypic variations.11–13 Soybean growth and de-
velopment are highly dependent on environmental factors, especially
temperature change,14,15 while the effects vary greatly depending on
the genotypic background.16 Significant effects of G�E on shoot ar-
chitecture such as plant height, node number, and branch number
have also been reported in soybeans.17–19

Since understanding the genetic basis for the G�E effect in growth
dynamics is essential to simulate growth modelling, and solid geno-
type information is essential to accomplish this objective, we recently
performed re-sequencing of representative soybean accessions in
Japanese collections including Japanese landraces, cultivars, and

world cultivars.20 Using high-density SNP markers obtained from
the re-sequencing, we detected well-known loci for FT and seed
colour-related traits by genome-wide association studies (GWAS).20

With the completion of whole-genome re-sequencing for the collec-
tions, our next purpose is to make a robust simulation model by ac-
cumulation of diverse phenotypes under varying environmental
conditions.

In this study, we propose a new strategy to develop a growth sim-
ulation with the integration of G�E into the model. To achieve this
goal, 93 soybean cultivars from the Japanese and world core collec-
tions were selected to increase the diversity of genotypes. These culti-
vars were grown in two fields in different latitude with multiple
sowing times to increase the environmental variations. We evaluated
the effects of the field and sowing time on flowering and growth phe-
notypes. GWAS were used to select a large set of genomic alleles as-
sociated with the flowering and growth, which could be input into
the prediction model. We constructed the multiple regression models
by fitting a parameterized model function to the prepared dataset
and evaluated the constructed models by new dataset obtained from
field experiments including a novel field.

2. Materials and methods

2.1. Plant materials, field experiment, and phenotyping

Field experiments were carried out in two experimental fields over 3
years starting from 2018. One was the field at University of
Miyazaki (MF; 31.83�N, 131.41�E), located in the southern culti-
vated area of Japan, and the other was the field at Tohoku
University (TF; 38.46�N, 141.09�E), located in the northern culti-
vated area of Japan. In 2020, we also used the experimental field at
Kazusa DNA Research Institute (35.33�N, 139.99�E), located in the
middle east cultivated area of Japan, for the purpose of evaluating
the applicability of the model. In the fields at MF and Kazusa DNA
Research Institute (KF), the climatic factors (average temperature,
sunshine duration, and precipitation rate) were monitored by
Automatic Weather Station Weather ROBO set in the field
(Climatec, Inc.). In the field of TF, the climatic factors were provided
by the Automated Meteorological Data Acquisition System
(AMEDAS) at Kashimadai (38.46�N, 141.09�E), which is located in
the field of TF.

Ninety-three soybean cultivars used in this study were listed in
Supplementary Table S1, of which 84 consisted of Japanese core col-
lection and 4 selected from world collections.6 A starter fertilizer
containing N, P, and K, in the ratio 1.4:3.2:3.4 and 80 kg granular
magnesium lime per 1,000 m2, were applied. The width of the row
was designed as 80 cm with 40 cm intra-row spacing in each field,
and seeding spot spacing was set as 60 cm. Before sowing, the seeds
were kept in humid condition for about 4 days to reach �50% of
moisture content, and three seeds were sown in a single spot and
thinned into 1 plant after 2–3 weeks. In 2018, the seeds were sown
on 24 July in MF and on 6 June in TF, and 8 and 3 individuals for
each cultivar were planted in MF and TF, respectively. In 2019, at
least two individuals were analysed in three sowing times, i.e. in June
(12th in MF and 2nd in TF), July (23rd in MF and 2nd in TF), and
August (16th in MF and July 30th in TF). In 2020, 6 individuals in
MF and TF and 3 individuals in KF were analysed in three sowing
times, in June (2nd in MF, 3rd in TF, and 9th in KF), July (7th in
MF, 2nd in TF, and 9th in KF), and August (4th in MF, 30 July in
TF, and 4th in KF). The total numbers of the individuals in the fields
were summarized in Supplementary Table S2.
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We investigated the flowering date at least once a week. We mea-
sured plant height (main stem length) once a week for all plants dur-
ing a growing period and calculated the increment of plant height in
a given week based on the difference from the previous week’s value.
After the harvest, the terminal phenotype of plant height was mea-
sured. The trait values obtained by replication in each field were av-
eraged for the analyses in this study. Distributions of the trait values
of the individuals with replications in relation to each of the four
sowing times in MF and TF were presented in Supplementary Fig.
S1. The phenotype data used in this study were provided by the
Supplementary data file.

2.2. Statistical analysis of field data

The relationship between FT and weekly growth of plant height as
well as the relationship between FT and terminal plant height in indi-
vidual fields was calculated based on Pearson’s correlation method
in R software.21 To investigate the effect of genotype, environment,
and G�E interaction on the terminal phenotypes, we performed an
analysis of variance (ANOVA) based on the generalized linear model
using gamma distribution to handle non-normally distributed data.
‘Cultivar’ indicated the variability of G effect whereas ‘environment’
indicated the variability of E effect (consisted of a combination of
field � year � sowing time). For G�E, it was calculated as the inter-
action effect between cultivar (G) and environment (E). The ANOVA
was carried out using ‘stats’ package from R (R Core Team21) and
figures were produced using ‘ggplot2’ package.22

2.3. Parameterization of individual plant growth

By fitting a logistic function to the values of the plant height of an in-
dividual observed at intervals, we obtained its growth curve from the
sowing. The logistic function describes the relation between the days
from the sowing (t) and the plant height (y) and can be represented
by an S-shaped curve that asymptotically approaches its upper
bound (K) and lower bound (0), respectively, when t approaches pos-
itive and negative infinity (Supplementary Fig. S2A). In this study,
we used the following definition to make the value of the function is
0 when t is 0:

y ¼ ðKþ y0Þ
1þ K

y0

� �
e�rt
� y0;

where K and r as well as y0 are the parameters that determine the
shape of the curve (Supplementary Fig. S2B). We used r as an evalua-
tion quantity related to the increasing rate of y. We empirically used
50 as a non-zero value for y0 for all the individuals and the maxi-
mum plant height of each individual for K to fit a logistic function to
the observed data. Therefore, only the values of r were estimated by
the fitting procedure. Note that fitting of the function was carried
out, respectively, for each of the individuals. We carried out fitting of
logistic function by using the ‘SciPy’ library available in the Python
language.23

2.4. Multifactorial prediction models for growth-related

traits

The values of K and r can determine the shape of the logistic function
approximating the growth curve. Therefore, we constructed predic-
tion models that estimate the values of K and r under given condi-
tions. We used a linear model to characterize those quantitative
traits. The linear model accepts genetic factors (G), environmental

factors (E), and their interactions (G�E) as the explanatory variables
and calculates the trait value. The values of the explanatory variables
provided as the inputs are multiplied with their coefficients and then
summed up to obtain an estimation of the trait. When we have indi-
viduals that are indexed from 1 to N, the observed value of the i-th
individual is expressed as follows:

yi ¼ cþ
Xm

h¼1
ahxh;i þ

Xn

k¼1
bkzk;i

þ
Xm

h¼1

Xn

k¼1
ch;kxh;izk;i þ ei;

where h and k are index variables and m and n are, respectively,
numbers of the explanatory variables corresponding to the genetic
and environmental factors. xh;i and zk;i numerically encode the h-th
genetic factor (G) and the k-th environmental factor (E) of the i-th in-
dividual. ah and bk are the coefficients of those factors. Here, xh;i is a
binary dummy variable that corresponds to a genetic factor and indi-
cates the absence or presence of a specific sequence variant by
whether its value is 0 or 1. zk;i is a numerical variable that represents
the value of an environmental factor such as average temperature,
sowing time, and latitude of field. xh;izk;i is the interaction between
the h-th genetic factor and the k-th environmental factor (G�E). ch;k

is the coefficient of the interaction between xh;i and zk;i. Since the ex-
istence of a genetic factor is encoded by a binary variable xh;i, the
value of xh;izk;i is 0 or zk;i depending on the value of xh;i, representing
the selective effect of the environmental factor in a natural manner. c
is a constant. ei is an error term. Here, xh;i and zk;i are observed val-
ues whereas ah, bk, ch;k, and c are model parameters to be deter-
mined. Those model parameters are determined so that the model
values calculated by the explanatory variables are concordant with
the trait values observed.

2.5. Selection of factors for prediction models

We prepared candidates of the genetic factors (G) using variants of
DNA sequences obtained by the whole-genome sequencing (WGS)
in the previous work.20 The WGS data based on the reference
genome Gmax_275_v2.0 softmasked sequences consisted of
10,116,707 SNPs and 2,835,680 indels (at 12,952,387 variant
positions in total) annotated as ‘PASS’ by the GATK variant
caller.24,25 Among those positions, we selected 207,944 variant
positions whose putative impact annotated by the SnpEff soft-
ware26 were ‘HIGH’ or ‘MODERATE’. The categorization of the
selected variants in the 93 cultivars in relation to whether they were
SNPs or indels, bi-allelic loci with a single variant allele or multi-
allelic loci with multiple variant alleles, and homozygous or hetero-
zygous is presented in Supplementary Fig. S3. We used the bi-allelic
loci (156,362 positions in total) in the GWAS for the traits.

We obtained the P-values for the GWAS by using the Hail library
(version 0.2.93) available in the Python language.27 To take the ge-
netic relatedness and population structure latent in the dataset into
account, we first generated a relationship matrix of the 93 cultivars
by the ‘realized_relationship_matrix’ function using all the genotypes
at the selected bi-allelic loci (Supplementary Fig. S4A). This matrix
presented the pairwise measures of genetic relatedness among the
cultivars. We confirmed the relationship among the cultivars that the
matrix presented by the result of hierarchical clustering based on the
genetic relatedness (Supplementary Fig. S4B).

We then prepared a linear mixed model (null model) including the
fixed effect consisting of only an intercept and the random effects
reflecting the genetic background. We described the model by the
‘linear_mixed_model’ function using the relationship matrix as

3A.M. Manggabarani et al.

https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac024#supplementary-data


input. We determined the model parameters including the variances
of the residuals by the ‘fit’ function. We also prepared a linear mixed
model (alternative model) by adding the variant effects at the testing
locus to the fixed effects of the null model and determined the model
parameters. We calculated the P-value at the testing locus by a likeli-
hood ratio test of the two models using a chi-squared test. We iter-
ated the calculation of the P-values for the loci along the
chromosomes by the ‘linear_mixed_regression_rows’ function. We
plotted the P-values in the scale of the negative of the base 10 loga-
rithm [-log10(P-value)] along the chromosomes as the Manhattan
plots.

We iterated the GWAS procedure for the eight environments (i.e.
four different sowing times in 2018 and 2019 in two fields TF and
MF). To select the candidates of the genetic factors for the model of
a trait, we introduced a heuristic method as follows. In each environ-
ment, we first sorted the chromosomal positions used in the GWAS
in the increasing order of their P-value. From the sorting result, we
obtained the top N significant chromosomal positions (we used
N¼100 in this study). We then accumulated the top N significant
chromosomal positions from all the eight environments and gener-
ated the initial set of the candidates of the genetic factors by exclud-
ing the duplication. This initial set contained the chromosomal
positions that were commonly significant in most of the environ-
ments as well as the ones that were significant in one or a few envi-
ronments. The latter could play important roles in the interaction
between the genetic factors and the environmental factors (G�E)
and used in the following models as G�E explanatory variables.

The iteration of the GWAS procedure for the eight environments
generated eight P-values for each chromosomal position. In relation
to a trait, we defined the statistical significance of a chromosomal po-
sition by the minimum value of the eight P-values. We then sorted
the chromosomal positions in the initial set of the candidates of the
genetic factors prepared as above according to their statistical signifi-
cance and put them into the priority list of the candidates of the ge-
netic factors one by one. If the minimum value of the distances of a
chromosomal position to the members already in the priority list was
less than a predefined threshold of 100 kb, such the chromosomal
position was discarded and not included into the priority list. The
priority lists indicating the orders of the chromosomal positions for
traits FT, K, and r are presented by Supplementary Tables S3–S5. In
the tables, associated P-values and adjusted P-values (q-values) by
the Benjamini–Hochberg procedure for estimation of the false dis-
covery rate (FDR)28 are also presented.

The chromosomal positions were converted to explanatory vari-
ables each of which shows whether an individual has a specific ge-
notype (i.e. a pair of allele types) by using numerical values 1 or 0.
We evaluated the correlation between a pair of explanatory varia-
bles by the Pearson’s correlation coefficient between their profiles
consisting of the values in all the cultivars in the eight environ-
ments. Prepared candidates of explanatory variables in the priority
list were added to the model in an incremental manner up to the in-
dicated number based on the significance level in GWAS under the
condition that the absolute values of the correlation coefficient
among all the explanatory variables remained less than a prede-
fined threshold of 0.5. In the procedure of model construction, we
utilized only the homozygous genotypes and excluded the heterozy-
gous genotypes under the assumption that the heterozygous ones
were rare in the soybean germplasms because they were genetically
fixed (Supplementary Fig. S3). Furthermore, those heterozygous
genotypes could be different from the genotyped lines20 in some
environments and hence were not suitable for model construction.

We excluded the candidates of the explanatory variables when the
number of the cultivars that had the genotype was less than two or
the number of the cultivars that did not have the genotype was less
than two.

We prepared average temperatures of 10 periods after the sowing
(indicated by the variables T0, T10, . . ., T90) as the candidates of envi-
ronmental factors (E) and added them to the model in chronological
order. We included a candidate period into the model if the absolute
values of the correlation coefficient between the candidate and all the
periods already in the model were less than a predefined threshold of
0.5. The correlations among the candidate periods could be deter-
mined by the training data (Supplementary Fig. S5). If we select T0 as
the first choice, only T30 could satisfy the condition above.
Therefore, we used T0 and T30 for all the models in this study. We
also used the sowing time (in the days from the beginning of the
year) and the latitude of the field to include the effects of the day
length as the environmental factors in the model.

We then defined the interactions between genetic factors and envi-
ronmental factors (G�E) by all the pairs of the explanatory variables
so that the selective effects of a sequence variant (G) to either of the
average temperatures, the sowing time, and the latitude (E) could be
reflected in the model. The value of an interaction term can be com-
puted by the product between a binary variable representing a binary
encoded sequence variant and a numerical variable representing ei-
ther of the average temperatures, the sowing time, or the latitude.
The binary variable, known as a dummy variable, indicates the ab-
sence or presence of a specific sequence variant by whether its value
is 0 or 1. If the sequence variant is present, the value of the binary
variable is 1 and its product with the value of the counterpart of the
interaction remains non-zero and can contribute to the model value,
representing the selective effect of the sequence variant to the
environment.

2.6. Determination of model parameters

We determined the values of the parameters in the models by using
the ordinary least squares function of the ‘SciPy’ library available in
the Python language. We used the observed values of the 93 cultivars
in the eight environments comprising of four different sowing times
in 2018 and 2019 in two fields (TF and MF) as the training data and
then evaluated the obtained models using the observed values of the
32 cultivars in the nine environments comprising of three different
sowing times in 2020 in the three fields (TF, KF, and MF) as the test
data. We used the average of the trait values when there were replica-
tions of observations on a cultivar and multiple trait values were
available. We can symbolically denote the models using the trait (P),
genetic factors (G), environmental factors (E), and their interactions
(G�E). Depending on whether the factors G, E, and G�E are used in
the model or not, there can be several patterns of the models repre-
sented as P¼G (only the genetic factors), P¼E (only the environ-
mental factors), P¼GþE (both of the genetic and environmental
factors), and P¼GþE þ G�E (all of the genetic and environmental
factors and their interactions). We examined the prediction ability of
the models adopting the patterns above by increasing the number of
the explanatory variables corresponding to the genetic factors from 1
to 100. We used the Pearson’s correlation coefficient (R) and the
root mean squared error (RMSE) for evaluation of the concordance
between the observed values and the model values for estimation and
prediction, respectively, in the training and test data.
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3. Results

3.1. Effect of field and sowing time on phenotypic

variation among soybean cultivars

A total of 93 soybean cultivars with a wide variety of genotypes,
mainly selected from the Japanese core collection, were used in this
study (Supplementary Table S1). These soybean cultivars were grown
in two fields, the experimental fields at MF, located in the southern cul-
tivated area of Japan, and the experimental field at TF, located in the
northern cultivated area of Japan. The environmental conditions of
these fields in the years of field experiments (2018 and 2019) were
summarized in Supplementary Fig. S6. In 2018, we evaluated the phe-
notypic data by applying standard cultivation period of each area, i.e.
sowing in July at MF and sowing in June at TF. In 2019, on the other
hand, multiple sowing time strategies, i.e. sowing in June, July, and
August in each field, were applied with the aim to increase environ-
mental variations. For the target phenotypes, flowering status and
plant height (main stem length) were measured once a week to obtain
the basic information for growth modelling. In addition, terminal phe-
notype of the plant height was measured after harvesting.

To evaluate the effects of field and sowing time, FT observed in
each field and sowing time was compared using the dataset obtained
in June 2018 in TF as a reference (Fig. 1). Regarding sowing in July
in MF, FT patterns were similar between 2018 and 2019 (R¼0.84
and 0.82, regression coefficients¼0.37 and 0.42), which became

�20 days earlier in early-flowering cultivars and 40 days earlier in
late-flowering cultivars compared with the reference (Fig. 1A and C).
In the case of sowing in June, FT became about 10 days earlier in
early-flowering cultivars to 20 days earlier in late-flowering cultivars
in MF (R¼0.88, regression coefficient¼0.83; Fig. 1B). In TF, the
FT in June 2019 was delayed 10 days in all cultivars compared with
that in June 2018 (R¼0.93, regression coefficient¼0.90; Fig. 1E),
presumably due to lower temperature in June 2019 (Supplementary
Fig. S6A). In July-sowing in TF, the FT became about 5 days earlier
in early-flowering cultivars to 20 days earlier in late-flowering culti-
vars (R¼0.94, regression coefficient¼0.68; Fig. 1F). When sown in
August, almost all cultivars flowered from 30 to 40 days in MF and
the FT showed �10 days earlier in early-flowering cultivars to
50 days earlier in late-flowering cultivars compared with that in June
2018 in TF (R¼0.48, regression coefficient¼0.13; Fig. 1D). In TF,
early-flowering cultivars flowered as is the case in August 2019 in
MF, while late-flowering cultivars flowered 10 days later than that in
MF (R¼0.82, regression coefficient¼0.39; Fig. 1G). We also com-
pared the FTs among eight environments by making the correlation
matrix (Supplementary Fig. S7) and found that all combinations of
the conditions showed positive correlation. In terms of cultivar com-
parison, the order of FT was conserved in two fields and three sow-
ing times.

To evaluate the effect of sowing time on the growth phenotype,
correlation analysis between FT and weekly growth of plant height

Figure 1. Scatter plots depicting the FTs for all 93 soybean cultivars in two fields and across three different sowing times compared with the FT in June 2018 in

TF. (A) July 2018 in MF; (B) June 2019 in MF; (C) July 2019 in MF; (D) August 2019 in MF; (E) June 2019 in TF; (F) July 2019 in TF; (G) August 2019 in TF. The corre-

lation and P-value were calculated based on Pearson’s correlation.
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was carried out (Supplementary Figs S8 and S9). At the fourth week
after sowing, FT was negatively correlated with the growth rate in
both fields and all sowing time (R¼�0.31 to �0.07; Supplementary
Figs S8A, E, I, M and S9A, E, I, M), indicating that early-flowering
cultivars tended to grow faster in the early growth phase. At the fifth
week in MF, correlation became positive in cultivars sown in July
and August (R¼0.17 to 0.46; Supplementary Fig. S8F, J, and N),
while it remained flat in cultivars sown in June (R¼0.07;
Supplementary Fig. S8B). At the sixth week in MF, correlation be-
came positive with high growth rate in both early and late flowering
in June sowing (R¼0.31; Supplementary Fig. S8C), while the dimin-
ished growth rate was observed in early-flowering cultivars sown in
July and August 2019 except ones with indeterminate genotypes
(Supplementary Fig. S8K and O). At the seventh week in MF, the di-
minished growth rate was observed in both early- and late-flowering
cultivars sown in June and July (Supplementary Fig. S8D, H, and L).
In TF, negative correlation was observed in all three sowing times at
the fourth week (R¼�0.27 to �0.07), especially the high growth
rate in early-flowering cultivars enhanced the negative correlation in
August (R¼�0.27; Supplementary Fig. S9M). Correlation turned
positive with the high growth rate of late-flowering cultivars sown in
August at the sixth week (R¼0.45; Supplementary Fig. S9N), while
correlation remained flat and negative in June (R¼�0.09 and 0.03)
and July (R¼�0.25; Supplementary Fig. S9B, F, and J). Correlation
turned positive in all of three sowing times in TF at the eighth week
(R¼0.02 to 0.63), and the diminished growth rate of early-
flowering cultivars was observed in July and August (Supplementary
Fig. S9C, G, K, and O). At the 10th week in TF, the high growth rate
was observed in late-flowering cultivars sown in June 2019
(R¼0.36; Supplementary Fig. S9H), while diminished growth ex-
panded to late-flowering cultivars in both June 2018 and July
(Supplementary Fig. S9D and L). These results suggest that the pe-
riod of the high growth rate was significantly affected by sowing
time as well as fields. Thus sowing time shifts resulted in increasing
phenotypic variations under different environmental conditions.

Regarding the effects of sowing time against the terminal pheno-
type of plant height, the ANOVA results strongly suggest that plant
height was significantly affected by the interaction between cultivar
and sowing time (G�E; Table 1). To evaluate the relationship be-
tween the FT and terminal phenotype of plant height in three sowing
times and two fields, the FT and each terminal phenotype were plot-
ted (Fig. 2 and Supplementary Table S2). As shown in Fig. 2, correla-
tions between the FT and plant height were observed in each field
and sowing time. In June 2019 TF, the FT was delayed in compari-
son to June 2018 TF as described above (Fig. 1E), and in addition,
the range of plant height shifted to become shorter. The correlation
between FT and plant height could be conserved between June 2018
TF and June 2019 TF populations. Significantly lower temperature,
�3–5�C on average (Supplementary Fig. S6), during late-June to
mid-July in 2019 compared with 2018 could be the cause of delay in
flowering and shorter length in main stem in June 2019 TF. Thus,
the temperature in the initial phase of growth greatly influenced
growth, suggesting the temperature effect should be considered to
construct a prediction model.

3.2. GWAS of phenotypes in different fields and sowing

times

As we obtained phenotypic data under different fields and sowing
times, we conducted GWAS for FT and plant height against 156,362
SNPs and indels genotyped based on our previous re-sequencing

data.20 Results of GWAS for FT were shown in Supplementary Figs
S10, S11 and Table S6. We used 1% and 5% FDR (q<0.01 and
q<0.05) as the thresholds for statistical significance. As expected,
SNPs associated with two major FT loci, E2 (chr10_45310798)29

and E3 (chr19_47623288),30 were identified in both fields.
However, the significance of these alleles was different between the
two fields. In TF, E2 and E3 were detected as top peaks of the
Manhattan plots in both June 2018 and 2019, while the SNP on
Glyma.12G073900 (chr12_5520945) encoding two-component re-
sponse regulator related to FT was detected as the top peak in June
and July 2019 in MF. In the context of field-specific associations, the
SNP on Glyma.07G166200 (chr07_25705280) was identified in
June 2019 in MF, while in TF the SNP on Glyma.08G013500
(chr08_1057296) was identified in June 2019. The early-flowering
tendency in MF compared with TF might be the cause of these varia-
tions between two fields. Similarity of GWAS results between August
2019 in TF with an early-flowering trend and June 2019 in MF, in
which Glyma.12G073900 was detected as top peak followed by E2
would support this estimation.

For plant height, the SNPs associated with Dt1/GmTFL1
(chr19_45208498) for determinate stem growth habit31 were identi-
fied in all conditions (Supplementary Figs S12, S13 and Table S6). In
addition, the SNP on Glyma.12G076000 (chr12_5829324) was
detected in August 2019 MF and July 2019 TF, and a cluster of
SNPs and indels is in the genome region of chr9_3247955-
chr9_3273449 correspond to Glyma.09G038700 and
Glyma.09G039000 were identified in June 2019 MF, July 2018 MF,
August 2019 MF, and June 2018 TF. These results indicated overall
similarity in the genotype–phenotype relation among the population
used under tested environments. This feature would be an advantage
to create the growth model based on the plant height as target
phenotype.

Table 1. ANOVA for variation of plant height phenotype among

soybean cultivars grown in 2018 and in three different sowing

times in 2019 in MF and TF

df Sum Sq Mean Sq F-value Pr(>F)

2018 MF and TF
Cultivar (G) 92 224,731 2,443 18.486 <2e�16***

Field (E) 1 354,101 354,101 2,679.742 <2e�16***

G � E 91 69,172 760 5.753 <2e�16***

Residuals 745 98,444 132
2019 MF

Cultivar (G) 92 97,857 1,064 10.298 <2e�16***

Sowing time (E) 2 27,691 13,845 134.047 <2e�16***

G � E 183 31,592 173 1.671 9.43E�06***

Residuals 443 45,756 103
2019 TF

Cultivar (G) 92 130,939 1,423 12.135 <2e�16***

Sowing time (E) 2 30,117 15,059 128.395 <2e�16***

G � E 175 64,215 367 3.129 1.90E�15***

Residuals 215 25,216 117
All data

Cultivar (G) 92 389,813 4,237 35.089 <2e�16***

Field � year �
sowing time (E)

7 506,342 72,335 599.03 <2e�16***

G � E 633 220,702 349 2.887 <2e�16***

Residuals 1,403 169,416 121

***Significant differences at the level of P< 0.0001.
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3.3. Prediction models of growth-related traits interact-

ing with the environment

By applying multiple sowing times in 2019, we could accumulate
phenotypic data with a variety of genotype and environmental com-
binations. Thus, we conducted the construction of multiple regres-
sion models using phenotypic data obtained in 2018 and 2019. We
constructed the prediction models of FT, K (maximum value of plant
height), and r (growth rate) as the growth-related traits (details were
described in Sections 2.3–2.6, and results of GWAS in r are shown in
Supplementary Figs S14 and S15). As already described earlier, we
set the threshold of the absolute value of the correlation coefficient to
0.5 while we added the explanatory variables corresponding to the
sequence variants and the temperatures to the models in an incre-
mental manner. Under this condition, we could select T0 and T30

from the candidates, respectively, corresponding to the average tem-
peratures in the periods from the sowing and a month later.
Hereafter, we commonly used T0 and T30 in addition to the sowing
time and the latitude of the field in the environmental factors of the
models. The sequence variants as the genetic factors in the models
were selected so that they were located at least 100 kb apart from
each other. Changing the number of genetic factors from 1 to 100,
we constructed models using four patterns (P¼G, P¼E, P¼GþE,
and P¼GþE þ G�E), and then evaluated the relationship between
the complexity of the models and their prediction ability
(Supplementary Figs S16–S18). The details of the 100 genetic factors
used for traits FT, K, and r are, respectively, presented by
Supplementary Tables S7–S9 and S10–S12.

Figure 3 shows the scatter plots of the relationship among the esti-
mated values by the model using 50 genetic factors and the observed
values in the training data. With the models consisting only of the ge-
netic factors (P¼G), the samples of an identical cultivar had the
identical values in any environment and could not reflect the environ-
mental conditions. The eight datasets constituting the training data
in eight colours had the same distributions of the estimated values in
the vertical direction in the scatter plots (Fig. 3A, E, and I). With the
models using only the environmental factors (P¼E), the samples in
the identical environments had the identical values that were

determined by the average temperatures (T0 and T30), the sowing
time, and the latitude of the field. The estimated values of the eight
datasets were aligned in the horizontal direction in the scatter plots
(Fig. 3B, F and J). On the other hand, the models using the environ-
mental factors in addition to the genetic factors (P¼GþE) could in-
clude the additive effects by the average temperatures, the sowing
time, and the latitude of the field as well as the 50 genetic factors
(Fig. 3C, G, and K). Since the effects by the environmental factors
differed in the eight environments, the ranges of the estimated values
could be distributed in the vertical directions. However, since the
magnitude relationship among the estimated values in each of the
environments was determined solely by the identical genetic factors,
all the environments had the identical variance of the distribution of
the estimated values and only the base values determined by the envi-
ronmental factors differed with each other, and therefore looked as if
they were generated by translating the identical distribution of the
values in the vertical direction. With the models consisting of the ge-
netic and environmental factors and their interactions (P¼GþE þ
G�E), the offset values according to the environments were added to
the estimated values even for individuals of an identical cultivar,
reflecting the environmental condition to the distributions of the esti-
mated values (Fig. 3D, H, and L). The assigned parameters for each
of G, E, and G�E in the models (P¼G, P¼E, P¼GþE, and
P¼GþE þ G�E) are presented by Supplementary Tables S13–S24.

3.4. Genetic factors selected for the model construction

The genetic factors selected for the model construction were summa-
rized in Supplementary Tables S7–S9 and S10–S12. Regarding the
genetic factors selected for the FT model, alleles of major flowering,
E2 and E3, were selected in top three genetic factors (FT02 and
FT03), while allele of determinate growth, Dt1/GmTFL1, was se-
lected on FT11. In addition, an allele of the SNP on
Glyma.12G073900, which was identified in GWAS on FT in June
2019 MF, July 2018 MF, July 2019 MF, June 2018 TF, July 2019
TF, and August 2019 TF was selected as FT01. Alleles of the SNPs
on the genes encoding TIR-NBS-LRR class disease resistance pro-
teins and other disease resistance proteins, Glyma.11G022700

Figure 2. Relationship between FT and terminal plant height. Red and orange represent MF in 2018 and 2019. Blue and green represent TF in 2018 and 2019.

Square, cross, and triangle dots represent individual cultivar sown in June, July, and August, respectively. Solid, dashed, and dotted-dashed lines represent re-

gression lines for cultivars sown in June, July, and August, respectively (A color version of this figure appears in the online version of this article).
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(FT21), Glyma.19G134200 (FT33), Glyma.16G215300 (FT57),
Glyma.06G259800 (FT63), Glyma.19G134100 (FT64),
Glyma.03G087700 (FT84), and Glyma.13G187900 (FT86), were
selected for the FT model. The SNPs identified in GWAS on FT in
MF or TF were also selected in the FT model, such as
chr08_1057296 on Glyma.08G013500 encoding serine ammonia-
lyase (FT04) and chr16_20809600 on Glyma.16G102800 encoding
zinc ion binding protein (FT05).

For the genetic factors selected for the K model, alleles associated
with Dt1/GmTFL1 were selected as K01, while alleles associated
with E2 and E3 were selected as K09 and K03, indicating the high
contribution of both determinate growth habit and FT in the model
for K. In addition, an allele of the SNP, chr04_44462957, which was
identified in GWAS on PH in August 19 MF, on Glyma.04G179400
encoding thiol-disulphide oxidoreductase was selected as K08, and
an allele of the SNP, chr05_35695296, which was identified in
GWAS on PH in June 19 TF, on Glyma.03G140800 encoding AP2
domain transcription factor was selected as K32. In the K model,
four variant sites on the gene related to plant hormone signalling

were selected, i.e. chr09_40442457 on Glyma.09G179600 encoding
aminopeptidase M1 (K16), chr20_41782778 on Glyma.20G180000
encoding auxin response factor (K40), chr19_46732225 on
Glyma.19G213900 encoding drought-responsive family protein
(K56), and chr10_44287403 on Glyma.10G210600 encoding auxin
response factor (K96). As is the case in the model of FT, K model
contains number of alleles on the genes related to defense response,
such as chr08_15511073 on Glyma.08G192900 encoding TIR-
NBS-LRR disease resistance protein (K45), chr15_11651285 on
Glyma.15G142400 encoding glucan endo-1,3-beta-glucosidase
(K60), chr07_5726747 on Glyma.07G064100 encoding NB-ARC
domain-containing disease resistance protein (K79) and
chr02_45790034 on Glyma.02G274800 encoding leucine-rich re-
peat receptor-like protein kinase family protein (K99).

For the genetic factors selected for the r model, E2, E3, and Dt1/
GmTFL1 were selected (r03, r04, and r09, respectively) from alleles
of major flowering and determinate growth loci, indicating both
flowering and determinate growth habit traits affect the growth rate.
Another FT-related allele, chr12_5520945 on Glyma.12G073900

Figure 3. Scatter plots depicting the relationships between the observed values and the estimated values of the traits FT, K, and r calculated by the models with

50 genetic factors using the training data in 2018 and 2019. (A–D) The estimated values of FT were, respectively, calculated by the models P¼G, P¼E, P¼GþE,

and P¼GþE þ G�E; (E–H and I–L) the estimated values of K and r were calculated in the same way; the horizontal axis and the vertical axis show the observed

values and the estimated values, respectively. Samples in TF and MF are indicated by small circles with blue and red edge colour. Samples observed in June,

July, and August in 2019 are coloured in cyan, light green, and light red. Samples in 2018 are coloured in yellow. The Pearson’s correlation coefficient between

the observed values and the estimated values is indicated at the bottom right of each plot. The RMSE is also indicated in the parentheses (A color version of this

figure appears in the online version of this article).
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encoding two-component response regulator was selected as r14.
The indel variant selected as r65 was chr11_5982489 on
Glyma.11G079500 encoding a homolog of Arabidopsis MCA1 that
involved in mechano-stimulated calcium uptake mechanism and in
mechanosensing in the primary root. SNPs on the other gene related
to root development were also selected in the r model, i.e.
chr16_31864920 on Glyma.16G158400 encoding multicopper oxi-
dase (r12). Similar to FT and K model, r model contained alleles on
defense-related genes, i.e. chr07_5719283 on Glyma.07G064100
encoding NB-ARC domain-containing disease resistance protein
(r13), chr18_7973445 on Glyma.18G082100 encoding RPM1-like
disease resistance protein (r19), chr16_33803483 on
Glyma.16G176700 encoding WRKY family transcription factor
(r53), chr06_1291246 on Glyma.06G017500 encoding PBL21-like
serine/threonine protein kinase (r62), and chr19_39524087 on
Glyma.19G134200 encoding putative disease resistance protein
(r84).

3.5. Evaluation of the prediction models

To provide the phenotype data for evaluation of the created models,
we selected 32 cultivars from 93 tested ones and cultivated with three
sowing times in MF and TF in 2020. In addition, to test the applica-
bility of the created models to the different field conditions, we culti-
vated the same 32 cultivars in the experimental field of Kazusa DNA
research Institute (KF) located in Kanto, a middle east cultivated area
of Japan (A3 region5). Environmental conditions in three fields were
summarized in Supplementary Fig. S19, and FT observed in 2020
were shown in Supplementary Fig. S20. By applying the accumulated
environmental and phenotypic data, the constructed models were
evaluated. We first evaluated the relationship between the number of
the genetic factors in the models and the prediction ability using the
samples in TF, KF, and MF observed in 2020 (Supplementary Fig.
S21). When the number of the genetic factors in the models increased
from 1 to 100, the Pearson’s correlation coefficient indicating the
concordance between the observed and predicted values in the sam-
ples in 2020 of FT, K, and r, respectively, achieved the maximum
values 0.93, 0.90, and 0.58. The correlation coefficient increased
with increasing the number of the genetic factors and reached to the
plateaus. For the succeeding analysis, therefore, the models using 50
genetic factors harbouring the relevant genes were adopted as suffi-
cient from the viewpoint of the prediction ability. The scatter plots
showing the improvement process of the concordance between the
observed values and the estimated values by the models P¼G, P¼E,
P¼GþE, and P¼GþE þ G�E are presented in Supplementary
Figs S16–S18. The distribution of the genetic factors in the 93 culti-
vars is presented in Supplementary Fig. S22, showing the bidirec-
tional relationships of the variant patterns among the cultivars as
well as among the genetic factors. Relationships between the geno-
types of a part of the genetic factors and the distributions of the trait
values in the eight environments (MF and TF in 2018 and 2019) are
presented in Supplementary Fig. S23.

The coefficients of the terms (G, E, and G�E) in addition to the
constant term in the models (P¼GþE þ G�E) for the traits FT, K,
and r (Supplementary Tables S16, S20, and S24) are visually pre-
sented in the bottom of Supplementary Fig. S22. In the FT model, for
example, Dt1/GmTFL1 showed a slight positive G�E interaction in
latitude while a negative interaction in T0. In the K model, on the
other hand, Dt1/GmTFL1 had strong negative G�E interaction both
in latitude and T0. In addition, T30 was positively interacted with
Dt1/GmTFL1 in the K model. In the r model, sowing time positively

interacted with Dt1/GmTFL1 and the other three environments indi-
cated negative interaction. Interestingly, E2 and E3, well-
characterized genes for flowering, indicated completely opposite
G�E interactions to each other in the FT model. Thus, the present
models are informative to examine G�E interaction for flowering,
plant height and initial growth of soybeans and further analysis on
individual genetic factors would enable us to determine what G�E
interaction contributes for the traits.

For the evaluation, the relationship between the observed values
and the predicted values in each field was compared using the samples
observed in 2020. In relation to the three traits FT, K, and r, Fig. 4
shows the relationship between the observed values and the predicted
values in the plot containing all the data in MF, TF, and KF. In the
case of the FT model, the Pearson’s correlation coefficient (R) and the
RMSE, respectively, became 0.92 and 5.4, indicating high predictabil-
ity of the constructed model for the new data not only in the trained
field but also the data from the novel field (Fig. 4A). In the plot of KF
samples, a high prediction ability (R¼0.91 and RMSE¼4.7) was
obtained (Supplementary Fig. S24C). TF samples aligned on the diago-
nal line in the plot and a high prediction ability (R¼0.97 and
RMSE¼4.0) was obtained (Supplementary Fig. S24B). In the plot of
MF samples, the August-sowing samples were underestimated and
their predicted values were lower than observed values, resulting in a
relatively low prediction ability (R¼0.85 and RMSE¼6.8;
Supplementary Fig. S24D). In the case of the K model, the correlation
coefficient and the RMSE were, respectively, 0.89 and 131.7, indicat-
ing high predictability of the model even adding the data from the
novel field (Fig. 4B). In the plot of KF samples (Supplementary Fig.
S24G), the correlation coefficient and the RMSE, respectively, became
0.87 and 171.7 in spite of the tendency of higher prediction values
compared with observed values. Regarding the r model, the correla-
tion coefficient and the RMSE were, respectively, 0.57 and 0.026, in-
dicating relatively low predictability of the model partly due to the
tendency of higher prediction values compared with observed values
in August-sowing samples (Fig. 4C). In the plot of KF samples, this
tendency in the August-sowing samples was observed, resulting in a
relatively low prediction ability (R¼0.62 and RMSE¼0.024;
Supplementary Fig. S24K). TF samples aligned on the diagonal line in
the plot and a high prediction ability (R¼0.92 and RMSE¼0.015)
was obtained (Supplementary Fig. S24J). In the plot of MF, the
August-sowing samples were overestimated and their predicted values
were higher than observed values and the June- and July-sowing sam-
ples were underestimated and their prediction values were lower than
observed values, resulting in a low prediction ability (R¼0.44 and
RMSE¼0.035; Supplementary Fig. S24L). The former tendency could
have been caused by the high temperature in 2020 from mid-August
to early September, which had not been experienced in 2018 and
2019. Other than the samples in MF, however, the samples including
those in KF (i.e. in TF and KF) were aligned along the diagonal line
and achieved a high prediction ability (R¼0.77 and RMSE¼0.020),
and thus it could be considered that the constructed model for r is ba-
sically applicable to the new data from the trained field and the novel
field. Overall, it was confirmed that the constructed regression models
for FT, K, and r were applicable to new data including a novel field.

4. Discussions

Crop growth simulation models have been widely studied to enable
us to produce important crops stably under the environmental varia-
tions in climate change. However, the construction procedure of a
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robust model utilizing both genetic and environmental factors with
their interactions (G�E) remains to be established. Here, we evalu-
ated the effects of environments on the phenotype through field
experiments of soybean core collections (93 cultivars) using multiple
sowing times in multi-latitudinal fields. Using the high-density ge-
netic markers obtained by re-sequencing of the collections and the
detailed growth phenotypes under the diverse environments, we con-
structed multiple regression models targeting the quantitative traits
including the FT and the plant height.

4.1. Contribution of environmental factors in soybean

growth and development

As a result of multiple sowing time comparisons, the sowing time shifts
from June to July and August shortened the time from sowing to flow-
ering in both MF and TF. Among the tested soybean cultivars, order-
ing of the FT was not affected by sowing time shift in both MF and
TF, indicating higher genotype contribution. Considering the environ-
mental factors affected by sowing time shifts in our experiments, an in-
creased temperature in the early growth phase and/or a decreased day
length could be considered as the cause of shortening the time from
sowing to flowering. The multiple sowing results obtained by Setiyono
et al.,32 where the variation in sowing times from April to June length-
ened the time from sowing to flowering, opposite to our result. In this
condition, the temperature was increased depending on the sowing
time shift similar to our experiment, while day length became longer
depending on the sowing time shift opposite to our experiment.
Therefore, the environmental factors that affected FT by the sowing
time shifts could be considered as day length rather than temperature.
Another field study confirmed that the sowing time shift caused the
vegetative period to be shorter or longer depending on the photoperiod
during the cultivation time.33,34 Thus, it is clear that sowing time shift
affects FT based on the day length shift.

In soybean, it has been reported that a temperature range from
18�C to 26�C is ideal for growth and development.35 However, a
study based on growth modelling by Boote36 predicted that 22–24�C
is the optimum temperature for soybean growth. In the fields, a higher
daily average temperature was observed in MF than in TF by 3–4�C,
and this temperature difference might be reflected in the enhanced

growth rate at the fourth week, when most of the cultivars were before
flowering. This indicates that the higher temperature condition basi-
cally increases the growth rate, which might be explained by the im-
provement of leaf photosynthesis, since the direct target of
temperature is the expansion of leaf area.16 Considering the lower tem-
perature effect, on the other hand, a day average temperature <22�C
was observed until mid-July in 2019 in TF (up to 7 weeks for June
sowing), and resulted in the significant reduction of terminal plant
height in comparison with June 2018 TF. This result supports the esti-
mation by Boote,36 and a long period of day average temperature
<22�C might affect the growth potential of soybean cultivars.

4.2. Environmental factors selected for the model

construction

We selected T0 and T30 from the average temperatures of ten 10-day
periods after the sowing (T0 to T90). T0 and T30 were selected in
chronological order from the sowing under the condition that they
were not correlated to each other in the training data obtained in the
eight environments, meaning that the ones other than T0 and T30

were correlated with at least one of T0 and T30. If we loosen the
threshold for the correlation (0.5 was used in this study), we could
include the average temperatures of more periods. Although further
optimization of the number of the periods in the models remained
for the training data with more variety of meteorological conditions,
the values of T0 and T30 could characterize the chronological pat-
terns of the average temperatures, improving the prediction ability
both by the environmental factors (E) and their interactions with ge-
netic factors (G�E) as shown in Figs 3 and 4, Supplementary Figs
S16–S18. In this way, T0 and T30 were selected without information
of trait values, but the coefficients of the terms including them in the
models were determined using the trait values in the training data.
Therefore, if there existed the growth characteristics in response to
temperature as above, the models were expected to represent those
characteristics in a numerical manner.

The model construction process did not use any information indi-
cating which environment the samples belong to. Since the parame-
ters of the models were determined so that the estimated values and
the observed values of all the samples were concordant with each

Figure 4. Scatter plots depicting the relationships between the observed values and the predicted values of the traits FT, K, and r calculated by the models

(P¼GþE þ G�E) with genetic factors (50 sequence variants) and the environmental factors (average temperatures, sowing date, and latitude) and their interac-

tions using the test data in 2020. (A) Relationship between the observed values and the predicted values in relation to the FT model; (B) relationship in relation to

the K model; (C) relationship in relation to the r model. The horizontal axis and the vertical axis show the observed values and the predicted values, respectively.

Samples in TF, KF, and MF are indicated by small circles with blue, green, and red edge colour. Samples observed in June, July, and August in 2020 are coloured

in cyan, light green, and light red. The Pearson’s correlation coefficient between the observed values and the predicted values is indicated at the bottom right of

each plot. The RMSE is also indicated in the parentheses.
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other as a whole, specific samples sharing the same environmental
condition could be found in the regions separated from the diagonal
line. For example, in the Fig. 3D, H, and L, the samples were ar-
ranged in linear symmetry with respect to the diagonal line as a
whole, however, we could find that several groups of samples were
clustered and arranged in the region either over or under the diago-
nal line. This is one of the reasons why the prediction accuracy in a
specific field remained low (Supplementary Fig. S24). This separation
was partly caused by the baseline values determined by the environ-
mental factors (E). We could observe that the ordering of the samples
in the groups was properly estimated and predicted (Figs 3 and 4).
This result indicated the applicability of the developed model was
evaluated in new environments (i.e. in 2020 including KF). As we
used the same set of the soybean accessions in 2020, evaluation of
the applicability of the developed model for new combinations of ge-
netic factors would deserve further investigation.

4.3. Genetic factors selected in the multiple regression

models

By performing GWAS separately in each field and sowing time, the
peaks of Manhattan plots for a given trait showed different patterns
depending on the field and sowing time conditions. For the variants as-
sociated with FT, two major genes E2 and E3 were detected in almost
all conditions with a field-dependent manner. Although E2 and E3
were detected as the top peaks in TF, they were not detected as the top
peaks in MF. Instead, Glyma.12G073900 was detected as a top peak
for June and July in MF, which encodes pseudo-response regulator
protein reported to be interrelated with E2.37 In the association with
plant height, Dt1/GmTFL1 was significantly detected in all eight envi-
ronmental combinations, yet the peak also showed different pattern
across environments. These results indicate that these genetic factors
might have interaction with the environmental effect or called G�E.

Indeed, as the result of genetic factors selected from the multiple
regression model, in which the effect of G�E was considered, those
major genes were found to significantly contribute to the model esti-
mation. For example, under the interaction effect of Dt1/GmTFL1
and temperature (T30) in the FT model (Supplementary Fig. S22), the
coefficient appeared to be positive indicating that the function of
Dt1/GmTFL1 regarding FT control could be enhanced under warm
growing conditions. This result is consistent with the study by Ogiso-
Tanaka et al.38 who found that Dt1/GmTFL1 was significantly asso-
ciated with FT in the population grown in Tsukuba in 2013, when
the temperature was relatively higher during early growing period,
but not in 2011 which had lower temperature condition.38

Moreover, the selection of Dt1/GmTFL1 in the FT model reflects its
pleiotropic effects in regulating multiple traits as reported in the pre-
vious studies.39–42 Yue et al.43 have investigated the role of Dt1/
GmTFL1 to regulate not only plant height but also FT in soybean by
its interaction with a transcription factor FDc1 to repress the expres-
sion of APETALA1 (AP1).43

Taking advantage of the genetic factors selected in our con-
structed models, we identified alleles on the genes that have been
reported to play important roles in plant growth and development.
For genetic factors in the K model, Glyma.04G179400 encodes the
homolog of Arabidopsis DCC1, which has been reported to be in-
volved in shoot development. DCC1 encodes thioredoxin that inter-
acts with carbonic anhydrase 2 to regulate mitochondrial complex I
activity, and mutation of this gene led to low shoot regeneration in
Arabidopsis callus.44 Glyma.13G136700 encodes the homolog of

Arabidopsis LRR receptor kinase, AT2G37050, which has been
identified highly accumulated in the Arabidopsis root and proposed
to be involved in root development by regulating the expression of
the CLASP family protein45 that involved in promoting microtubule
stability.46 Another allele on Glyma.12G076900 encodes the homo-
log of Arabidopsis RRP41L protein, which is predicted as 30-50-exo-
nuclease involved in cytoplasmic mRNA decay.47 Mutation on
RRP41L has been shown to affect early seedling growth such as
delayed germination and reduced early growth rate in Arabidopsis.47

Glyma.09G179600 encodes the homolog of Arabidopsis membrane-
associated M1 protease (APM1), which has been suggested to be in-
volved in the cell division, root meristem development, and vascular
tissue maintenance by interacting with transcription factors
PLETHORA and BABY BOOM.48 Loss-of-function mutants of
APM1 resulted in root growth defect in Arabidopsis.48

Glyma.03G140800 encodes the homolog of Arabidopsis PLT2,
which has been reported to regulate biosynthesis and transport of
auxin to coordinate growth and differentiation,49 as well as to spec-
ify stem cell niche50 in Arabidopsis root. Glyma.05G166400 encodes
the homolog of Arabidopsis homeodomain–leucine zipper contain-
ing protein, ATHB14, which is involved in the determination of
adaxial-abaxial polarity in leaf and ovule primordium.51

For genetic factors in the r model, several genes related to organ
development were selected. For instance, Glyma.19G118900 enco-
des the homolog of Arabidopsis VAR3 zinc-finger protein, which
involves in chloroplast and palisade cell development.52

Glyma.10G143600 encodes the homolog of Arabidopsis LCD1,
which reported to be involved in internal leaf formation, altering me-
sophyll cell arrangement.53 In addition, recent study shows that mu-
tation in LCD1 caused delay of leaf senescence revealed by reduction
of chlorophyll degradation in tomato leaves.54 It was assumed that
LCD1 delays the chlorophyll degradation by regulating key genes in
the chlorophyll degradation pathway and senescence-associated
genes.54 Glyma.01G040900 encodes a putative DExH box RNA
helicase, the homolog of Arabidopsis ESP3 (AT1G32490). ESP3 has
been investigated to play a role in controlling cell wall-related pro-
teins, such as peroxidases and xyloglucan endotransglucosylases.55

Glyma.15G008000 encoding the homolog of Arabidopsis epidermal
patterning factor-Like 8, EPFL8, has been reported to regulate
ERECTA family receptors with the role in the communication of leaf
boundary and central zone of SAM.56

In this study, we carried out detailed phenotyping of the cultivars
with a wide range of genotypes under a variety of environments cre-
ated by multiple sowing times in two fields. By analysing the
obtained phenotype data, it can be considered that day length and
temperature are the main contributors for phenotypic plasticity in
soybean cultivars. GWAS for the obtained phenotypes showed the
changing effects of individual genetic loci in different fields and sow-
ing time indicating the effect of G�E. Based on accumulated pheno-
typic data, multiple regression models targeting the FT and plant
height were constructed. The applicability of the constructed models
was confirmed by the field experiments data in 2020 including a new
field. As the constructed models were composed of genetic factors in-
cluding known genetic loci, temperatures in growth period as envi-
ronmental factors, and their interactions, it is feasible to simulate the
dynamics of growth pattern under a given environmental condition.
Therefore, the data set obtained in this study would contribute to
sustainable soybean cultivation in the future climate change.
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