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Temporal asymmetries in auditory coding and
perception reflect multi-layered nonlinearities
Thomas Deneux1,*, Alexandre Kempf1,*, Aurélie Daret1, Emmanuel Ponsot2 & Brice Bathellier1

Sound recognition relies not only on spectral cues, but also on temporal cues, as

demonstrated by the profound impact of time reversals on perception of common sounds. To

address the coding principles underlying such auditory asymmetries, we recorded a large

sample of auditory cortex neurons using two-photon calcium imaging in awake mice, while

playing sounds ramping up or down in intensity. We observed clear asymmetries in cortical

population responses, including stronger cortical activity for up-ramping sounds, which

matches perceptual saliency assessments in mice and previous measures in humans.

Analysis of cortical activity patterns revealed that auditory cortex implements a map of

spatially clustered neuronal ensembles, detecting specific combinations of spectral and

intensity modulation features. Comparing different models, we show that cortical responses

result from multi-layered nonlinearities, which, contrary to standard receptive field models of

auditory cortex function, build divergent representations of sounds with similar spectral

content, but different temporal structure.
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S
ince the work of von Helmholtz1, it is well recognized that
sound perception involves frequency decomposition of the
acoustic waves by the auditory system. However, the

frequency spectrum is not the only characteristic that influences
perception and identification of sounds. Psychophysical
experiments in audition have shown that temporal features of
sounds, that is, the sequence of intensity and frequency variations,
are also crucial determinants of perception, not only for sound
localization, but also for their identification2–6. For example, the
recognition of sounds from different musical instruments by
humans strongly depends on the time-intensity profile of the tones
and is strongly impaired by time reversal of the waveform7,8. Even
for simple percepts, such as loudness, temporal features play an
important role9. Numerous psychophysical experiments have
shown that sounds whose intensity is ramping up with time
(up-ramps) are globally perceived as louder or changing more in
loudness than their time-symmetric opposites (down-ramps).
This perceptual asymmetry has been observed for a wide range
of sound durations10–13 and is proposed to emphasize approaching
sound sources relative to sources moving away10 to favour threat
detection. The physiological bases of this perceptual asymmetry
are yet unknown, but several studies found the activity correlates
in later stages of the auditory system. In humans, functional
magnetic resonance imaging studies have shown that up-ramps
produce stronger BOLD signals than down-ramps already in the
auditory cortex14–16. Similarly in monkeys, local field potential
(LFP) and multi-unit recordings in auditory cortex have
demonstrated a positive bias for up-ramps in the global cortical
response, consistent with behavioural asymmetries17,18. Recent
single neuron recordings in cat auditory cortex have suggested the
existence of a positive bias for up-ramps in non-primates, although
this study focused only on very short ramps and found a bias only
for the duration of cortical responses19.

Although all these results suggest a coding asymmetry between
up- and down-ramps, the representation principles of intensity-
modulated sounds in auditory cortex and the computational
underpinnings of asymmetric responses to sounds are largely
unknown, despite their pivotal relevance to the understanding of
natural sound perception. Moreover, it is unknown whether the
asymmetric perception of intensity-modulated sounds is a
shared property of the mammalian auditory system and could
be studied with the powerful tools available for a simpler animal
model, such as the mouse.

In this report, we combined two-photon calcium-imaging
experiments and behavioural assays to show that the positive
bias for up-ramping sounds, as compared with down-ramping
sounds is present in mice at both the cortical and perceptual
level, indicating that this is a general property of the mammalian
auditory system. We demonstrate that this bias is the result of
profound nonlinearities that go beyond sensory adaptation
mechanisms. By analysing the response properties of a
large sample of supragranular cortical neurons, we show that
the temporal modulations of sounds are encoded by spatially
clustered ensembles of neurons that detect specific features about
the time course and amplitude of the modulations. Using
modelling, we also show that the mechanism underlying
the observed perceptual asymmetry is most likely the sequence
of nonlinearities implemented in the multi-layered architecture
of the auditory system to extract divergent, high-level representa-
tions of intensity-modulated sounds.

Results
Mean response asymmetry between up- and down-ramps. We
first asked if mouse auditory cortex is more strongly driven by up-
ramps than by the symmetric down-ramps, although the two

signals have equal cumulative physical intensity, as in primate
auditory cortex. To answer this question, we performed two-
photon calcium imaging in large populations of supragranular
neurons of the auditory cortex (imaging depth from 110mm to
230mm) expressing the protein calcium sensor GCAMP6s through
stereotaxic injection of an AAV-syn-GCAMP6s vector20. Mice
were awake and held head-fixed under the microscope, using a
chronic cranial window and head post implantation (Fig. 1a). This
preparation allowed the imaging of multiple fields of view
(550� 540mm) in the same animal across several days
(a different neuronal population was imaged in each session).
One or two horizontal locations at one to three vertical positions
were sampled in five mice and horizontally remapped (translation
and rotation) with respect to each other, using blood vessel
patterns. Moreover, a gross identification of auditory cortex
subfields21 was also obtained based on intrinsic imaging
maps, as previously reported22 (Supplementary Fig. 1). With this
approach, we verified that across 15 imaging sessions in five mice,
we densely sampled core subfields of auditory cortex, including A1
(B40% of the neurons, mice 2, 3 and 4) and the anterior auditory
field (anterior auditory field (AAF), B45% of the neurons, mice 1,
2 and 5), while we estimate the fraction of neurons from the belt
regions (imaged at the ventral or dorsal borders of core fields) to be
B15% of the neurons. In total, we imaged 4,088 auditory cortex
neurons at a rate of 31.5 frames per second using a resonant
scanner. Stimuli included a randomized presentation of white
noise and 8 kHz harmonic sounds with durations ranging from
100 to 2,000 ms and ramping up or down in intensity. The calcium
signals (Fig. 1b) were corrected for neuropil contamination
(Supplementary Fig. 2), a step that was essential to ensure the
specificity of neuronal response, and temporally deconvolved to
more closely track the actual firing rate variations in each identified
neuron22,23 than can be followed with raw calcium signals
(Supplementary Fig. 3, but note that deconvolved signals are
likely to still contain residual time shifts on the order of tens of
milliseconds due to the slow rise time of GCAMP6s).

Averaging the estimated activity of all recorded neurons, we
observed that population responses to up-ramps were in many
cases larger than for the symmetric down-ramp (Fig. 1c–f).
This was particularly evident for the longer white noise ramps
(60–85 dB sound pressure level (SPL)) for which the activity was
at almost all times larger for the up-ramp than for the down-
ramp (Fig. 1c), and this same trend was also clear for the 8 kHz
harmonic sound (Fig. 1d). Typical responses to the ramps
included onset- and offset-response peaks, which were merged
into a single peak for the shortest ramps (Fig. 1c–f;
Supplementary Fig. 1). Interestingly, the onset responses were
attenuated with increasing ramp duration, which was likely to be
due to superposition of onset and offset responses in shorter
ramps, but may also be due to some inhibitory process (Fig. 1f).
To quantify the asymmetry over the entire time course of the
response, we measured the difference of response integrals for up-
and down-ramps (Fig. 1g,h). This difference was systematically
positive and could be as high as 80±22% (mean±s.e.m., n¼ 15
populations) of the average ramp integral for 2 s white noise
ramps (60–85 dB; Fig. 1g,h). Individual statistical analysis with
correction for multiple testing (Fig. 1g,h), showed significant
asymmetry for most ramp parameters, although shorter ramps
and 8 kHz harmonic sounds displayed weaker asymmetry that did
not reach significance thresholds (Fig. 1g,h). Hence, asymmetries
in the global cortical response between up- and down-ramps are
clearly present in mouse auditory cortex, as observed in other
animal species such as monkeys17,18. In addition, the direction of
the asymmetry is similar to that observed in human sound-level
perception assays, although perceptual asymmetry in humans is
stronger for harmonic sounds than for white noise10,24,25.
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Linear and adaption models do not explain response asymmetry.
These observations raise the question of whether current models of
auditory cortex sound encoding can readily explain up- versus
down-ramp asymmetries. The responses of auditory cortical
neurons are often modelled as linear filters of the sound input,
also called spectro-temporal receptive fields (STRFs)26–28, which
correspond to a two-dimensional (2D) linear filter acting on
the sound spectrogram. In this study, we did not characterize the

STRFs because we could show mathematically that the response
of any STRF filter to our intensity ramps is equivalent to the
convolution of the ramp envelope with a linear temporal filter
(Supplementary Note 1).

Moreover, we demonstrated analytically that, as a general rule
for any linear filter (or sum of linear filters), the integral of the
output is independent of whether the input signal is played
forward or backward (Supplementary Note 1). Hence, any linear
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Figure 1 | Asymmetry of responses to intensity ramps in mouse auditory cortex. (a) Awake head-fixed mouse under the two-photon microscope and an

example of a recorded image time series of GCAMP6s labelled neurons in cortical layer 2/3 of the mouse auditory cortex. (b) Examples of raw GCAMP6s

signals for one neuron (sampling rate: 31.5 Hz). Scale bars, vertical 20% DF/F, horizontal 5 s. (c) Mean deconvolved calcium signals (that is, estimated firing

rate) for 2 s white noise up- and down-ramps (range 60–85 dB SPL, shading indicates s.e.m. across n¼ 15 imaging sessions). (d) Same as c for 2 s 8 kHz

harmonic sound ramps (n¼ 13 imaging sessions). (e) Responses to white noise up-ramps of 100 ms, 250 ms, 1 and 2 s. (f) Same as e for down-ramps.

(g,h) Differences of the integrals of response signals between up and down-ramps (for example, integral of the difference of the two mean signals

shown in c). The differences are normalized by the down-ramp integral. Error bars, s.e.m. When assessed globally (pooling durations together), the integral

differences for each intensity range and spectral content was very significantly positive (Wilcoxon signed-rank test, white noise 60–85 dB: P¼ 2� 10� 5,

50–85 dB: P¼ 7� 10� 9 n¼60 measurements; 8 kHz 60–85 dB: P¼ 1� 10� 3, 50–85 dB: P¼ 2� 10� 3, n¼ 52 measurements). Statistical significance

for individual stimuli is assessed across imaging sessions (white noise: n¼ 15, 8 kHz: n¼ 13) using the single-sided Wilcoxon rank-sum test and a

Benjamini–Hochberg correction for multiple testing applied to the 16 tests (*Po0.05).
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filter model including STRF models, by construction, predicts
equal response integrals for up- and down-ramps. The theorem
is also true if a nonlinear scaling function (for example,
logarithmic-intensity scaling) is applied to the signal before
passing it through the linear filter (Methods; Supplementary
Note 1; Fig. 2a). These analytical results can be illustrated by
showing the responses to up- and down-ramps of a temporal
linear filter optimized to fit the observed cortical data. Despite
optimization, the agreement with measured responses was
very poor (Fig. 2b). This observation corroborates earlier
demonstrations that in general, STRFs fail to explain single
neuron responses to a wide range of sounds29–31. In addition,
here we show that that STRFs are inaccurate for simple intensity
modulations, even at the population level.

Auditory cortical responses are known to show strong
adaptation32 and it was proposed that the STRF model can be
combined with a synaptic adaptation model to better fit cortical
responses31. However, we showed analytically that the adaptation
plus STRF model also preserves the equality of input integrals
(Supplementary Note 1), so that even the best fit of an adaptation
model followed by a linear filter cannot explain the population
data (Fig. 2c,d). Therefore, the clear discrepancy between the
data and the equality of response integrals predicted by simple
or extended STRF models (Fig. 2e) shows that the observed
asymmetry between up- and down-ramps is the result of
unidentified nonlinearities in the auditory system.

Asymmetric encoding of up- and down-ramps. To better
understand the origin of the observed coding asymmetry, we
analysed the sequence of global cortical population activity
patterns produced during up- and down-ramp presentations. To
do so, we defined a measure of similarity between population
activity patterns elicited at different time points of the stimulus
presentation (Fig. 3a; Methods). To evaluate the similarity of

population responses during the up- and down-ramps, we plotted
similarity matrices for all time points of the sound presentations,
including similarity across both ramps (Fig. 3b,c). This allowed us
to identify four different types of population patterns for each
sound quality tested (white noise, Fig. 3b; 8 kHz, Fig. 3c). These
included a response typical of the up-ramp onset, which was
identical to the onset response to a 250 ms constant intensity
sound played at the ramp start level (filled green arrowheads). We
termed this response type as ‘quiet ON’. A reproducible response
pattern was also seen at the up-ramp offset, which was almost
identical to the offset response to a 250 ms constant intensity
sound played at the ramp end level. We termed this response type
as ‘loud OFF’. For the down-ramp, we observed a ‘loud ON’
response pattern immediately after onset, and a ‘quiet OFF’
response pattern immediately after offset, which was more clearly
evident for the 8 kHz sounds. Although some residual similarity
was observed between the ‘loud ON’ and ‘quiet ON’ response
types, these patterns corresponded to a specific encoding of
multiple sound features, including not only the direction
(ON versus OFF), but also the intensity (quiet versus loud) of fast
variations. Besides these salient responses to transients,
specific but more variable activity patterns were produced during
the slow ramping phase of the stimuli, most visibly for the white
noise up-ramp (Fig. 3b). This complex time-intensity code leads
to a very asymmetric response sequences for longer up- and
down-ramps, as seen in the matrices comparing up- and
down-ramp responses (Fig. 3b,c). Importantly, along with
time-intensity coding, we also observed (as expected) sound
quality coding, as the four ON and OFF response patterns for
white noise were distinct from the ON and OFF response patterns
for 8 kHz sounds, despite some similarities for loud ON and OFF
patterns (Fig. 3d). Altogether, this analysis showed that the
population encoding of multiple sound parameters (in particular
the level and direction of intensity modulations) leads to an
asymmetric cortical representation of up-ramping and down-
ramping sounds.

Multifeature coding of intensity modulations. To understand
the functional properties of single neurons underlying the
observed population code, we first aimed to determine the
main types of individual responses present in the data set and
their distributions. We performed a hierarchical clustering of
significant single neuron responses, using the similarity of
temporal response profiles across neurons as a metric (Methods).
First, B63% of the neurons had response profiles non-
discriminable from noise and were classified as weakly or
non-responsive consistent with the reported sparseness of
auditory cortex response in awake rodents33. For the remaining
1,341 neurons, we obtained 13 clusters displaying different
average response profiles (Fig. 4a,b). However here, we used
clustering mainly to organize the data set, and not to identify fully
distinct clusters: although some clusters were clearly separated
from each other, others represented variations of one another in a
continuum. Clusters were first distinguished by their selectivity to
sound quality. Although several clusters responded both to white
noise and 8 kHz sounds, seven of them showed preference
(stronger responses) for white noise and six for 8 kHz sounds.
Another important difference between clusters was their
sensitivity to particular intensity modulation features. Eight
clusters (70% of the clustered population) seemed to respond
to a single precise feature of sounds. These included ‘loud’
offsets as characterized by ‘OFF’ responses to up-ramps, but not
down-ramps and to loud, but not quiet constant sounds as
observed in three clusters (Fig. 4b, Loud OFF, 30% of the cells).
We also observed two clusters of cells responding to ‘quiet’ onsets
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Figure 2 | Cortical response asymmetry is a nonlinear effect. (a) Sketch

of the linear filter model. The input signal is scaled by a nonlinear function

(left) and then goes through a linear kernel (right) to obtain the neuronal

response. (b) Best fit by the linear model of the population responses to the

2 s white noise up- and down-ramps. Scale bars, vertical 0.1% DF/F,

horizontal 1 s. (c) Sketch of the adaption model. The input signal is scaled by

a nonlinear function (left), then undergoes adaptation (middle) and finally

passes through a linear kernel (right). (d) Best fit by the adaptation model of

the population responses to the 2 s white noise up- and down-ramps.

(e) Integral differences between up- and down-ramps for the linear and

adaptation models for any choice of parameters and any ramp waveform

(analytical result) versus experimental integral differences for the 2 s white

noise ramps.
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as characterized by ‘ON’ responses to up-ramps but not
down-ramps and to quiet, but not loud constant sounds
(Fig. 4b, Quiet ON, 18% of the cells) and a small population
was found responding to ‘quiet’ offsets (Fig. 4b, Quiet OFF, 4% of
the cells). In addition, 18% of all clustered neurons (two clusters)
responded in a tonic manner to the loud (or intermediate loud)
part of long ramps (Tonic). In contrast to these very specific
clusters, we found five clusters signalling several intensity
modulation features, including two clusters responding both to
on- and offsets, (Fig. 4b, ONþOFF, 15% the cells) and three
clusters responding both to loud offsets and the central loud part
of the ramp (Fig. 4b, Loud OFFþTonic, 15% of the cells).
All these cluster subtypes were divided into one or two white
noise or 8 kHz preferring cluster, except for Quiet OFF (8 kHz
only) and Tonic (white noise only). Strikingly however, we did
not find Loud ON clusters despite the presence of a specific Loud
ON pattern at the population level (Fig. 3). In fact, Loud
ON patterns correspond to the response of ONþOFF neurons
alone. Therefore, the four identified on- and offset population
patterns, as well as the population pattern observed during slow

up-ramping (Fig. 3) all reflected the combined activation of
several neuronal types detecting different features of the intensity-
modulated sounds. Interestingly, loud and quiet offsets, as well as
quiet onset patterns contained cells very specific to the associated
feature, while loud onset patterns were reflected by the activity of
the less specific ONþOFF neurons. Importantly, almost all of
these neuronal types showed asymmetric responses to up- versus
down-ramps, but only three clusters (239 out of 1,341 neurons,
quiet OFF and ONþOFF) preferred down-ramps for their
preferred spectral signal (white noise or 8 kHz, Fig. 4c).
This sparser encoding of time-intensity features specific to
down-ramps explains the response asymmetry at the population
level.

Spatial organization of feature specific neurons. Next, we
investigated the spatial organization of the clusters, by colour
coding them in the imaging fields of view. We observed a
relatively spread spatial distribution of the different cell types
across imaging fields and mice (Fig. 5a,b). However, in some
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imaging fields it was also clear that, despite some spatial
intermingling, the clusters were unevenly distributed (for
example, mouse 1 Fig. 5a, Supplementary Fig. 4). In three out of
five mice, we obtained multiple imaging sessions across different
days in contiguous regions, either situated in nearby horizontal
positions or at different cortical depths. In mouse 1 (Fig. 5a) and
2 (Fig. 5b) but less in the more sparsely responding region
recorded in mouse 3 (Fig. 5b), we also observed that the regions
richer for one cluster were consistent across recording depths (for
example, 8 kHz OFFþTonic or Quiet OFF, Fig. 5a) and were, in
some cases, horizontally continuous (white noise Loud OFF and
Tonic clusters, Fig. 5a; Quiet ON, Supplementary Fig. 4a).
To quantify spatial clustering, we computed for each cluster a
homogeneity index representing the average fraction of
neighbouring cells within a 30mm radius that belonged to the
same identified cluster (radius size effect are shown in
Supplementary Fig. 4) and compared it with maps, in which
cluster identity was randomly shuffled within each mouse
(for example, inset Fig. 5c). For 12 out of 13 clusters,
homogeneity was significantly higher than in shuffled maps
(Po0.05, Benjamini–Hochberg correction for multiple
testing, n¼ 3 mice; Fig. 5c). Although we did not systematically
investigate this point, comparison between neurons putatively
located in AAF or A1 in the same animal (for example, mouse 2)
did not reveal obvious differences in stimulus responsiveness and
showed a similar distribution of cluster type was observed in both
subfields. Spatial clustering was very significant in each individual

mouse (Supplementary Fig. 4).Together, these analyses show that
the coding of time-intensity features is spatially organized in the
mouse auditory cortex.

Data-driven model of sound encoding nonlinearities. To better
understand what types of nonlinearity could be responsible for
the asymmetric encoding of up- and down-ramps, we searched
for models that could account for our observations, including
asymmetric response integrals, on- and offset responses and
specific sound intensity coding in certain neurons. The simpler
nonlinear models applied to both auditory34,35 and visual36–38

systems combine a linear filter (receptive field) with a nonlinear
function that is expected to capture output nonlinearities, such
as the spike threshold. Initially, we tried to fit such a
linear–nonlinear model (LN model; Fig. 6a) to all white noise
responses of the 13 neuronal clusters. Because the data showed
clear intensity tuning split into groups of cells that either respond
to low or high-amplitude changes, we first assumed that the
sound envelope is encoded through a ‘quiet’ and a ‘loud’ channel
modelled with two different nonlinear scaling functions applied
to the input intensity (Fig. 6a), whose parameters were optimized
for each tested model. The modelled response of each cluster was
thus the sum of two linear filters applied to each of these channels
followed by a nonlinearity (Fig. 6a; LN model; Methods). Using
this approach, the best fit on our training stimulus set (Methods)
was unable to explain 44.2% of the total variance of the responses
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to the test stimulus set (Fig. 6c). More importantly, the LN model
was unable to reproduce the magnitude of the asymmetry
between up- and down-ramp responses (Fig. 6d). We thus
concluded that the structure of LN-type models does not reflect
the computations underlying the observed cortical responses.
Importantly, this implies that neither intensity tuning nor output
nonlinearities are sufficient to explain the observed cortical
asymmetries.

The main reason for the failure of LN-type models is their
inability to account for encoding the combination of certain
features, as observed in a large number of recorded neurons. LN-
type models, for example, fail to explain the responsiveness of visual
cortex complex cells to ON and OFF oriented edges, a property
better modelled by the summation of at least two inputs (ONþ
OFF)38,39. On the basis of this idea, we added to our LN model a
‘middle layer’ of units computing simple linear features and
followed by a rectifying nonlinear function (‘multilayer’ model;
Fig. 6b). The features included tonic responses (transmission of
their input) or first-order derivatives (either positive for ON-units
or negative for OFF-units). In this multilayer model, cortical
responses were then modelled as the sum of fitted linear kernels
applied to these six nonlinear units (Fig. 6b; see Methods and
Supplementary Fig. 5 for the fitted kernels). In comparison with the
LN model, this architecture failed to explain 28.8% of the response
variance in the test set, when the threshold of the rectifying
nonlinearity was set to zero, and failed to explain only 23.1% when
it was fitted to an optimal positive value (Fig. 6c; y40), without any

further output nonlinearity. When quantifying only from the six
clusters preferring white noise, which have a larger signal-to-noise
ratio (SNR), the unexplained variance even dropped to 20.4%
(Fig. 6c; y40) with a visually striking fit to the data (Fig. 6e).
The multilayer model also closely reproduced the asymmetry of
population integrals (Fig. 6d). Moreover, the kernels obtained with
the multilayer model were smooth positive or negative transient
functions with decay time constants of 100–200 ms and thus
compatible with long, polysynaptic, post-synaptic potentials
(Supplementary Fig. 5). This supports the functional plausibility
of the chosen architecture despite its oversimplification with respect
to the underlying biological network.

Together, this analysis shows that more than one nonlinear
processing layer is required to explain the multifeature code
observed in auditory cortical neurons. Interestingly, the result of
this complex transformation of the auditory inputs is an
asymmetric, divergent representation of temporally symmetric
sounds, as can be seen when comparing the population
trajectories for the data and the multilayer model with trajectory
results from the one-layer LN model (Fig. 6f). Interestingly, this
computational scheme and the overrepresentation of particular
features also allows differential boosting of the overall saliency of
up-ramps based on their temporal profile.

Up-ramps are behaviourally more salient than down-ramps.
Are the nonlinearities observed in cortical sound encoding
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actually reflected in the perceived saliency of up- and down-
ramps in mice? To answer this question, we first used the general
observation that more salient stimuli lead to a faster associative
conditioning40,41. We trained two groups of water-deprived,
head-fixed mice to lick after ramping sounds to get a water
reward (Fig. 7a). Although on the first training day, both groups
of mice licked almost irrespective of the sound cue, after seven
training days, lick probability increased during and after
sound presentation, following a similar profile when either
up- or down-ramps were used as a cue (Fig. 7b). However, the
ratio between lick rate after sound offset and before sound onset
increased faster for the group cued with a 2 s white noise up-ramp

(60–85 dB SPL) than for the group cued with the symmetric
down-ramp (Fig. 7c). This suggests that, in the context of this
task, the up-ramp is more salient than the down-ramp, which
results in faster learning. Given the duration of the ramps used in
this task, it is unclear whether the up-ramp is more salient overall,
or if it is only its terminal high-intensity part that most closely
signals the reward (mice had to do at least one lick following
sound offset to get a reward).

To test whether the earlier part of the up-ramp is also more
salient, as suggested by cortical imaging, we used another
associative task. In this task, freely moving mice first rapidly
learned to lick at a tube after an Sþ ramp to get a reward.
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Then, after 4 days, a non-rewarded S� ramp was introduced
and mice learned to avoid licking following this new sound
(Fig. 7d). We observed that, in this task, the response to the
S� ramp spontaneously occurred close to sound onset (Fig. 7e).
Moreover, because the Sþ is already associated with licking, the
association between S� and lick-avoidance is rate-limiting for
the overall discrimination. Consequently, a learning speed
analysis in this task makes it possible to assess the respective
perceptual saliency of ramp onsets when comparing groups
avoiding the up- or the down-ramp. In accordance with the
cortical population response, the rise of individual learning curves
was significantly shorter (192±28 trials, n¼ 12 mice), when the
2 s 60–85 dB white noise up-ramp was the S� compared with the
opposite situation (310±56 trials, n¼ 12 mice, P¼ 0.0046,
Kolmogorov–Smirnov test; Fig. 7g). Note that the individual
learning curves for this task typically display a delay period
during which performance stays at 50% (licking occurs both
on Sþ and S� sounds) followed by a learning phase, in
which mice start to avoid the S� sound42 (Fig. 7f), as observed in
many learned behaviours43. Hence, we measured rise duration
on each individual curve from the end of the delay period to the
end of the learning phase.

Taken together, this data indicates that the 2 s up-ramp is
behaviourally more salient than the down-ramp both in its
initial and terminal phase as predicted by our cortical activity
measurements (Fig. 1c). Hence, the asymmetric encoding of
up- and down-ramps is reflected in the perceptual choices of the
mouse.

Discussion
In this study, we demonstrate three important points. First, we
show that to explain the asymmetric encoding of up- versus
down-ramping sounds in auditory cortex, nonlinear processes are
required (Figs 1 and 2). Several studies have already shown that
auditory cortex is nonlinear through the limitations of linear
models such as STRFs in approximating the responses of single
neurons in the auditory cortex29,30. However, neither the type nor
the magnitude of the nonlinearities nor their consequences
for perception are well characterized. With respect to magnitude
and perceptual impact, our study provides a clear example that
nonlinearities of the auditory system are so large that they
produce population-scale differences in the cortical responses that
correlate very well with the asymmetric perceptual saliency of
up- and down-ramps observed both in mice (Fig. 7) and
humans10. With respect to the type of nonlinearities
implemented by the auditory system, among the variety of
models proposed in the past31,34,35,39, our study provides an
important constraint. We show that simple nonlinear
mechanisms operating at the output of a single layer, such as
adaptation or nonlinear output functions (LN models) can
account neither for the combinations of different nonlinear
features observed in the responses of single neurons, nor for the
global asymmetry of cortical responses to up- and down-ramps.

Several studies have already shown the limits of LN models,
and have successfully proposed extensions, including nonlinear
input scaling or frequency coding functions44, adaptation31 or
gain control mechanisms45. Here we show that despite their
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importance, some of these nonlinearities (nonlinear input scaling,
adaptation) are alone insufficient to explain up- versus
down-ramp asymmetries (Fig. 2). Instead, we propose that a
sequence of nonlinearities embedded in multiple processing
layers, as we exemplify in Fig. 6, is required to explain asymmetric
coding of intensity-modulated sounds. This conclusion is further
supported by the higher fitting accuracy, for various sets of
sounds, obtained with other models simulating two layers35 or
expanding linear models to second order terms34. Indeed, these
models try in essence to locally approximate complex multilayer
architectures, potentially even more complex than the one we
propose to account for our specific stimulus set.

Although our conclusions constrain the generic type of
computations underlying auditory processing, the biological
implementations of such computations could be very diverse.
Multilayer architectures computations could be, for example,
implemented by a sequence of nonlinearities in the ascending
auditory pathway through which increasingly complex features
are produced. The observation of off-responses in the auditory
thalamus both in mice46 and guinea pigs47 is in support of this
view. As these neurons could be a major contributor to cortical
offset responses, it would be interesting to investigate if the
dichotomy between quiet and loud offsets (as we observed for
8 kHz sounds in cortex) is also already present in the
thalamus. However, the multilayer structure of our model could
in principle also reflect cellular nonlinearities (for example,
nonlinear dendritic integration can implement two processing
layers48) or even recurrent connections within or across the
networks of cells, corresponding to the functional clusters we
identified49,50.

The second point demonstrated in our study is that even
stimuli as simple as up- and down-ramping sounds can reveal
novel encoded features in the auditory system, and challenge
current models. In particular, we established that sound intensity
modulations are encoded in the auditory cortex by multiple
neuronal populations that respond to unexpectedly complex
combinations of sound features that not only include frequency,
but also direction of modulation (for example, onset and offset)
and sound level (Fig. 4). A large fraction of cells code very precise
feature combinations (for example, offset of a loud white
noise sound, or onset of a more quiet sound; Fig. 4), whereas
larger groups of cells encode multiple feature combinations
(for example, offset and steady part of a loud sound; Fig. 4).
Previous reports have described tuning to sound intensity35,51 or
to specific temporal features, such as on- and off-responses52 or
the rate of click trains53, but these were often described
independently of other features51 or under particular
anaesthesia52, and so could not be integrated in a general
coding scheme. Here we show that these features are combined
with each other in the same neurons of the auditory cortex,
potentially encoding higher-level perceptual tokens. We also
show that some specific feature combinations are favoured, in
particular the ‘quiet’ onset and ‘loud’ offset present in up-ramps
(Quiet ON, Loud OFF and Loud OFFþTonic; Fig. 4).
This explains the observed asymmetry. It is noteworthy that,
both in the data and the multilayer model, 2,000 ms ramps
globally generate larger asymmetry than 100 ms ramps (Figs 1
and 6d) although the same on- and offsets are present for both
durations. The reason for this discrepancy can be hypothesized
based on the multilayer model simulations. In the multilayer
model, the units detecting elementary on- and offsets (middle
layer, Fig. 6b) are thresholded (parameter y). In longer ramps,
because the central slope is shallow, its contribution to the activity
is subthreshold when y40. In shorter ramps, the central slope is
much steeper and this impacts the activity of on- and offset units
that partially compensates for the asymmetry (note that when

y¼ 0, there is no asymmetry discrepancy between shorter and
longer ramps, Fig. 6d).

As a striking side result of our study, we also show that neurons
encoding the same feature combination are non-randomly
organized across the supragranular layer of the auditory cortex
and tend to cluster spatially (Fig. 5; Supplementary Fig. 4),
forming a complex multifeature map. However, the structure of
this map seems more sparse and diffuse than expected for a
purely columnar architecture. This observation is consistent
with previous reports inferring54 or describing22 iso-functional
intermingled subnetworks in mouse auditory cortex, as well as
with reports indicating that strongly responsive, information-rich
cells are sparse in auditory33 and other cortical areas55,56. Given
the large number of feature combinations that could possibly
exist, but that we did not test in this study, further investigation
will be required to reveal the exact organization of these
subnetworks and their relationship to tonotopic organization.
Nevertheless, our gross localization of imaging fields using
intrinsic imaging indicates that these subnetworks exist within
tonotopic fields (Supplementary Figs 1 and 4).

The third conclusion of our study is that the multifeature code
demonstrated in mouse auditory cortex, and most likely resulting
from the multilayer nonlinear architecture of the auditory system,
allows the encoding of two distinct temporal modulations of the
stimulus with divergent activity patterns, unlike models with a
single-output nonlinearity. This fact is evident when comparing
the population activity trajectories produced by the fitted LN and
nonlinear feature models, respectively (Fig. 6f). It suggests that
the purpose of the nonlinearities implemented throughout the
auditory system is to produce easily separable representations of
distinct temporal sound intensity modulations. Remarkably,
neural networks using multiple layers endowed with linearly
filtered inputs and a rectifying nonlinearity are capable of
generating complex representational features permitting impress-
ive speech or object recognition performance57. It seems that such
networks implement symmetry-breaking principles that are
important for perception. Our results provide novel evidence
suggesting that these principles are also at the source of the
strikingly distinctive percepts generated by sounds bearing
identical spectral content, but different temporal dynamics2,3.

Methods
Animals. All mice used for imaging and behaviour were 6–16-week-old male
C57Bl6J mice. All animal procedures were approved by the French Ethical
Committee (authorization 00275.01).

Two-photon calcium imaging in awake mice. At least 3 weeks before imaging,
mice were anaesthetized under ketamine medetomidine. The right masseter was
removed and a large craniotomy (5 mm diameter) was performed above the
auditory cortex. We then performed three injections of 150 nl (30 nl min� 1),
AAV1.Syn.GCaMP6s.WPRE virus obtained from Vector Core (Philadelphia, PA,
USA) and diluted � 10. The craniotomy was sealed with a glass window and a
metal post was implanted using cyanolite glue followed by dental cement. Two days
before imaging, mice were trained to stand still, head-fixed under the microscope
for 10–20 min per day receiving small sucrose rewards. Then mice were imaged
1–2 h per day. Imaging was performed using a two-photon microscope (Femtonics,
Budapest, Hungary) equipped with an 8 kHz resonant scanner combined with a
pulsed laser (MaiTai-DS, SpectraPhysics, Santa Clara, CA, USA) tuned at 920 nm.
Images were acquired at 31.5 Hz during blocks of 42 s during that randomly chosen
sounds were presented with 2.5 s intervals. Blocks were interleaved by an 18 s pause
repeated until all sounds were played 20 times. White noise and harmonic
(8 kHzþ the five first odd harmonics with a 1/(2nþ 1)2 spectrum) sounds were
played in 23 different intensity modulations, including seven constant sounds of
250 ms at (50, 55, 60, 65, 70, 80 and 85 dB SPL), eight up- and down-ramps
between 50 and 85 dB SPL with four durations (0.1, 0.25, 1 and 2 s) and eight
up- and down-ramps between 60 and 85 dB SPL. In two imaging sessions
(431 neurons), only white noise sounds were tested. All sounds were delivered at
192 kHz with a NI-PCI-6221 card (National Instrument) driven by Elphy
(G. Sadoc, UNIC, France) through an amplifier and high-frequency loudspeakers
(SA1 and MF1-S, Tucker-Davis Technologies, Alachua, FL). Sounds were
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calibrated in intensity at the location of the mouse ear using a probe microphone
(Bruel & Kjaer).

Intrinsic optical imaging recordings. To localize the calcium-imaging recordings
with respect to the global functional organization of auditory cortex, we performed
intrinsic optical imaging experiments under isoflurane anaesthesia (1%). The
brain and blood vessels were illuminated through the cranial window by a red
(intrinsic signal: wavelength¼ 780 nm) or a green (blood vessel pattern:
wavelength¼ 525 nm) light-emitting diode. Reflected light was collected at 20 Hz
by a charge-coupled device camera attached to a macroscope. The focal plane was
placed 400mm below superficial blood vessels. A custom-made Matlab program
controlled image acquisition and sound delivery. We acquired a baseline and a
response image (164� 123 pixels, B3.7� 2.8 mm, image shown in Supplementary
Fig. 1 are cropped around the sound responsive area) corresponding to the average
images recorded 3 s before and 3 s after sound onset, respectively. The change in
light reflectance (DR/R) was computed then averaged over the 20 trials for each
sound frequency. A 2D Gaussian filter (s¼ 45.6 mm) was used to build the
response map (Supplementary Fig. 1). Sounds were trains of 20 white noise bursts
or pure tone pips (4,8,16 and 32 kHz) separated by 20 ms smooth gaps.

Data analysis. Data analysis and modelling was performed with custom-made
Matlab and Python scripts available upon request, as well as the data sets. Only
recordings performed within auditory cortex as assessed with intrinsic imaging were
included in the imaging. Sample size (B4,000 neurons) was chosen to obtain a
representative sampling of auditory cortex as assessed in a previous study22.
All images acquired during a session were registered by horizontal translation to a
template image to correct for motion artefacts (all sessions with visible z motion were
discarded). Regions of interest were then manually selected on the whole cell bodies of
visually identifiable neurons and the mean fluorescence signal F(t) was extracted for
each region. We also estimated the local neuropil signal Fnp(t) for each neuron.
Briefly, (Supplementary Fig. 2a,b) we computed ‘filled-in’ neuropil signal frames
Y(t) by spatially smoothing every data frame X(t) with a Gaussian spatial kernel g
(s¼ 170mm) after excluding the neuron’s region-of-interests represented by a
masked binary image M. This is done using the formula: Y(t)¼ (X(t).M)#g/(M#g),
in which ‘.’ and ‘/’ denote the element-wise multiplication and division and # is the
spatial 2D convolution. Then for each neuron, we computed the neuropil corrected
fluorescence signal Fc(t)¼ F(t)� 0.7 Fnp(t), where Fnp(t) is the mean value of Y(t) in
the neurons’ region of interest. The 0.7 correction factor was chosen according
to the calibration made in another study20 for GCAMP6s in mouse visual cortex,
but we could visually verify that for our data neuropil contamination was
removed with very little artefact while neuron-specific responses were preserved
(Supplementary Fig. 2c).

Baseline fluorescence F0 was calculated as the minimum of a Gaussian-filtered
trace over the 42 s imaging blocks and fluorescence variations were computed as
f(t)¼ (Fc(t)� Fc0)/Fc0. The approximate time course of the firing rate was
estimated using temporal deconvolution as r(t)¼ f0(t)þ f(t)/t, in which f0(t) is the
first derivative of f(t) and t¼ 2 s, as estimated from the decays of the GCAMP6s
fluorescent transients20. This method efficiently corrects the strong discrepancy
between fluorescence and firing time courses due to the slow decay of spike-
triggered calcium rises, as we show in simulations based on GCAMP6s kinetic
parameters (Supplementary Fig. 3). However, as our simulation also shows, it does
not correct for the relatively slow rise time of GCAMP6s, producing a time delay
on the order of 70 ms between peak firing rate and peak deconvolved signal
(Supplementary Fig. 3). Note that deconvolution is a linear operation and thus
cannot be the cause of asymmetric integrals observed for up and down-ramps
(Supplementary Note 1). Weak nonlinearities have been observed for the
conversion of action potentials into the GCAMP6s signals, most particularly
superadditivity of calcium transient amplitudes. As we show that a linear model
followed by a nonlinear function cannot explain the observed data (Fig. 6), we can
rule out the involvement of GCAMP6s superaddivity in the asymmetry observed
for up- and down-ramps. However, in the absence of extensive characterization of
GCAMP6s in our imaging conditions, we cannot fully exclude that another
uncharacterized nonlinearity of GCAMP6s participates in the asymmetry. The
integrals of population and single cluster responses were computed between the
time of sound onset and the time of sound offsetþ 500 ms. The normalized
difference of integrals (Iup and Idown) between up- and down-ramps was computed
as 2 (Iup� Idown)/(Iupþ Idown).

Analysis of population pattern similarity. Population activity at time t of the ith
repetition of sound j was represented by a 4,088-dimension vector Vi

t;j containing
the firing rates of all imaged neurons. The similarity between population responses
to sound j at time t and to sound j0 at time t0 was computed as the mean correlation
between all single-trial vectors pairs s t; jð Þ; t0; j0ð Þð Þ ¼orðVi

t;j; Vi0
t0 ;j0 Þ4i;i0 , where r

is the Pearson correlation coefficient between two vectors. For (t,j)¼ (t0 ,j0), this
measure evaluates the reproducibility of the response patterns across trials (in this
case, the pairs i¼ i0 are excluded from the averaging). In the plotted similarity
matrices, similarity was evaluated frame by frame after smoothing the signals with
a Gaussian filter (s¼ 60 ms). Note that because trial to trial variability of single
neuron responses is very large in mouse auditory cortex22, the correlation between

single-trial population vectors is generally low (B0.2). Thus, the average cross-trial
correlation (that is, our similarity measure) takes generally low values.
However, the idea of this framework is to compare the similarity measure to the
self-reproducibility measure. In particular, two population patterns can be
considered indistinguishable, given the observed single-trial variability, when their
similarity is as high as the individual reproducibility measures (diagonal of the
similarity matrix).

Single-cell clustering analysis. Clustering was used to organize the imaged
neuronal responses. Due to the large variability observed in many neurons, this
analysis is not exhaustive, but rather aims at identifying principal classes of
responses within our data set. Clustering was performed across the 13 imaging
sessions, in which we played both white noise and 8 kHz harmonic sounds
(3,657 neurons). Response traces for all sounds were smoothed using a Gaussian
filter (s¼ 31 ms). Before clustering, we selected significantly responsive
(assessed by testing for a difference of the pooled responses to all stimuli against
their baseline using a paired Wilcoxon signed-rank test, Po0.05) and selective
neurons (significant modulation by one of the stimuli, Kruskal–Wallis test,
Po0.05) neurons. For the 2,343 neurons that passed both tests, the SNR was

calculated as
R

dt rðtÞj jh itrials

� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

dth rðtÞ� rðtÞh itrials

� �2itrials

q
. We observed that

the SNR distribution was long tailed with a small fraction of cells responding with
high SNRs. To base the clustering on the clearest signals, we first selected the 30%
of the cells with largest SNR. Using the Euclidean distance on z scored response
traces (that is, normalized by their standard deviation), as a similarity metric across
cells and the ‘furthest distance’ as a measure of distance between clusters, we
established a hierarchical clustering tree. The tree was thresholded to yield 50
different clusters. This method yielded a large number of small clusters, which after
visual inspection appeared to contain noisy responses (hence very dissimilar to
other clusters). We therefore excluded clusters containing o10 cells. Applying this
criterion, we obtained 13 clusters. Non-clustered cells were then assigned to 1 of
the 13 clusters with which they had the highest correlation (Pearson correlation
coefficient) provided that this correlation was 40.1. After this procedure, 1,341
neurons were assigned to a cluster while 1,002 cells were not assigned. Inspection of
their responses showed that the latter were weakly or non-responsive cells.

Behaviour. We measured sound salience indirectly by measuring learning speed
during associative conditioning. In the first task, water-deprived mice (33ml g� 1 per
day) were head-fixed and held in a plastic tube on aluminium foil. A 2-s white noise
ramp sound (range 60–85 dB) was presented every 6–16 s (uniform distribution)
followed by a 1 s test period during which the mouse had to produce at least one lick
on a stainless steel water spout to receive a 5ml water drop. Licks were detected by
changes in resistance between the aluminium foil and the water spout. By increasing
random lick rates, mice received almost all available rewards within 2–3 days, but the
time-locking of licks to the sound increased more slowly (Fig. 7c). Learning speed
through which we estimate relative salience of up- and down-ramps was calculated
by quantifying the number of post-stimulus licks divided by the number of pre-
stimulus licks. The second task was a stimulus avoidance (or Go-NoGo) task. Mice
were freely moving in a transparent box equipped with a water spout flanked by an
infrared detector. When a mouse approaching the spout was signalled by the
detector, a 2-s white noise ramp was played (range 60–85 dB). During the first 4
days, only a rewarded Sþ ramp was presented (either up or down, depending on the
training group). Mice had to signal their licking by breaking the infrared beam for
41.125 s (licking threshold) during a 1.5 s time window after sound offset to get a
reward. All mice reached 480% correct performance on this task after 4 days of
training. Then, a distractor S� ramp was introduced with direction opposite to the
Sþ . If mice licked above the Sþ licking threshold after the S� was presented, a
time out of 8 s was issued in addition to the 5 s interval before the next trial. No time
out was issued after incorrect Sþ trials. Beam breaks were measured as a continuous
voltage signal (Fig. 7e) that was thresholded to compute lick duration. Salience of the
sounds in this task could be compared through the time necessary for going from 20
to 80% of plateau performance. Behavioural analyses were all automated thus no
animal randomization or experimenter blinding was used.

Cortical response models. We tested different models to account for the mean
cortical response r(t) to the envelope s(t) of the intensity-modulated sounds
converted to dB SPL (nonlinear function). The linear model (Fig. 2a) corresponds
to the convolution of s(t) with a causal kernel h(t), defined over tA[0; 1] s, that was
fitted to the data using the Moore–Penrose pseudo-inverse method29. For the
adaptation model31 (Fig. 2b), an adapted version of the input sd(t) was computed as
sd(t)¼ s(t)(1� d(t)) with d(t) solution of the differential equation:

@d
@t
¼ u 1� dðtÞ½ �sðtÞ� dðtÞ=t

Then a linear kernel was applied to sd(t) to fit the cortical response as for the linear
model. The best fit of the model to the 2 s white noise ramps was obtained by a
brute force search for parameters u and t. This fitting approach illustrates our
analytical demonstration that both the linear and adaptation model cannot account
for asymmetric responses to the up- and down-ramps described in Supplementary
Note 1. Note also that the linear temporal filter used here is fully equivalent to a
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spectro-temporal filter when applied to sounds that have identical spectral content
(Supplementary Note 1).

We also tested different models to account for the 13 response clusters ri(t)
observed in our data set (Fig. 6). For all models, the input was split into ‘loud’ sL(t)
and ‘quiet’ sQ(t) channels computed as sigmoid functions of the input:

sL tð Þ ¼ 1

e�
sðtÞ � mL

s þ 1

sQ tð Þ ¼ 1

e
sðtÞ� mL

s þ 1
� �

e�
sðtÞ� mQ

s þ 1
� �

In all models, the three parameters of these two functions were optimized using a
brute force approach to best approximate the fit between the final output of the
model and the data.

For the LN model, we modelled the response of cluster i as

riðtÞ ¼ FiðsQ�hQ;iðtÞþ sL�hL;iðtÞÞ
in which hQ,i and hL,i are two kernels defined on tA[0; 2] s and
Fi(x)¼ ai(x� x0,i)þ ci if xrx0,i and Fi(x)¼ bi(x� x0,i)þ ci if x4x0,i is a
monotonous piecewise-linear function. Fitting was done by first determining the
kernels that best fit the data before applying the nonlinearity, and then finding the
parameters of Fi(x) that minimize the discrepancy between the sum of the kernel
outputs and the data.

For the full nonlinear feature model, a layer of six nonlinear feature detectors
(three ‘loud’, three ‘quiet’) were constructed as fQ j L;onðtÞ ¼ Gð@sQ j L

@t � wðtÞÞ,
fQ j L;off ðtÞ ¼ Gð� @sQ j L

@t � wðtÞÞ and fQ j L;tonicðtÞ ¼ G sQ j L � wðtÞ
� �

in which
wðtÞ ¼ YðtÞe� t=t , Y(t) is the Heaviside step function, t¼ 0.05 s and G is
piecewise-linear function (G(x)¼ x� y if x4y and G(x)¼ 0 otherwise (note that a
single threshold value y is used for the six feature detectors). We then modelled the
cortical responses as a weighted sum of the two ‘tonic’ features (no-kernel) and of
the four transient features convolved with linear kernels:

riðtÞ ¼ a:fQ;tonicðtÞþ b:fL;tonicðtÞþ
X

p¼fQ;Lg
q¼fon;offg

fp;q � hp;q;iðtÞ

To fit the model, the scalars a and b, as well as the kernels hp,q,i(t) were obtained
using linear regression solved exactly (Moore–Penrose pseudo-inverse method)
once the nonlinear features had been generated. We either set the threshold y of G
to zero or optimized it together with the parameters of the ‘loud’ and ‘quiet’ input
channels. For evaluation of the fraction of variance accounted by the model, we
first trained the model on a subset of the white noise stimuli (0.25 s constant
sounds at 50, 60, 70 and 85 dBþ all up- and down-ramps between 50 and 85 dB)
and measured the unexplained variance on the response of the model to a test set
of white noise stimuli (0.25 s constant sounds at 55, 65 and 80 dBþ all up- and
down-ramps between 60 and 85 dB).

Data availability. The data that support the findings of this study and the analysis
code are available from the corresponding author upon request.
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