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The nucleotide-binding oligomerization domain (NOD)-like recep-
tor pyrin domain containing 3 (NLRP3) responds to a vast variety
of stimuli, and activated NLRP3 forms an inflammasome, which in
turn is associated with conditions such as atherosclerosis, Alz-
heimer’s disease, and diabetes. A multilayered regulatory mecha-
nism ensures proper NLRP3 inflammasome activation, although
the structural basis for this process remains unclear. This study
aimed to investigate the cryo-electron microscopy structure of the
dodecameric form of full-length NLRP3 bound to the clinically rele-
vant NLRP3-specific inhibitor MCC950. The inhibitor binds to the
cavity distinct from the nucleotide binding site in the NACHT
domain and stabilizes the closed conformation of NLRP3. The
barrel-shaped dodecamer composed of the inactive form of NLRP3
is formed mainly through LRR–LRR interactions on the lateral side,
and the highly positively charged top and bottom sides composed
of NACHT domains provide a scaffold for membrane association.
The cryo-electron microscopy structure suggests that oligomeriza-
tion of NLRP3 is necessary for its membrane association; it is subse-
quently disrupted for activation, hence serving as a key player in
controlling the spatiotemporal NLRP3 inflammasome activation.
These findings are expected to contribute to the development of
drugs targeting NLRP3 in future.
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Nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs) are cytosolic sensors of pathogen- and

danger-associated molecular patterns (PAMPs and DAMPs)
that induce innate immune responses (1–5). The NLR family
pyrin domain containing 3 (NLRP3), which consists of an
N-terminal pyrin domain (PYD), a central NAIP, CIITA, HET-
E, and TP1 (NACHT) domain, and a C-terminal leucine-rich
repeat (LRR) domain, is the most studied member of NLRs
that responds to a wide variety of PAMPs and DAMPs and is
involved in many physiological and pathological conditions
(1–5). Activated NLRP3 recruits ASC and then procaspase-1 to
form the NLRP3 inflammasome, which triggers caspase-1 acti-
vation that culminates in the maturation of interleukin (IL)-1β
and IL-18 for inflammatory responses and cleavage of gasder-
min D to induce pyroptosis (1–5). Aberrant activation of the
NLRP3 inflammasome is associated with various inflammatory
diseases (6, 7), including atherosclerosis, diabetes, obesity
(8–10), inflammatory bowel disease (11–13), and Alzheimer’s
disease (14–16). Therefore, NLRP3 is an attractive drug target
for these diseases, and a number of inhibitors specific to
NLRP3 inflammasomes have been developed (17, 18). For
example, MCC950 is a recently developed potent inhibitor of
NLRP3 (19–22).

NLRP3 inflammasome activation requires two types of stimuli,
namely priming (e.g., lipopolysaccharide and tumor necrosis fac-
tor) and activation (e.g., nigericin and adenosine triphosphate)
stimuli (23). During these processes, many cellular events, includ-
ing transcriptional up-regulation, posttranslational modification
[e.g., phosphorylation (24–28) and ubiquitination (29–33)], cellu-
lar localization (34, 35), and protein–protein interactions (36–42),
restrict or license NLRP3 activation. In particular, Never in

Mitosis A-related kinase 7 (NEK7) has been identified as an
essential mediator of NLRP3 activation (37–39). Despite exten-
sive studies, the mechanisms regulating NLRP3 inflammasome
activation remain unclear, partly due to the lack of structural
information regarding NLRP3. To date, only the structure of the
inactive and monomeric form of NLRP3 lacking PYD, in complex
with NEK7, has been reported (43).

This study aimed to investigate the structure of full-length
NLRP3 in the oligomeric form, which sequesters PYD from
self-oligomerization to avoid premature activation. Moreover,
this study provides a structural basis for the mechanism of
action of the NLRP3-specific inhibitor MCC950.

Results
Cryo-EM Structure of Hexameric Form of PYD-Deleted NLRP3. We
expressed and purified PYD-deleted recombinant human
NLRP3 (residues 130 to 1,036; NLRP3ΔP) (Fig. 1A and SI
Appendix, Fig. S1). Addition of the NLRP3 inhibitor MCC950
(19, 20, 22) during protein expression and purification greatly
enhanced the stability of NLRP3ΔP. NLRP3ΔP eluted earlier
than the monomer, in terms of the expected molecular weight
in size-exclusion chromatography (SEC), suggesting that
NLRP3ΔP formed oligomers (Fig. 1B). To obtain structural
information on the NLRP3ΔP oligomer, we performed cryo-
electron microscopy (cryo-EM) of the purified NLRP3ΔP olig-
omer in the presence of ADP and MCC950. We successfully
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reconstructed the cryo-EM map of the oligomeric form of
NLRP3ΔP to a resolution of 3.2 Å (Fig. 1C and SI Appendix,
Figs. S2 and S3 and Table S1).

NLRP3ΔP formed a spherical hexamer with a diameter of
∼160 Å (Fig. 1C). The six protomers in the hexamer were
arranged with D3 symmetry, where the two trimers, each
related by a threefold axis, were also related by a twofold axis
perpendicular to the threefold axis (Fig. 1C). Most of the
regions of human NLRP3ΔP were resolved in the cryo-EM
map, and a structural model was built for residues 135 to 1,034
of human NLRP3ΔP. Several loop regions (residues 130 to 134
[N terminus], 152 to 160 and 180 to 201 [NBD], 452 to 461 and
509 to 515 [WHD], 537 to 553 [HD2], 686 to 725 [LRR], and
1,035 to 1,036 [C terminus]) could not be modeled owing to
poor densities (SI Appendix, Fig. S1). Each protomer consisted
of the NACHT domain (residues 135 to 651) and the LRR
domain (652 to 1,034) (Fig. 1A). The NACHT domain was

subdivided into the NBD (residues 135 to 372), HD1 (residues
373 to 437), WHD (residues 438 to 536), and HD2 (residues
554 to 651) (Fig. 1A and SI Appendix, Fig. S1). Two ligand den-
sities within the protomer, corresponding to the bound ADP
and MCC950, were observed in the NACHT domain (Fig. 1C
and SI Appendix, Fig. S3). Since the protomer in the NLRP3ΔP
oligomer was bound to ADP, the structure of NLRP3ΔP repre-
sented the inactive and closed form, similar to the previously
determined structure of NLRP3ΔP bound to NEK7 (43), with
an rmsd value of 2.6 Å (SI Appendix, Fig. S4A). A slight
difference in the arrangement of NACHT relative to LRR
was observed; distances between the HD2 and the C terminus
of LRR were 30 and 35 Å in the NLRP3ΔP protomer of the
hexamer and in the NLRP3ΔP bound to NEK7, respectively
(SI Appendix, Fig. S4A).

Two interfaces mediated the hexamer formation of NLRP3ΔP,
namely the “head-to-tail” interaction between the C terminus of
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LRR and the NBD and WHD domains through the electrostatic
interaction (interface area of 380 Å2) (Fig. 1 C and D and SI
Appendix, Fig. S5A) and the “back-to-back” interaction between
LRR3 and LRR6 from two protomers around the twofold axis
(interface area of 471 Å2) (Fig. 1 C and E). The latter consisted
of the central close packing of the hydrophobic residues F788,
L817, and F813, which was further strengthened by the periph-
eral electrostatic interactions mediated by R759, D789, R816,
and D846 (Fig. 1 C and E). The hexameric structure was incom-
patible with NEK7 binding since the NEK7 bound to the concave
surface of NLRP3 clashed with the NBD of the adjacent proto-
mer (Fig. 1F).

Inhibitor MCC950 Stabilizes the Closed Conformation of NLRP3.
Previously, cryo-EM analysis of human NLRP3ΔP in complex
with NEK7 was conducted in the presence of the NLRP3 inhib-
itor MCC950; however, the binding site and recognition mode
of MCC950 were not clarified, due to limited resolution (43).
The bound MCC950 was readily identified in the current cryo-
EM map of hexameric NLRP3ΔP (SI Appendix, Fig. S3).
MCC950 bound to the bottom of the central cavity formed in
the NACHT domain (Fig. 2 A and B). The cavity was formed
by all of the domains of NLRP3ΔP; NBD, HD2, and LRR
formed the entrance and side wall of the cavity, and HD1 and
WHD formed the bottom (Fig. 2 A–C). MCC950 and ADP
were spatially close, at a distance of ∼8 Å, but were separated
by tight packing of NBD, HD1, and WHD at the bottom of the
cavity (Fig. 2C). The MCC950 binding cavity was accessible
from the NBD-HD2-LRR side, opposite to the ADP-binding
cavity (Fig. 2 A and B).

The tricyclic hexahydro-s-indacene moiety of MCC950,
clearly visible in the cryo-EM map at the bottom of the cavity,
formed multiple contacts with the residues A228 (NBD),
M408, F410, I411, L413, V414 (HD1), T439, Y443, T524
(WHD), F575, R578, Y632 (HD2), and M661 (LRR) (Fig. 2C).
The tricyclic sulfonyl amide moiety was lined up with residues
G226, A227, A228, and G229 from the ATP-binding Walker A
motif of NBD (Fig. 2C and SI Appendix, Fig. S1). In addition,
the amide O atom formed a hydrogen bond with R578 (HD2),
and the sulfonyl moiety formed an ionic interaction with R351
(NBD). Although density of the furan moiety was poor, the
2-hydroxypropan and furan moieties formed additional contacts
with P352 (NBD), L628, E629, Y632 (HD2), and D662 (LRR).

The closed form of the NACHT domain is generally char-
acterized by ADP-mediated tight packing of the NACHT sub-
domains. The binding mode of MCC950, where all subdomains
of NACHT and LRR are engaged in binding, clearly demon-
strated that MCC950 stabilizes the closed form of NACHT in
conjunction with ADP (Fig. 2 A and C). Therefore, MCC950
inhibits the opening of NACHT for oligomerization and activa-
tion of the NLRP3 inflammasome. Notably, R351, forming
ionic interaction with MCC950, is in the sensor 1 motif of
NACHT (Fig. 2C and SI Appendix, Fig. S1), which is assumed
to be involved in the recognition of the γ-phosphate group of
ATP during ATP hydrolysis. Thus, MCC950 binding also pre-
vents ATP binding, which opens the NACHT conformation.
This result was consistent with a previous finding of MCC950
closing the NLRP3 conformation and inhibiting NLRP3 activa-
tion (19, 20).

Cryo-EM Structure of the Dodecameric Form of Full-Length NLRP3.
Most of the structural studies on NLRs were based on their sig-
naling domain (e.g., CARD and PYD)-deleted form (43–45);
thus, the mechanism underlying the impact of the signaling
domain and the following linker region, connected to NACHT,
on the structure of NLRs is unknown. Therefore, to study the
intact form of NLRP3, we expressed and purified full-length
mouse NLRP3 (residues 1 to 1,033) in the presence of ADP
and MCC950. NLRP3 eluted earlier than the NLRP3ΔP hex-
amer in SEC, suggesting that NLRP3 formed a higher-order
oligomer (Fig. 1B). We analyzed the structure of the oligomeric
form of NLRP3 using cryo-EM. The two-dimensional class-
average images clearly showed a sixfold symmetry of the oligo-
mer (SI Appendix, Fig. S2). The resultant three-dimensional
reconstruction yielded a 3.6-Å–resolution cryo-EM map with
D6 symmetry (Fig. 3A and SI Appendix, Fig. S2 and Table S1).
Using the structure of human NLRP3ΔP as a reference, we
modeled 12 molecules (dodecamer) of mouse NLRP3 (residues
131 to 1,031), ADP, and MCC950 into the cryo-EM maps.

Overall, the dodecamer of NLRP3 formed a barrel-shaped
oligomer with a hollow core, in which each of the top and bot-
tom sides was formed by six NACHT domains, and the lateral
side was formed by 12 LRR domains (Fig. 3A). The barrel had
a diameter of ∼220 Å and a height of 150 Å. The NACHT
domains at the top or bottom sides of the barrel made no direct
contact with the neighboring NACHT domains; thus, the densi-
ties of the NACHT domains were very weak compared with
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some activation, some of which could regulate the activation by directly or indirectly affecting the oligomerized state of NLRP3.
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those of the LRR regions, although the cryo-EM density map
clearly showed the NLRP3 protomer to be in a closed and inac-
tive conformation (SI Appendix, Fig. S4B). Therefore, the pro-
tomer structure in the dodecamer was well aligned with that in
the hexamer, yielding an RMSD value of 1.2 Å (SI Appendix,
Fig. S4B). Although the current structural model lacked resi-
dues 1 to 130, corresponding to PYD and the linker region,
unidentified densities were visible at the center of the top and
bottom sides of the barrel, possibly originating from some of
these regions (Fig. 3A).

The NLRP3 dodecamer is formed mainly via LRR–LRR
interactions. Two types of LRR–LRR interface were identified
in the dodecamer, namely the “face-to-face” interface (inter-
face area of 1,172 Å2), in which the two LRRs from neighbor-
ing protomers interact with their concave surfaces facing each
other (Fig. 3 A and B), and the “back-to-back” interface (inter-
face area of 487 Å2), in which the two LRRs interact with their
convex surfaces facing each other (Fig. 3 A and C). In the
“face-to-face” interface, residues from the concave surface of
LRR3 to LRRCT made contact with those of the α-helix of
LRR12 and the β-strand of LRRCT (Fig. 3B). Moreover, the
loop region of HD2 (residues 615 to 621) made contact with
the α-helices of LRR10 and LRR11. This interface showed the
electrostatic complementarities in which the negatively charged
C-terminal region of LRR domain made contact with the posi-
tively charged concave surface of the neighboring LRR (SI
Appendix, Fig. S5B). Interestingly, the “back-to-back” interface
perfectly overlapped with that observed in the structure of the
NLRP3ΔP hexamer (SI Appendix, Fig. S4C). The electrostatic
potential distributions on NLRP3 that contribute to the “face-
to-face” interface and the residues that contribute to the “back-
to-back” interface are highly conserved between human and
mouse NLRP3 (SI Appendix, Figs. S1, S4C and S5), suggesting
that human NLRP3 also forms oligomers with a similar
arrangement. In the dodecameric structure of NLRP3, since
the concave surface of LRR, to which NEK7 binds, is occupied
by the neighboring LRR, NLRP3 cannot engage with NEK7
(Fig. 3D).

NLRP3 Dodecamer Preferentially Bound to Negatively Charged
Membrane. Interestingly, the top and bottom surfaces of the
NLRP3 dodecamer were highly basic (Fig. 3A). Recent evi-
dence indicates that the positively charged N-terminal polybasic
region of the NLRP3 (residues 127 to 143 for mouse NLRP3)
is required for NLRP3 activation, possibly through membrane
association (35). Although our structural model lacked the first
half of the polybasic region, the second half formed the first
α-helix of the NACHT domain and contributed to the highly
basic properties of the top and bottom surfaces of the dodeca-
mer (Fig. 3A and SI Appendix, Fig. S5). We, therefore, hypothe-
sized that the NLRP3 dodecamer is capable of binding to the
membrane through the basic regions of NACHT. To examine
the membrane-binding capability of the dodecameric form of
NLRP3, we conducted a lipid-binding assay using membrane
lipid strips (Fig. 3E). As anticipated, the NLRP3 dodecamer
bound to acidic lipids, such as phosphatidic acid, phosphatidyl
serine, phosphatidyl inositol phosphates, and cardiolipin. These
bindings were largely abrogated in the presence of a nanodisc
(ND)-containing phosphatidic acid. Therefore, we concluded
that the dodecameric form of NLRP3 represented the resting
state of NLRP3, which preferentially bound to negatively charged
membranes through electrostatic interactions (Fig. 3F).

Discussion
This study revealed the structures of hexameric NLRP3ΔP and
dodecameric full-length NLRP3 in the presence of the NLRP3-
specific inhibitor MCC950. Although the hexameric structure

was generated artificially, possibly due to the absence of
N-terminal PYD, the high-quality cryo-EM map enabled us to
identify the binding site of MCC950 and determine its inhibi-
tory mechanism for NLRP3. MCC950 was found to bind to the
cavity formed between the NACHTsubdomains of NLRP3, stabi-
lizing the closed conformation of NLRP3 and suppressing the
structural transition from a closed to an open conformation for
inflammasome activation. Importantly, MCC950 was found to act
in combination with ADP to stabilize the closed conformation.
Our findings are consistent with a recently reported study
describing a similar binding mode involving MCC950 or its ana-
log to NLRP3 in the crystal structure of the isolated NACHT
domain (46) or the cryo-EM structure of the full-length human
NLRP3 decamer (47). Visualization of the inhibitor-binding
mode will provide opportunity for future optimization and fine-
tuning of the activity of the molecule.

The dodecameric structure of NLRP3 identified in this study
should be an inactive form of NLRP3, since each protomer is
in the ADP- and inhibitor-bound closed form. However, we
postulated that this structure represents a physiologically rele-
vant membrane-bound resting state of NLRP3, which may play
an important role in the regulation of NLRP3 inflammasome
activation (Fig. 3F). The preference of the NLRP3 oligomer for
acidic lipids, specifically for phosphoinositide and cardiolipin
(Fig. 3E), is consistent with that in the previous reports describ-
ing the NLRP3 association with the negatively charged mem-
brane of dispersed trans-Goldi network (35) or the NLRP3
redistribution to the mitochondria (48). Accumulating evidence
has shown that NLRP3 activation is regulated via a multilay-
ered mechanism. While our structural study suggested that the
NLRP3 oligomer may represent a resting state capable of
membrane binding, incompatibility of the structure for NEK7
binding strongly suggested that the oligomer should be
disrupted and reorganized before NLRP3 inflammasome acti-
vation (Fig. 3F). Therefore, posttranslational modifications pos-
sibly affect the oligomerization of NLRP3, thereby regulating
NLRP3 activation.

Phosphorylation of the conserved tyrosine residues at the
polybasic region (Y136, Y140, and Y143 for human NLRP3)
by Bruton’s tyrosine kinase has been shown to positively regu-
late NLRP3 activation, possibly through a charge neutralization
mechanism (24). These tyrosine residues are located on the
positively charged surface of the top or bottom sides of the
NLRP3 barrel (Fig. 3A and SI Appendix, Figs. S1, S5 and S6).
Thus, phosphorylation of these residues would reduce the affin-
ity for negatively charged membranes and facilitate NLRP3 dis-
sociation from the membrane, which has been proposed to be
an essential step for NLRP3 activation (25). Recent reports
found that the phosphorylation and subsequent dephosphoryla-
tion of S803 were important regulatory mechanisms of NLRP3
activation (49). S803 is located on the concave surface of LRR
(LRR5) and is in both the NEK7-binding interface and the
“face-to-face” interface in the dodecameric structure of NLRP3
(SI Appendix, Fig. S6). Thus, phosphorylation of S803 could
influence both NEK7 binding and dodecamer formation.

The barrel-shaped dodecameric structure of NLRP3 is mainly
achieved through LRR–LRR interactions between protomers
(Fig. 3 A–C). Although the precise position was not determined
in the structure, the PYD and linker region also contributed to
the formation of the dodecamer, since NLRP3ΔP formed an arti-
ficial hexamer (Figs. 1 and 3). Weak densities were observed at
the center of the top or bottom sides of the barrel, which could
be due to part of the PYD or the linker region; however, the
dimension of the densities (∼40 Å) was insufficient to fully
accommodate the six PYDs (Fig. 3A and SI Appendix, Fig. S7).
Therefore, the missing PYD and linker region in the current
structure were mostly disordered inside and/or outside the barrel
(SI Appendix, Fig. S7). Although the disordered PYDs were
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spatially close to each other, the positional restraint of the
NACHT, to which PYD was connected, by forming the dodeca-
mer barrel, would suppress the self-oligomerization of PYDs and
hence, subsequent activation of NLRP3.

Recently, two research groups independently reported the
structures of the oligomeric form of full-length NLRP3 [deca-
mer for human NLRP3 (47) and 12 to 16 mer for mouse
NLRP3 (50)]. Interestingly, there are differences in the oligo-
meric number between our study and these reports, which may
be due to differences in NLRP3 species or sample preparation
procedures. The comparison between the human NLRP3ΔP
hexamer in this study and the full-length human NLRP3 deca-
mer suggests that the PYDs are essential for the formation of
the decamer, and the decamer is a physiologically relevant form
of human NLRP3 oligomer. Despite some variation in the
oligomerization states, all NLRP3 oligomers share a similar
arrangement with conserved “back-to-back” and “face-to-face”
interface between neighboring LRRs, suggesting the impor-
tance of these interactions for maintaining the inactive oligo-
mer. The results of previous studies complement our findings
and support our conclusion that oligomerization of NLRP3 is a
physiologically important regulatory mechanism of NLRP3
activation.

Although further work is required to fully understand the
complex regulation and activation mechanism of NLRP3, this
study has revealed the NLRP3 oligomerization mechanism,
which may be crucial to controlling the spatiotemporal activa-
tion of NLRP3.

Materials and Methods
Preparation of Recombinant Proteins. Genes encoding human NLRP3 (residues
130 to 1,036; NLRP3ΔP) and mouse NLRP3 (residues 1 to 1,033) with an
N-terminal His×6 FLAG tag followed by precision protease recognition sequence
were inserted into the expression vector pFastBac Dual vector (Thermo Fisher Sci-
entific Inc.). For protein expression, ExpiSf9 cells cultured in ExpiSf CD medium
(Thermo Fisher Scientific Inc.) were infected with recombinant baculoviruses and
incubated in the presence of 5 to 20 μMMCC950 (Angene Chemical) for 60 to 70
h at 27 °C. The cells were collected via centrifugation and disrupted via sonica-
tion in a buffer containing 25mM Hepes-NaOH (pH 7.5), 0.5M NaCl, 10% glyc-
erol, 1 mM DTT, 25 mM imidazole, 0.1 mM ADP, 50 μM MCC950, and protease
inhibitor mixture (Nacalai Tesque). Recombinant proteins were purified from
the cleared lysate using Ni-NTA agarose (FUJIFILM Wako). The proteins were
eluted using a buffer containing 25mM Hepes-NaOH (pH 7.5), 0.5M NaCl, 10%
glycerol, 1 mM DTT, 250 mM imidazole, 0.1 mM ADP, and 50 μM MCC950. The
eluate was further purified via size-exclusion chromatography (SEC) (ENrich SEC
650 10/300, Bio-Rad) in 25mM Hepes-NaOH (pH 7.5), 0.2M NaCl, 1 mM MgCl2,
0.5 mM TCEP, 0.1 mM ADP, and 10 μM MCC950. The peak fractions were col-
lected and concentrated in the SEC buffer containing increased concentrations
of ADP (1.0 mM) and MCC950 (50 μM) using an Amicon Ultra centrifugal filter
(100-kDamolecular weight cutoff).

Cryo-EM Analysis. For cryo-EM grid preparation, human NLRP3ΔP hexamer
sample (1.9 mg/mL) or mouse NLRP3 dodecamer sample (2.8 mg/mL) was
used. Then, 3-μL aliquots of samples were placed onto freshly glow-
discharged Quantifoil holey carbon grids (R1.2/1.3, Cu, 300 mesh). After 4.0 s
of blotting in 100% humidity at 6 °C, the grid was plunged into liquid ethane
using a Vitrobot Mark IV (Thermo Fisher Scientific). Cryo-EM data were col-
lected using a Titan Krios G4i microscope (Thermo Fisher Scientific), running at
300kV and equipped with a GIF Quantum-LS Energy filter (Gatan) and a
Gatan K3 camera in electron-countingmode at the cryo-EM facility of the Uni-
versity of Tokyo, Japan. Imaging was performed at a nominal magnification
of 105,000×, which corresponded to a calibrated pixel size of 0.83Å � px�1.

Each movie was recorded in correlative double sampling (CDS) mode for 5.0 s
and subdivided into 64 frames with an accumulated exposure of 68 e– per Å2

on the specimen. Data were acquired by the image-shift method using Seri-
alEM software (51). Cryo-EM data were analyzed using RELION 3.1 (52). Raw
movie stacks were motion-corrected using the RELION version of MotionCor2
(53). The contrast transfer function (CTF) parameters were determined using
the CTFFIND4 program (54). The data processing workflow is summarized in SI
Appendix, Fig. S2. The final resolution was estimated using the gold-standard
Fourier shell correlation (FSC) between two independently refined half maps
(FSC = 0.143). Local resolution maps were produced using the ResMap pro-
gram (55). The atomic models of human NLRP3ΔP hexamer and mouse NLRP3
dodecamer were subjected to iterative cycles of manual model adjustment
using the COOT program (56) and real-space refinement in the Phenix pro-
gram (57). EM data processing and refinement statistics are summarized in SI
Appendix, Table S1. The cryo-EM maps were deposited in the ElectronMicros-
copy Data Bank. Structural representations were generated using Chimera
(58), ChimeraX (59), PyMol (60), or CueMol (http://www.cuemol.org).

Lipid Binding Assay. For the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate
(POPA)-reconstituted ND preparation, 4 mg of POPA sodium salt (Avanti,
840857C) dissolved in chloroformwas dried up using a gentle stream of nitro-
gen gas and further dried under high vacuum. Sodium cholate and buffer A
(10 mM Hepes-NaOH pH 7.7, 150 mM NaCl, and 1 mM EDTA) were added to
the dried lipid film. The lipid was dispersed by vigorous vortexing and then
dissolved by continuous sonication at 310 K. The MSP1D1 scaffold protein
(homemade) was added to the lipid solution at a final concentration of 133
μMMSP1D1, 30 mM sodium cholate, and 10mM POPA. The solution was incu-
bated with gentle mixing at ambient temperature for 1 h. The POPA-
reconstituted ND was purified by gel filtration, running in buffer A, and
concentrated to ∼13 mg/mL using Amicon Ultra centrifugal filters (Merck,
50-kDaMW cutoff). The purified POPA-reconstituted ND was flash-cooled in
liquid nitrogen and stored at�70 °C until use.

For the membrane lipid strip assay (Echelon Biosciences Inc., P-6002), the
sheets were first blocked using Blocking One (Nacalai Tesque) at ambient
temperature for 2 h. The sheets were then gently washed using wash buffer
(10 mM Hepes-NaOH pH 7.7, 200 mMNaCl, 1 mM EDTA-K, and 0.01% (wt/vol)
Tween-80) and incubated with 2.5 μg/mL NLRP3 dodecamer, 0.5 mg/mL
bovine serum albumin (Nacalai Tesque), and 0.05 mM ADP in the absence or
presence of 0.05 mg/mL POPA-reconstituted ND at 277 K for 2 h. A partially
tag-cleaved form of the NLRP3 dodecamer was used in this assay. After incu-
bation, the sheets were washed five times with wash buffer and incubated
with anti–DDDDK-tag mAb-HRP-DirecT (MBL, Cat No. M185-7, Lot No. 009).
The signals were detected using Chemi-Lumi One chemiluminescence reagent
(Nacalai Tesque).

Data Availability. All data needed to evaluate the conclusions in the paper are
present in the paper and/or supplementary Figures and Table. Cryo-EM maps
and related structure coordinates of the human NLRP3ΔP hexamer andmouse
NLRP3 (full-length) dodecamer have been deposited in the Electron Micros-
copy Data Bank (EMDB) and Protein Data Bank (PDB) under accession codes
EMD-32119 (PDB: 7VTP) and EMD-32120 (PDB: 7VTQ), respectively.
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