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Abstract

Background: Due to their role in fine-tuning cellular protein expression,
microRNAs both promote viral replication and contribute to antiviral responses,
for a range of viruses. The interactions between norovirus and the microRNA
machinery have not yet been studied. Here, we investigated the changes that
occur in microRNA expression during murine norovirus (MNV) infection.
Methods: Using RT-gPCR-based arrays, we analysed changes in miRNA
expression during infection with the acute strain MNV-1 in two permissive cell
lines, a murine macrophage cell line, RAW264.7, and a murine microglial cell
line, BV-2. By RT-qPCR, we further confirmed and analysed the changes in
miR-155 expression in the infected cell lines, bone-marrow derived
macrophage, and tissues harvested from mice infected with the persistent
strain MNV-3. Using miR-155 knockout (KO) mice, we investigated whether
loss of miR-155 affected viral replication and pathogenesis during persistent
MNV-3 infection in vivo and monitored development of a serum IgG response
by ELISA.

Results: We identified cell-specific panels of miRNAs whose expression were
increased or decreased during infection. Only two miRNAs, miR-687 and
miR-155, were induced in both cell lines. miR-155, implicated in innate
immunity, was also upregulated in bone-marrow derived macrophage and

infected tissues. MNV-3 established a persistent infection in miR-155 knockout

(KO) mice, with comparable levels of secreted virus and tissue replication
observed as for wildtype mice. However, serum anti-MNV IgG levels were
significantly reduced in miR-155 KO mice compared to wildtype mice.
Conclusions: We have identified a panel of miRNAs whose expression

changes with MNV infection. miR-155 induction is a marker of MNV infection in

vitro and in vivo, however it does not contribute to the control of persistent
infections in vivo. This finding suggests that the immune defects associated
with miR-155 deletion, such as lower serum IgG levels, are also not important
for control of persistent MNV-3 infection.
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Introduction

Noroviruses belong to the Caliciviridae family of small, posi-
tive strand RNA viruses. Human noroviruses (HuNoVs) are a
major cause of viral gastroenteritis worldwide, causing around
2-3 million infections in the UK every year'. The majority of
infections are acute and occur in large outbreaks that sweep
through places with close living environments, such as hospitals,
at a considerable cost to the NHS?. Although mortality rates are
generally low, immunocompromised individuals are highly
susceptible to HuNoV, often developing chronic infections,
which represent a significant burden of morbidity in transplant
recipients’.

Until very recently, HuNoVs had remained refractory to all
attempts to establish a cell culture system. The recent demonstra-
tion of HuNoV replication in enteric organoids® and a cultured
B cell line’ represent significant breakthroughs. However,
understanding of norovirus replication and in particular its
interactions with the host cell currently still lags behind that of
other viruses. As an alternative model system, murine norovirus
(MNV) has been widely used to characterise norovirus
replication. Like HuNoV, it is an enteric virus, which trans-
mits by the faecal-oral route, and it has been found in wild and
laboratory mice®’. It remains the only norovirus that replicates
in cell culture to produce high titres of infectious virus and has
a tropism for macrophage, dendritic cells, B and T cells, with a
recent study also identifying a role of enterocytes in vivo™**’.
This, combined with the availability of reverse genetics
systems'*""> and strains that cause both acute and persistent
infections in the natural host®'', makes MNV a valuable model
for characterising norovirus-host interactions.

MicroRNAs (miRNAs) are short non-coding RNAs, which
post-transcriptionally silence over 50% of human mRNAs to
fine-tune protein expression, contributing to the regulation of
diverse cellular processes'*'*. Interactions with the cellular
miRNA repertoire have been shown for a diverse range of
viruses, including RNA, DNA, acute and persistent viruses.
miRNAs have been reported to either promote or inhibit viral
replication, in general by indirectly regulating expression of cel-
lular cofactors or the immune response respectively'>'®, although
direct interactions with viral RNAs have also been reported'”'*.
As such a number of viruses actively manipulate cellular
miRNA levels, either specifically or by targeting the miRNA
processing machinery to initiate a global shutdown in miRNA
biogenesis'*~'. Identifying the changes in miRNA expression
that occur with infection can reveal new proteins or pathways
that play a role in viral lifecycles.

To date there have been no reports on the interaction between
noroviruses and the cellular miRNA machinery. Here, we
aimed to determine whether MNV infection causes changes in
miRNA expression in permissive cell lines, and whether any of
the observed effects contribute to viral pathogenesis and affect
the outcome of infection in vivo.
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Methods

Cells

Murine macrophage cell lines RAW264.7 and microglial cell
line BV-2 (provided by Jennifer Pocock, University College
London) were maintained in Dulbecco’s modified Eagles Medium
(DMEM, Gibco) containing 10% fetal calf serum (FCS), peni-
cillin (P) (100 SI units/mL) and streptomycin (S) (100 ug/mL)
and 10 mM HEPES (pH7.6) at 37°C with 10% CO,. For virus
recovery BHK cells engineered to express T7 RNA polymerase
(BSR-T7 cells, obtained from Karl-Klaus Conzelmann, Ludwid
Maximillians University, Munich, Germany) were maintained
in DMEM containing 10% FCS, penicillin (100 SI units/mL)
and streptomycin (100 pg/mL) and 0.5 mg/mL G418. For prepa-
ration of bone marrow derived macrophage (BMDM), bone
marrow cells were harvested from female C57BL/6 mice and
were cultured in DMEM containing 10% fetal calf serum (FCS),
penicillin (100 SI units/mL) and streptomycin (100pg/mL). For
differentiation the supernatant from CMGI14 cells, which
contains macrophage colony stimulating factor (M-CSF), was
added to the media for 5-7 days.

Virus recovery and infection

Recombinant viruses were rescued from cDNA clones
containing either the MNV-1' or MNV-3 genomes'' using
the reverse genetics system based on recombinant Fowlpox
expressing T7 RNA polymerase, as previously described'’. Fifty
percent tissue culture infectious dose (TCIDS50) titrations were
performed on RAW264.7 and BV-2 cells. For miRNA analysis,
cell lines were infected with an acute strain of MNV (MNV-1)
at an MOI of 0.1 TCID50/cell, or were mock infected. BMDM
were infected with MNV-1 at an MOI of 10 TCID50/cell (as
determined in RAW?264.7 cells).

microRNA extraction and analysis

To analyse miRNA expression the small cellular RNA fraction
(less than 200nt) was harvested at 20 hpi from cell lines, and
24 hpi from BMDMs, using the miRVana RNA isolation kit, as
per manufacturer’s instructions. For cDNA synthesis the Tagman
miRNA reverse transcription kit was used (Life Technolo-
gies), according to manufacturer’s instructions. 1000 ng of RNA
extracted from infected and uninfected RAW264.7 cells and
BV-2 cells were used with Megaplex RT primers, Rodent Pool
A (Life Technologies). The pool contains primers specific to
335 and 238 mature unique mouse and rat miRNAs respectively,
alongside primers for 4 specific endogenous controls. The
cDNA was then used for qPCR using Tagman Rodent miRNA
Array A cards (TDLA, Life Technologies, as per manufacturer’s
instructions), which contain primer-probe sets specific for 381
rodent miRNAs. The TLDA cards were run on the 7900HT T
Fast Real-Time PCR System and the data was visualised and
analysed for the Ct value of each miRNA by RQ manager soft-
ware (Life Technologies). Further analysis was performed using
Microsoft Excel. The Ct value for each miRNA was normalised
against the Ct value for the endogenous control small nuclear
RNA, U6, which did not change with infection. A two-fold
change was used to indicate a significant change, as suggested
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in the manufacturer’s instructions. RT-qPCR was also performed
using individual RT and PCR primer-probes specific to miR-155.

In vivo studies

For analysis of miR-155 expression, three-to-four week old
female C57BL/6 mice were inoculated with 1000 TCID50 of
MNV-3 by oral gavage. Each group contained 3 mice and a
control group was mock infected. The mesenteric lymph node
(MLN), caecum and colon were isolated on day 2 post infec-
tion (dpi) for RNA extraction. miR-155 knock out mice (Jackson
Laboratories) and wild type control C57BL/6 mice were
inoculated with 10 TCID50 of MNV-3 by oral gavage, with 5
mice in each group. Mice were weighed and faecal samples were
collected on 1-7, 14 and 21 dpi. Serum samples were col-
lected on days 0,7, 14 and 21 pi, and mice were euthanized on
day 21 pi. Tissue samples were harvested from separate groups
on day 2 post infection.

RNA extraction and RT-gPCR for viral genome copies
Tissues were homogenised into RNA lysis buffer using ceramic
beads (BioSpec Products) with a Fast Prep-24 homogeniser
(MP Biomedicals). Faecal pellets were homogenised in PBS
(100mg/mL), followed by centrifugation at 4000 rpm for 5 min,
4°C. RNA was extracted from 100 uL of supernatant using the
GenElute total mammalian RNA kit (Sigma). Quantification of
viral genome copies was performed by two-step RT-qPCR, with
reverse transcription using with M-MLV RT (Promega) with
random hexamers, as per manufacturer’s instructions. qPCR
was then performed on the cDNA using a Tagman Low Rox
gqPCR mastermix (Primer design), with primers (MNV-3 F:
CCGCAGGAACGCTCAGCAG and R: GGCTGAATGGGGACG-
GCCTG), and probe (ATGAGTGATGGCGCA). The Viia™
7 Real time PCR machine was used with an initial denatura-
tion step of 8 min at 95°C, followed by 50 cycles of 95°C for
10 s and 60°C for 1 min. The genome copy number was inter-
polated from the standard curve and was calculated per ng
of RNA or per mg of stool depending on the sample, using
Microsoft Excel. All graphs were produced using Graph Pad
Prism V.5 Software.

ELISA for serum anti-MNV IgG

We performed ELISAs for detecting MNV-specific serum IgG
in peripheral blood as previously reported (Hwang et al., 2014,
Wobus et al., 2004). Briefly, MNV-3 virus-like particles (VLPs),
kindly provided by Stephanie Karst (University of Florida,
Gainsville, USA) were diluted 1:100 using carbonate buffer at
pH 9.6 and 50 ul of VLPs were used per well to coat the Nunc
MaxiSorp™ 96-well plate overnight at 4°C. Serum was collected
as the supernatant after spinning the whole blood at 15,000 x g
for 5 minutes at 4°C and was used at 1:100 dilution in 50 pl total
volume. The reactions were developed by adding 100 pl
1-Step™ Turbo TMB-ELISA Substrate Solution (Life Technolo-
gies) and stopped by adding equal volume of IN sulphuric acid
solution. The absorbance at 450 nm were read and normalised
absorbance were calculated by subtracting the mean absorbance
of wells without primary antibody. The cutoff of positive results
was determined as the mean + 3 x standard deviation of mock
serum absorbance.
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Results

To investigate changes in miRNA expression with norovirus
infection, we infected two permissive cell lines, a murine
macrophage cell line, RAW264.7, and a murine microglial cell
line, BV-2, with an acute strain of MNV (MNV-1). We ana-
lysed miRNA expression at 20 hours post infection (hpi), a time
selected to coincide with the peak in innate immune responses
against MNV-1 previously identified””, as many macrophage
miRNAs are thought to be involved in regulating interferon
(IFN) responses™. We found that only a small panel of miR-
NAs had altered expression as a result of MNV-1 infection in
both RAW264.7 and BV-2 cells, whereas the majority did not
change by more than 2-fold (Figure 1A). In total 6 miRNAs were
upregulated by more than 2-fold in RAW264.7 cells: miR-
687 (20.5x), miR-155 (10.5x), miR345-5p (5.5x), miR-658
(4.5x), miR-132 (3.1) and miR-210 (2.6x). In contrast, 5 miR-
NAs were downregulated in infected BV-2 cells: miR-let7b
(4.0x), miR-207 (3.9x), miR-146a and miR-744 (both 2.1x),
and miR-17 which was highly expressed in uninfected cells and
decreased to below the level of detection with infection, repre-
senting the greatest change in BV-2s (Figure 1B). Taken together
these results indicate cell-specific responses to viral infec-
tion. The only common response was the induction of miR-687
and miR-155, which were also upregulated in both cell lines
but to a lesser extent in BV-2 cells than in RAW264.7 cells
(6.1x and 2.0x respectively), (Figure 1B).

miR-155 is one of the most well-characterised miRNAs,
with known links to innate immunity and an antiviral
response’**. We therefore focused on miR-155, hypothesis-
ing that the increase in miR-155 may contribute to or potentially
regulate the antiviral response to MNV infection. We first
validated miR-155 induction in infected RAW264.7 and BV-2
cells using RT-gPCR. Compared to the data obtained using
qPCR-based arrays, we detected an even greater increase in
miR-155 expression in both infected cell types at the same time
point post infection, with an induction of 100x in RAW264.7
cells (Figure 1A and Figure 2A). Also in line with the array data,
miR-155 was more highly induced in infected RAW?264.7 cells
compared to infected BV-2s (Figure 2A), despite MNV-1 attain-
ing similar levels of replication in both cell types (Figure 2B).
We further validated the induction of miR-155 in MNV-1-
infected bone-marrow derived macrophage cells (BMDMs).
miR-155 expression was induced approximately 20-fold at 24
hpi in BMDMs, which rose to approximately 60-fold at 48 hpi
(Figure 2C).

To determine whether miR-155 is upregulated during MNV
infection in vivo, we infected immunocompetent mice with
the persistent MNV-3 strain, and harvested tissues at day 2 post
infection. This timing coincides with the peak in viral loads
during the acute phase of infection, when virus can be detected
in the caecum, colon and mesenteric lymph node (MLN)''. We
found that miR-155 was significantly increased in the caecum,
the primary site for MNV replication'', and a trend for induc-
tion was observed in the colon and MLN, although this was not
significant.
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(b) murine microglial BV-2 cells were infected with MNV-1 at an MOI of 0.1 TCID50/cell. The small RNA fraction was harvested at 20 hpi.
Reverse transcription was performed using a set of primers specific for 380 miRNAs, followed by gPCR analysis using TLDA miRNA cards.

Figure 1. Changes in miRNA expression with MNV-1 infection in two permissive cell lines. (a) Murine macrophage RAW264.7 cells
The relative quantity value on the y-axis is equivalent to fold change. The dashed lines indicate a 2-fold increase and decrease, above or

below which the change is considered significant.



Wellcome Open Research 2018, 3:42 Last updated: 29 MAY 2018

a b c BMDM
125 101 o 1007
") 0 4
0 =< -
-9 | o 80
L O 1004 =5 =
.né € _EI 8 g ﬁ J
o = c .
£32 75 £3 sg ®
o 2 E8 e s ]
g5 Es 52 ]
0 > < e ] T
oQ 2 £
TS 25 = T 207
° 3 ° .
|9
0 | — | ’ 0 T
T ! < T ! 24 48
RAW264.7 BV-2 RAW264.7 BV-2
hours post infection
Caecum
Colon MLN
= *%
s |
c
2 ° 8 " c 8 s 8
n - —_— o . 2
» @ = 2 ]
g [ 6 a n 3 6
o = o ©__ 6 " . ax
x g0 [ 2y g0 "
o 08 4 g 4 eS8
c T 9 o= To .
— o 9 o0 LX) 3
0N (7] E 03l =2~ °
© = = 2 © 2
[ © 2 © E
2 E E S .
£ <] Z °
(<] P 0
vy = 0 Mock Infected Mock Infected

Mock Infected

Figure 2. miR-155 is upregulated in MNV-infected cells and tissues. (a) The fold change in miR-155 mature transcript levels with MNV-1
infection in RAW254.7 cells and BV-2s (0.1 TCID50/cell) at 20 hpi. (b) MNV-1 replicates to similar levels in RAW264.7 cells as BV2 cells. Viral
titres were determined by TCID50. (c) miR-155 is upregulated over a time course of infection of MNV-1 in BMDMs. (d) miR-155 expression is
induced in tissues infected with MNV-3 harvested at day 2 post infection from wildtype mice.

To determine whether miR-155 contributes to an antiviral
response, we infected wildtype (WT) and miR-155 knockout
(KO) mice with MNV-3. We choose to assess the role of miR-155
in a persistent model of infection as a recent study showed that
miRNAs play a greater role in chronic infections than in acute
infections, through regulating the expression of pro-inflammatory
cytokines®. MNV-3 typically causes a sub-clinical persistent
infection in wildtype (WT) C57BL/6 mice''. Similarly, we did
not observe any weight loss in miR-155 KO mice, indicating
that there was no increase in disease severity (data not shown).
Accordingly, MNV-3 was secreted at similar levels in the KO
and WT mice throughout 21 days of a persistent infection
(Figure 3A). We harvested tissues at day 2 post infection to
investigate if the lack of miR-155 affected dissemination of

the virus, but we observed no difference in viral genome cop-
ies in the colon, caecum or ileum (Figure 3B). Altogether
this suggested that miR-155 does not play an essential role in
controlling MNV replication in the acute or persistent phases of
infection.

To determine whether miR-155 had any impact on the adaptive
immune response to MNV-3, we compared development of the
serum anti-MNV IgG response in infected miR-155 KO and
WT mice. We found there was a lag in the production of serum
IgG in the miR-155 KO mice, which had significantly lower
levels compared to the WT mice at days 14, 21 and 28 hpi. Over
this time course of the infection, the levels of serum IgG in the
miR-155 KO mice did not reach those observed in WT mice.
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Discussion

In summary, we have identified a panel of miRNAs whose
cell-type specific expression changes with MNV infection,
indicating that MNV infection does not initiate a global shut-off
in miRNA expression. miR-155 induction appears to be a marker
of MNV infection in two permissive cell lines, as well as BMDMs
and in vivo in infected tissues. However, the absence of miR-
155 did not impact the course of infection or viral replication
during persistent infection in vivo. This finding suggests that
the immune defects associated with miR-155 deletion, such as
lower serum IgG levels, are not important for control of persistent
MNV infections.

miR-155 is one of the most highly studied miRNAs, upregu-
lated in different cancers and with diverse cell-type specific
roles reported”’*. In macrophage, miR-155 has been associated
with the innate antiviral response, as it is induced as a result of
signaling through the RIGI/INK/NF-kB pathway”*’. Upregula-
tion of miR-155 promotes type I IFN signaling by silencing the
negative regulator of the pathway, suppressor of cytokine sign-
aling 1, (SOCS1)*. Increased expression of miR-155 has also
been shown to be accompanied by increased expression of
pro-inflammatory mediators®. As part of an inflammatory response
the expression of miR-155 can also be increased indirectly
through miR-342-5p”, which was also induced in infected
RAW264.7 cells and may have therefore contributed to the
increase in miR-155 following MNV infection. As we observed
no impact resulting from the loss of miR-155 on viral replication
in vivo, in this study we did not further investigate which
miR-155 targets are silenced in MNV-infected cells. A similar
pro-inflammatory role has been demonstrated for miR146a in
microglial cells*’, which we found was upregulated in BV-2 cells.

The defect we observed in the serum anti-MNV IgG response
in miR-155 KO mice is consistent with their reported immune
impairment, including defective TNFa production, reduced
T-cell dependent antibody responses and a decrease in the
proportion of INFy-producing cells’'. Interestingly, this suggests
that the serum IgG response and these other aspects of the
immune response do not play a role in controlling persistent
MNYV infections in vivo, as despite the impaired responses, MNV
replication was unaffected. This finding is in contrast to a previ-
ous report where antibody responses were proposed to contribute
to clearance of acute infections, and the control of MNV
replication in persistently infected mice, although this was per-
formed using mice defective in B cells and RAG1 KO mice®,
suggesting this may be due to other defects in the antibody
response than just serum IgG levels.

miR-687 was the most highly induced miRNA in both cell lines
upon MNV infection, however very little is known about its
function and expression profile. To date there has only been one

Wellcome Open Research 2018, 3:42 Last updated: 29 MAY 2018

study on the function of miR-687, which links it to regulation
of cell cycle progression and apoptosis in kidney cells, through
regulation of the phosphatase PTEN*. PTEN has recently been
reported to have a further independent function in regulating
innate immunity, by controlling activation and nuclear import
of the master transcription factor governing IFNP production,
IRF3*. Both apoptosis and IRF3 activation are thought to occur
during MNV infection™*, therefore whether miR-687 is involved
in the regulation or crosstalk between these pathways will be an
interesting avenue for future studies, which could reveal novel
functions of miR-687 in the cellular response to viral stress.

In microglial BV-2 cells, downregulation of miR-17 was the
greatest change associated with MNV infection. Further studies
are required to validate this change in primary cells and infected
tissues, but interestingly miR-17 has been shown to regulate
autophagy through the suppression of Atg7 translation’. Atg7
is known to be required for the INFy antiviral response against
MNV by promoting assembly of a complex of autophagy
proteins, which in turn prevent formation of the MNV replica-
tion complex, although a direct mechanism linking INFy and
Atg7 has not been established®. It is therefore interesting to
speculate as to whether downregulation of miR-17 could pro-
vide this link, resulting in an increase in Atg7 translation, thereby
contributing to the IFNYy antiviral response.

Finally, the recently developed organoid* and B cell culture
systems® for HuNoV now provide the opportunity to compare
the cell-type specific responses in miRNA expression, with the
aim of identifying novel cellular proteins involved in HuNoV
replication.
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Dirk Jochmans
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This manuscript by Thorne et al describes the first investigation on the role of mMiRNAs in norovirus
infections. They discovered several miRNA’s of which the expression levels significantly change upon
infection with MNV-1 in cell lines, which is a unique contribution to the field. They also show that a
knockout of miR-155 does not influence the replication of MNV-3 in a mouse model. Both these results
are sufficiently innovative to warrant the publication of this paper. In general the paper is well written and
integrates very well the current knowledge on the topic.
However there are two parts where we believe this paper could improve.

1. The cell line work has been done using MNV-1 while the animal work was performed with MNV-3.

Itis not impossible that the effect of norovirus on miR-155 is only apparent with MNV-1 and not
with MNV-3. This would put the animal work in another perspective. It would therefore be very
informative if the experiments described in fig 2.a, 2.b and 2.c are also performed with MNV-3. This
may clearly demonstrate that also MNV-3 influences miR-155 expression in vitro. Now the only
effect of MNV-3 on miR-155 expression is shown in fig 2.d but in our opinion, this is not sufficiently
convincing to say that the effect is significant. In the first panel of fig 2.d the significance is
indicated by “**” but it is not stipulated what the p value is here.

. A second topic of discussion is the way the data is presented in figure 1. In our opinion, it is

important to depict the fold change of expression level on a log scale. The expression levels are
determined from Ct values that follow a normal distribution and for which a stdev can be
calculated. If one log-transforms the Ct values to expression levels the normal distribution is lost
and other statistics than stdev should be used. Therefore | would suggest that the authors calculate
for each measurement the log(fold change over mock) and for these values calculate the average
and stdev and show these on the y-axis of fig 1. This would also give a more clear presentation of
the data around the 2-fold increase/decrease expression level. It would also benefit the reader
significantly to plot the miR in a specific order and to put the expression of one miR in both cell
lines next to each other. At this moment the reader cannot easily compare the expression levels of
a particular miR between the cell lines.

In addition, we have some minor comments:

In figure 1 the number of measurements are not indicated

In the methods the manufacturer of the miRVana kit is not indicated
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® |n the first paragraph of the results section, the average values of the expression levels are
indicated but not the statistics. An average of the log(fold change) and stdev could be indicated
instead (see topic 2 above). The conclusion that miR-155 is upregulated in BV-2 cells is now
difficult to conclude from fig 1.

® |n the third paragraph of the result section the authors should refer to fig 2D
® |nfig 3 LOD stands for limit of detection. Perhaps the authors mean limit of quantification?

® When referring to reference 32 in the conclusion the authors may want to comment that this was a
paper studying MNV-1 and not MNV-3. It can be that IgG play a role in MNV-1 infections but not
MNV-3 infections and vice versa for miR-155.
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"  Charlie C. Hsu
Department of Comparative Medicine, University of Washington, Seattle, WA, USA

The manuscript “miR-155 induction is a marker of murine norovirus infection but does not contribute to
control of replication in vivo” by Thorne et al. is a well written report describing the impact of MNV infection
on microRNAs both in vitro and in vivo. The reported findings are novel in that this is the first report
evaluating the interaction of noroviruses and miRNAs. The authors show that MNV indeed can modulate
miRNA expression in cell lines, BMDM, and in vivo. They report that miR-155, a microRNA involved with
type | interferon signaling, is upregulated both in vitro and in vivo, but that miR-155 knockout mice did not
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show any differences in viral replication compared to infected wild-type mice despite having lower serum
anti-MNV antibody levels. These results suggest that miR-155 does not significantly contribute to control
of MNV replication. This manuscript is well organized and the authors do a nice job explaining their
rationale for the experiments and they also thoughtfully discuss and interpret their results.

This reviewer had only minor comments, suggestions, and thoughts:
® |tis suggested to include the full nomenclature on the C57BL/6 wild-type mice, as well as the
miR-155 knockout mice from Jackson Laboratories in the Methods to provide the readers
information on which C57BL/6 substrain was used, and for accuracy of the miR-155 mouse strain.

® |t would be interesting to see whether lack of miR-155 and the lower anti-MNV antibody levels in
miR-155 knockout mice would impact viral levels and persistence in MNV-1, a typically
non-persistent viral strain. Although the authors provide an adequate explanation of why they used
MNV-3, a persistent viral strain, for the in vivo study, rather than the MNV-1 that was used in vitro,
this reviewer is curious if the lower antibody levels may perhaps prevent clearance of MNV-1 in
these mice, or if virus persists longer than in WT mice but ultimately gets cleared. These results
may shed light on the importance (or lack of importance) of miR-155 associated immune defects
on non-persistent viral strain.

® |tis suggested to include information on the statistical tests used to evaluate differences if not
already included in the manuscript.
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Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Page 12 of 12



