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ABSTRACT Neisseria gonorrhoeae is a Gram-negative bacterium that causes the sexu-
ally transmitted infection gonorrhea. N. gonorrhoeae has progressively developed resist-
ance to all currently prescribed antibiotics, and no vaccine is available. Here, we report
the closed, completed, annotated genome sequences for seven N. gonorrhoeae strains
obtained by single-molecule real-time (SMRT) long-read genome sequencing.

N eisseria gonorrhoeae causes the sexually transmitted disease gonorrhea, which is
currently one of the most common bacterial infectious diseases worldwide. Gonorrhea

commonly presents as urethritis in men and cervicitis in women. Initially, gonorrhea could
be easily treated with penicillin; however, it has since developed resistance to each succes-
sive recommended treatment, placing a burden on health care systems and threatening
to breach last-line antibiotic treatment (1). No N. gonorrhoeae vaccines are available (2).
Whole-genome sequencing of N. gonorrhoeae will provide a useful tool for unraveling the
pathogenesis of this important bacterial species. There are many complete N. gonorrhoeae
genome assemblies in the NCBI Reference Sequence Database; however, most of these
were obtained using short-read Illumina sequencing. One limitation of short read lengths
is that many repetitive features such as simple DNA sequence repeats (SSRs) and gene
duplications may be lost during automated assembly (3). There are at least 36 translational,
phase-variable genes in N. gonorrhoeae (4). In addition, N. gonorrhoeae contains 19 copies
of silent, variable pilS genes, which can recombine with the pilin expression gene (5).
Therefore, long-read sequencing (e.g., single-molecule real-time [SMRT]) is important for
obtaining closed, complete genome sequences for N. gonorrhoeae pathogenesis research.
Here, we used SMRT sequencing to sequence seven N. gonorrhoeae strains, 1291 (6), MS11
(7), O1G1370 (8, 9), 88G285 (8, 9), O2D156 (8), 98D159 (8, 9), and SK92-679 (10), isolated
from mucosal and disseminated gonococcal infections, and report their closed, annotated
whole-genome sequences. The improved synteny of these genome sequences will be use-
ful for studying phase-variable and duplicate genes in N. gonorrhoeae.

N. gonorrhoeae strains were grown on GC agar supplemented with 1% IsoVitaleX (BD
BBL) at 37°C and 5% CO2 overnight and subcultured for 4 h. Cells were harvested from the
plates, and genomic DNA was prepared using the GenElute kit (Sigma-Aldrich); PacBio
long-read sequencing was carried out at SNPsaurus (Eugene, OR). SMRTbell libraries were
prepared using the Express template prep kit 2.0 according to the manufacturer’s protocol
(Pacific Biosciences, CA). The samples were pooled into a single multiplexed library and
size selected using Sage Sciences’ BluePippin (BP) system according to the manufacturer’s
recommendations, with the 0.75% DF marker S1 high-pass 6 kb to 10 kb v3 run protocol
and S1 marker. A size selection cutoff of 8,000 (BP start value) was used. The size-selected
SMRTbell library for each strain was annealed and bound according to the SMRT Link
setup, pooled, and sequenced using Sequel II chemistry v1.0 at SNPsaurus. The raw reads
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were converted to FASTA format using SAMtools (11). Flye v2.8 (12) was used to assemble
and polish the sequenced genomes. The assembly quality was assessed using BUSCO v3
(13). Default parameters were used for all software unless otherwise specified. An average
coverage of;195-fold was obtained. The assembled sequences were annotated using the
Prokaryotic Genome Annotation Pipeline (PGAP) during NCBI GenBank submission of the
closed genome sequences (14). Information for each strain/genome/plasmid is summar-
ized in Table 1.

Data availability. The genome sequences and whole-genome sequencing (WGS)
reads have been deposited at NCBI. The accession numbers for the closed genome
sequences and the raw data are provided in Table 1. The master record for the WGS
reads and closed annotated genome sequences can be found at NCBI under BioProject
accession number PRJNA743132.
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