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ABSTRACT This report describes the complete genome sequences of four isolates of
the nondiphtheritic Corynebacterium (NDC) species Corynebacterium pseudodiphtheriticum
and Corynebacterium propinquum, recovered during investigation of a large diphtheria
outbreak in Bangladesh. These data will assist in better delineating the boundary between
these related species and understanding their virulence potential.

While toxigenic strains of Corynebacterium diphtheriae cause diphtheria, various nondiph-
theritic Corynebacterium (NDC) species commonly colonize the skin and mucous mem-

branes of various mammals (1). NDC are considered commensals but have gradually
been recognized as opportunistic pathogens associated with endocarditis, pneumonitis,
bronchiectasis, and skin infections (2–7). NDC identified as Corynebacterium pseudodiph-
theriticum were codetected with C. diphtheriae in a large diphtheria outbreak reported
previously (8). Subsequent whole-genome sequencing (WGS) revealed that 7.14% of the
recovered NDC isolates were instead Corynebacterium propinquum, which is morphologically
and biochemically similar (9). Isolates were selected to represent four unique biochemical
profiles defined by API Coryne strips (bioMérieux, Durham, NC). Here, we report the complete
genome sequences of three C. pseudodiphtheriticum isolates and one C. propinquum isolate to
enrich the limited genomic resources of NDC species.

Isolates were grown from cryogenic stocks at CDC by streaking onto Trypticase soy agar
with 5% sheep blood at 37°C for 24 h. Genomic DNA was extracted using the Maxwell RSC
whole-blood DNA kit (Promega, San Luis Obispo, CA), further cleaned by salt/chloroform
washing (10), and quantified using the Qubit double-stranded DNA (dsDNA) broad-range kit
(Thermo Fisher Scientific, Waltham, MA). WGS was performed using both an Illumina MiSeq
instrument (Illumina, San Diego, CA) and a PacBio Sequel II instrument (Pacific Biosciences,
Menlo Park, CA). Illumina libraries were prepared using the NEBNext Ultra DNA library
prep kit (New England Biolabs, Ipswich, MA), which resulted in DNA fragments of 500
to 1,000 bp for sequencing with the Illumina reagent kit v2 (500 cycles). PacBio libraries
were prepared, following the selection of fragments of .20 kb with BluePippin (Sage
Science, Beverly, MA, USA), using a SMRTbell template prep kit v2.0 and sequenced
using the Sequel binding kit v2.0 with internal controls. The Illumina raw reads were
checked for quality using FastQC v0.11.5 (11) and trimmed and filtered with Cutadapt
v2.3 (-q 20,20 -m 50 –max-n = 2) (12). The PacBio reads were de novo assembled with-
out filtering using Flye v2.9 (13), manually checked for circularity using Gepard v1.30 (14),
and further polished by mapping them onto the Illumina trimmed reads using CLC
Genomics Workbench v21 (CLC bio, Boston, MA, USA). The assembly completeness was
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evaluated using QUAST v5.0.2 (15). Finally, the assemblies were annotated using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) (16). Default parameters were used for all
software unless otherwise noted.

The genome of C. propinquum PC1113 was distinguishable in length, G1C content, and
number of predicted protein-coding sequences (CDSs) (Table 1). The average nucleotide
identity (ANI) between PC1113 and C. propinquum reference genomes (GenBank accession
numbers CP068160 and CP068161) was 97.6%, while the ANI between PC1113 and the
three C. pseudodiphtheriticum genomes here averaged 86.8%, consistent with their species
assignment based on a 95% threshold (17). All four genomes encoded ermX, a determinant
of macrolide resistance (18). Compared with the virulence factor profile of C. diphtheriae
NCTC13129 (NC_002935.2), all four encoded similar iron uptake systems but lacked the ad-
herence pili. A further query against the Virulence Factor Database (VFDB) (19) predicted
genes encoding acid resistance, antiphagocytosis, and copper uptake, leaving much to learn
about the ecology of NDC species.

Data availability. The trimmed sequencing reads have been deposited at the NCBI
Sequence Read Archive under accession numbers SRR17736613, SRR17736611, SRR17736600,
and SRR17736585. The complete genome sequences have been deposited at GenBank under
the accession numbers CP091087.1, CP091865.1, CP091864.1, and CP091863.1. The versions
described in this paper are the first versions.
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CD1121 for
the GenBank
accession no.
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No. of
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(×)

No. of
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Coverage
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