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A comprehensive understanding of the development and evolution of
human B cell responses induced by pathogen exposure will facilitate
the design of next-generation vaccines. Here, we utilized a high-
throughput single B cell cloning technology to longitudinally track the
human B cell response to the yellow fever virus 17D (YFV-17D) vaccine.
The early memory B cell (MBC) responsewasmediated by both classical
immunoglobulin M (IgM) (IgM+CD27+) and switched immunoglobulin
(swIg+) MBC populations; however, classical IgM MBCs waned rapidly,
whereas swIg+ and atypical IgM+ and IgD+ MBCs were stable over
time. Affinitymaturation continued for 6 to 9mo following vaccination,
providing evidence for the persistence of germinal center activity long
after the period of active viral replication in peripheral blood. Finally, a
substantial fraction of the neutralizing antibody response was medi-
ated by public clones that recognize a fusion loop-proximal antigenic
site within domain II of the viral envelope glycoprotein. Overall, our
findings provide a framework for understanding the dynamics and
complexity of human B cell responses elicited by infection and
vaccination.
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Memory B cells (MBCs) formed in response to infection and
vaccination provide protection against the consequences

of reexposure to the same pathogen. These cells can differentiate
into antibody-secreting cells to provide an immediate source of
serum antibody (Ab) or they can enter germinal centers (GCs) to
rediversify their B cell receptors (BCRs) in response to evolving
or antigenically related pathogens (1). Over the past decade,
numerous studies have shown that the MBC compartment in
both humans and mice is highly heterogenous (2). In humans,
both switched immunoglobulin (swIg+) and immunoglobulin M
(IgM+) memory cells have been described, as well as “atypical”
MBCs that express FCRL4 or FCRL5 and/or lack expression of
the canonical MBC surface marker CD27 (2, 3). Various acti-
vated B cell subsets, which appear transiently after infection or
vaccination, have also been reported (4–6). In mice, MBCs can
be subcategorized based on their expression of Ig isotype as well
as other surface markers, such as CD80, PD-L2, and CD73 (2, 7).
Interestingly, recent studies have shown that murine IgM+ MBCs
formed in response to immunization with model proteins are
abundant and stable over time, whereas the longevity of antigen-
specific swIg+ MBCs appears to be dependent on the frequency
of high-avidity germline-encoded BCRs in the naïve B cell rep-
ertoire (8–10). Although these studies have provided important
insights into the hierarchy of murine IgM+ and swIg+ MBC
populations induced by nonreplicating antigens, it remains un-
clear whether, and how, these findings will translate to human
MBC responses induced by infection or vaccination. Further-
more, the relative contribution of different MBC subsets to the

human B cell response to pathogen exposure, and if/how these
subsets change over time, remains to be elucidated.
Due to the high level of protection afforded by the live-

attenuated yellow fever virus 17D (YFV-17D) vaccine—reported
to be primarily mediated by neutralizing antibodies (nAbs)
targeting the YFV E protein (11)—we sought to gain a com-
prehensive view of the human YFV E-specific B cell response
underlying this efficacy. Importantly, despite its success, our
knowledge of the human B cell response to the YFV-17D vac-
cine remains limited to studies of human sera and a handful of
YFV E-specific human monoclonal Abs (mAbs). Recent serum
depletion studies have shown that a large fraction of the YFV E-
specific serum Ab response is mediated by Abs targeting domain
I (DI) and/or domain II (DII) of the E protein, whereas Abs
targeting domain III (DIII) are absent or present at very low
titers (12). Correspondingly, the six YFV E-specific human
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mAbs described to date target overlapping epitopes within DII
of the E protein (13, 14).
To longitudinally track the development and evolution of the

human B cell response induced by the YFV-17D vaccine, we
isolated and characterized hundreds of YFV E-specific mAbs
from two flavivirus-naïve donors at multiple time points follow-
ing YFV-17D vaccination, spanning the course of 360 d. Here we
present an analysis of the kinetics, dynamics, and heterogeneity
of this B cell response, as well as an in-depth characterization of
the mAbs encoded by these B cells. Overall, the results provide a
global view of the human MBC response to a highly successful
vaccine and may inform the development of vaccines against
refractory pathogens, such as malaria and HIV.

Results
Study Design. To study the evolution of the human B cell re-
sponse to YFV-17D, we immunized two healthy donors with the
YFV-17D Stamaril vaccine and collected blood samples at days
10, 14, 28, 90, 180, 270, and 360 postvaccination (SI Appendix,
Fig. S1A and Table S1). Neither of the YFV-17D vaccinees had a
history of YFV infection or vaccination, and correspondingly the
prevaccination sera from both donors showed no detectable
binding reactivity to YFV-17D viral particles or recombinant
YFV E or NS1 proteins (SI Appendix, Fig. S1 B–D). Further-
more, neither prevaccination serum showed detectable neutralizing

activity against YFV-17D (SI Appendix, Fig. S1E). Since YFV is
antigenically related to other flaviviruses, we also confirmed that
the prevaccination sera from both donors lacked reactivity with
E and NS1 proteins from commonly circulating flaviviruses
(dengue virus serotypes 1 through 4 [DENV1-4], Japanese en-
cephalitis virus [JEV], tick-borne encephalitis virus, West Nile
virus [WNV], and Zika virus [ZIKV]) (SI Appendix, Fig. S1 C
and D). Hence, both donors were likely flavivirus-naïve at the
time of vaccination. The IgG and IgM serum kinetics following
vaccination also supported primary exposure (SI Appendix, Fig.
S1F). Consistent with prior studies (15, 16), serum neutralizing
activity against YFV-17D appeared in both donors by day 10
postvaccination and persisted through the course of the study (SI
Appendix, Fig. S1 E and G).

Primary YFV-17D Vaccination Induces Highly Mutated Plasmablast
Responses in Flavivirus-Naïve Donors. Since previous studies have
shown that plasmablasts (PBs) appear transiently in peripheral
blood ∼10 to 14 d following YFV-17D vaccination (17), we
monitored PB responses in both donors on day 10 and 14 post-
vaccination. In both donors, expanded PB populations that were
∼10- to 20-fold over prevaccination levels were observed at both
time points (Fig. 1A and SI Appendix, Fig. S2).
To further characterize the PB response to YFV-17D, we

single-cell-sorted ∼600 PBs from both donors and amplified the
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Fig. 1. Molecular characterization of YFV-17D–induced PB responses. (A) Frequency of PBs among circulating CD19+CD20—/lo B cells at days 0, 10, and 14
postvaccination. (B) SHM loads of mAbs isolated from day 10 and day 14 PBs. Black bars indicate medians. (C) Proportion of mAbs isolated from day 10 and
day 14 PBs that contain somatic mutations. (D) Percentage of PB-derived mAbs that showed detectable ELISA binding reactivity to whole YFV-17D particles.
(E) Neutralizing activities of PB-derived mAbs against YFV-17D at 100 nM and 10 nM concentrations. Green dots indicate the number of nucleotide sub-
stitutions in VH + VL for each mAb. (F) Proportion of YFV-17D binding mAbs with the indicated neutralization IC50s. MAbs that displayed <50% neutralization
at 100 nM in the preliminary screen are included in the IC50 >100 nM group. (G) Proportion of PB-derived nAbs (defined as Abs displaying >50% neutrali-
zation at 100 nM) that contain somatic mutations. Statistical comparisons were made using the Mann–Whitney U test (**P < 0.01, *P < 0.05). nt, nucleotide;
n.n., nonneutralizing; GL, germline; Mut., mutated; VH, variable region of the heavy chain; IC50, half-maximal inhibitory concentration.
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corresponding Ab heavy- and light-chain variable (VH and VL)
genes by single-cell PCR. One hundred sixty-one and 210 natively
paired mAbs were cloned from donors 1 and 2, respectively, and
expressed as full-length IgGs in an engineered strain of Saccha-
romyces cerevisiae (18). Sequence analysis showed that the PB
responses were highly diverse in both donors, with only about 15%
of clones belonging to expanded clonal lineages (SI Appendix, Fig.
S3). Unexpectedly, a large fraction of the PB-derived mAbs from
both donors contained high levels of somatic hypermutation
(SHM), suggesting either efficient recruitment of preexisting
MBCs into the PB response or the early onset of affinity matu-
ration within GC reactions or at extrafollicular sites (19) (Fig. 1B).
We also expanded this analysis to include two additional flavivirus-
naïve donors and observed similar results (SI Appendix, Fig. S4). In
three out of four donors, the median level of SHM in the PB-
derived mAbs was significantly higher on day 10 than on day 14
(Fig. 1B and SI Appendix, Fig. S4). Correspondingly, a larger pro-
portion of mAbs cloned from day 14 PBs lacked SHM, suggesting an
increased recruitment of cells from the naïve B cell compartment at
this time point (Fig. 1C). To analyze whether the somatic mutations
in the PB-derived mAbs contribute to binding activity, we generated
inferred unmutated common ancestor (UCA) mAbs from three
somatically mutated PB clones and measured their binding affinities
to a recombinant YFV E protein. In all three cases, the UCA mAbs
showed substantially reduced binding affinities compared to the
mature mAbs, suggesting that somatic mutations in the PB mAbs
are important for recognition of YFV E (SI Appendix, Fig. S5).
We next tested the PB-derived mAbs for binding reactivity to

YFV-17D particles using a sandwich enzyme-linked immuno-
sorbent assay (ELISA) (Fig. 1D and SI Appendix, Fig. S6A). The
frequency of YFV-17D binding mAbs isolated from day 10 and
14 PBs ranged from 6 to 37%, which is substantially lower than
the percentage of antigen-specific mAbs recovered from PBs
induced by influenza vaccination or secondary DENV infection
(20, 21). The low proportion of YFV-17D–reactive clones may
be due to promiscuous B cell activation (19) or low binding af-
finity of the PB-derived mAbs or because the PB responses were
primarily directed against other viral antigens not tested in this
study (e.g., viral core proteins). Notably, the binding and non-
binding populations contained a similar proportion of poly-
reactive clones, with ∼10 to 20% of PB-derived mAbs showing
some degree of polyreactivity (SI Appendix, Fig. S6B). Thus, it is
unlikely that the nonbinding PB population originates from non-
specifically activated, polyreactive B cell clones. Furthermore, the
mAbs that failed to bind YFV-17D by ELISA also showed little to
no binding to a recombinant YFV E protein in a biolayer inter-
ferometry (BLI) assay using an avid binding orientation, indicating
the lack of detectable binding to YFV-17D particles by ELISA is
likely not due to low affinity or assay format (SI Appendix, Fig.
S6C). Despite the low frequency of YFV-specific clones, we re-
covered 33 and 34 YFV-17D binding mAbs from the expanded PB
populations in donors 1 and 2, respectively. The SHM loads of the
binding mAbs were similar to those observed in the total PB
population (Fig. 1B and SI Appendix, Fig. S7).
The early appearance of serum neutralizing activity following

YFV-17D vaccination suggests the presence of nAbs in the PB
compartment (SI Appendix, Fig. S1 E and G). To test this di-
rectly, we analyzed the neutralizing activities of the PB-derived,
YFV-17D binding mAbs in a microtiter neutralization assay at
100 and 10 nM concentrations. Preliminary studies with a panel
of control mAbs showed that neutralization half-maximal in-
hibitory concentrations (IC50s) in this assay were highly compa-
rable to those observed in a classic focus reduction neutralization
test assay (SI Appendix, Fig. S8A). The neutralizing activities of
the PB-derived mAbs ranged from complete neutralization at
10 nM to no detectable neutralization at 100 nM (Fig. 1E).
Notably, a substantially higher fraction of mAbs isolated from
day 14 PBs displayed neutralizing activity compared to those

isolated from day 10 PBs, which is consistent with the increased
serum neutralizing activity on day 14 versus day 10 in both do-
nors (Fig. 1F and SI Appendix, Fig. S1 E and G). Furthermore,
neutralization titration experiments on the mAbs displaying at
least 50% infection inhibition at 100 nM revealed that 9 to 16%
of YFV-17D binding mAbs isolated from day 14 PBs displayed
medium to high neutralizing activity (IC50s ≤10 nM) (Fig. 1F and
SI Appendix, Fig. S8B). Interestingly, sequence analysis showed
that 12.5 to 33% of the PB-derived nAbs utilized VH4-4/VL1-51
germline gene pairing, suggesting recognition of a common an-
tigenic site (SI Appendix, Fig. S9). Finally, 53% and 20% of the
nAbs isolated from donors 1 and 2, respectively, lacked somatic
mutations, indicating that YFV-17D nAbs are present in the
naïve B cell repertoire (Fig. 1 E and G). We conclude that YFV-
17D vaccination induces PB responses that originate from both
naïve and MBCs, and only a minority of these B cells encode Abs
that display potent neutralizing activity.

Different B Cell Populations Mediate Early and Late Memory to YFV-
17D. To study the MBC response to YFV-17D, we stained purified
B cells from each sampling time point with a panel of B cell surface
markers (CD19, CD20, CD27, IgM, IgD, CD21, and CD71) and a
fluorescently labeled recombinant YFV E protein. The YFV E
antigen used for B cell staining was recognized by two well-
characterized control mAbs, 4G2 and 5A, providing evidence for
proper folding (13) (SI Appendix, Fig. S10A). YFV E-specific
swIg+ MBCs emerged in both donors by days 14 to 28, peaked
between days 90 and 180, and slowly declined between days 180 and
360 (Fig. 2 A and B).
To further dissect the MBC response to YFV-17D, we single-

cell-sorted between 100 to 400 YFV E-reactive B cells from both
donors at each sampling time point for mAb cloning and char-
acterization. In order to capture the full heterogeneity of the
MBC response, we sorted all YFV E-reactive B cells (regardless
of surface phenotype) and used index sorting to track the surface
markers expressed on each sorted cell (SI Appendix, Fig. S10 B
and C). This analysis revealed that YFV E-specific MBC re-
sponse in both donors was highly heterogenous at all time points
(Fig. 2C). At the earliest sampling time point, activated naïve B
cells and IgM+CD27+ MBCs dominated the response in both
donors, but these B cell populations waned rapidly over time
(Fig. 2 C and D). By day 90, less than 15% of the YFV E-specific
response was comprised of IgM+CD27+ MBCs, and by day 360
only about 5% of YFV E-specific B cells belonged to this MBC
population (Fig. 2 C and D). In contrast, the swIg+ MBC pop-
ulation—which was composed of both CD27+ and CD27− B cells—
expanded between day 14 and day 90 and then remained stable
throughout the course of the study (Fig. 2 C and D).
To determine whether the observed hierarchy of IgM+ and

swIg+ MBC populations was unique to YFV-17D vaccination, we
also stained longitudinal samples from two Puumala hantavirus
(PUUV)-experienced donors with the same panel of B cell markers
described above and a fluorescently labeled PUUV envelope protein
subunit (Gn) (SI Appendix, Fig. S11A). Flow cytometric analysis
revealed that PUUV Gn-specific IgM+ memory cells were present
during early convalescence but waned rapidly in both donors (SI
Appendix, Fig. S11B). In contrast, swIg+ MBCs appeared early and
were maintained at least until day 349 or 237 (the last sampling time
points available) in donors 165 and 192, respectively (SI Appendix,
Fig. S11B). Hence, the longevity of IgM+ and swIg+ MBC responses
observed after primary YFV-17D vaccination is highly similar to that
observed following primary infection with PUUV.
Interestingly, sequence analysis revealed that over half of the

YFV E-specific mAbs isolated from phenotypically naïve
(IgM+IgD+CD27−) B cells were somatically mutated, suggesting
that these B cells are GC-experienced and therefore represent
one or more atypical MBC subsets (SI Appendix, Fig. S12 A and B).
A comparable proportion of mAbs isolated from IgM+IgD−CD27−
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and IgM−IgD+CD27− B cells were also somatically mutated,
suggesting that these B cells are also bona fide MBCs (SI Ap-
pendix, Fig. S12 A and B). The median level of SHM in these
three atypical MBC subsets was similar to that observed in
classical IgM MBCs (IgM+IgD+CD27+) (SI Appendix, Fig.
S12B). However, in contrast to classical IgM+CD27+ MBCs, these
atypical IgM+ and/or IgD+CD27− MBC populations comprised
about one-third of the total YFV E-specific MBC response at day
180 and appeared to be stable until at least day 360 (Fig. 2 C and
D). Overall, the results indicate that the early MBC response to
YFV-17D vaccination is mediated by both swIg+ and classical IgM
MBCs, whereas the late MBC response is dominated by swIg+ and
atypical IgM+ and/or IgD+ MBCs.

Prolonged Evolution of the MBC Response to YFV-17D Vaccination. To
characterize the evolution of the MBC response to YFV-17D
vaccination, we tracked the SHM loads, apparent binding af-
finities (KD

Apps), and neutralization potencies of the YFV E-
specific mAbs at each sampling time point. In both donors, the
median level of SHM was low at day 14—with over 50% of Abs
lacking somatic mutations—and increased gradually over a 6- to
9-mo time period (Fig. 3 A and B). By 9 mo postvaccination,
SHM loads plateaued in both donors, with a median of nine and
seven nucleotide substitutions in VH for donors 1 and 2, re-
spectively (Fig. 3 A and B). Consistent with the mutational load
analysis, binding studies with a recombinant YFV E protein
showed that the KD

Apps of the MBC-derived mAbs were very
weak at early time points and progressively improved for 6 to 9 mo
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following vaccination (Fig. 3 C and D). In parallel with the in-
crease in affinity, we observed the emergence of highly potent
nAbs (IC50s <1 nM) beginning at day 90 (Fig. 3 E and F). These
potent nAbs were derived from multiple MBC subsets, including
atypical IgM+ and/or IgD+ MBCs (SI Appendix, Fig. S13). In-
terestingly, the average binding avidities and neutralization po-
tencies of the mAbs isolated from day 14 MBCs were lower than
those isolated from day 14 PBs, suggesting preferential re-
cruitment of high-affinity nAbs into the PB compartment (Figs.
1F and 3F and SI Appendix, Fig. S14).
Finally, we assessed ongoing B cell activation by analyzing ex-

pression of the B cell activation/proliferation marker CD71 on
YFV E-specific MBCs (4). This marker was expressed on 75 to
85% YFV E-specific B cells at day 14 and remained elevated for 6
to 9 mo in both donors (Fig. 3G). Since down-regulation of CD21

has also been shown to be associated with activation of MBCs
following infection or vaccination (4–6), we also monitored CD21
expression on YFV E-specific B cells at each sampling time point.
In both donors, YFV E-specific CD21lo cells were highly abundant
on days 14 and 28 postvaccination, comprising about 40 to 80% of
the YFV E-specific response, and then declined rapidly by day 90
(Fig. 3G). At day 14, about 25% of YFV E-specific CD21lo cells
expressed IgM BCRs and lacked both CD27 expression and so-
matic mutations (SI Appendix, Fig. S15A), suggesting a naïve B cell
origin. In contrast, at late time points (day 90 and onward) almost
all of the YFV E-specific CD21lo cells contained somatic muta-
tions, supporting a GC origin (SI Appendix, Fig. S15B). Notably,
at day 14 postvaccination, there was a high degree of overlap
between the CD71+ and CD21lo populations, with 50 to 80% of
YFV E-specific activated B cells (defined as CD71+ and/or
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CD21lo) displaying a CD71+CD21lo phenotype (Fig. 3H). How-
ever, by days 28 to 90, the CD71+CD21lo population waned
to <20% of the activated B cell response in both donors (Fig. 3H).
At these time points, the majority of YFV E-specific activated B
cells displayed either a CD71+CD21+ or CD71−CD21lo phenotype
and were heterogenous with respect to isotype and CD27 ex-
pression, demonstrating that these B cells belong to multiple
distinct MBC populations (Figs. 3H and 2C). Overall, the results
indicate that the YFV E-specific MBC response continues to
evolve for 6 to 9 mo following primary vaccination, suggesting that
GC activity persists for many months following the period of active
viral replication in peripheral blood (22).

The Majority of MBC-Derived mAbs Target Epitopes within or
Proximal to the Fusion Loop on DII of the YFV E Protein. We next
sought to investigate Ab immunodominance hierarchy in the B
cell response to YFV-17D. As a first step, we analyzed the
germline gene usage of the isolated mAbs at each sampling time
point. Strikingly, in both donors, mAbs utilizing the VH3-72
germline gene dominated the response at all time points (Fig.
4A). A large fraction of these mAbs also utilized one of five
dominant light-chain germline genes and displayed shorter-than-
average heavy-chain complementary determining region 3 (CDRH3)
lengths, suggesting a shared mode of antigen recognition (Fig. 4

B and C). Interestingly, the KD
Apps of the mAbs utilizing VH3-72

were significantly lower than those observed for mAbs utilizing
other VH germlines, despite containing similar levels of SHM
(Fig. 4 D and E).
To define the number of distinct antigenic sites targeted by the

MBC-derived mAbs, we next performed pairwise competition ex-
periments using the newly isolated mAbs and two well-characterized
control mAbs, 4G2 and 5A, which recognize proximal but non-
overlapping epitopes within DII of the YFV E monomer (Fig. 5A
and SI Appendix, Fig. S16); 4G2 is a pan-flavivirus mAb that targets
the fusion loop (FL) (23), whereas 5A is a YFV E-specific mAb that
binds to a FL-proximal epitope overlapping the proposed prM as-
sociation region (Fig. 5A) (13). Competition experiments were per-
formed using high-throughput surface plasmon resonance on a
Carterra LSA instrument (24). In addition, we tested the mAbs for
reactivity with a recombinant YFV-17D DIII protein by BLI.
The majority of mAbs recognized one of eight distinct anti-

genic sites, which were defined based on reactivity with DIII and
competition with 4G2, 5A, and three of the newly isolated mAbs
(ADI-49147, ADI-44112, and ADI-45107) (Fig. 5B and Dataset
S1). Consistent with previous studies of human sera (12), only a
small subset of mAbs (6 of 772) recognized epitopes within DIII
(Fig. 5B and Dataset S1). In contrast, over half of the mAbs from
both donors competed with 4G2 and/or 5A, suggesting that the
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majority of the YFV E-specific response is mediated by Abs that
target epitopes within or proximal to the FL on DII (Fig. 5B).
Interestingly, nearly all of the mAbs that utilized the VH3-72
germline gene competed with 4G2, suggesting recognition of
the FL (Fig. 5C). Correspondingly, analysis of the sequence
features of the mAbs clustered by competition group revealed
that over half of the mAbs that competed with 4G2 utilized the
VH3-72 germline gene (Fig. 5D). Consistent with our previous
observation (Fig. 4E), the 4G2 competitor mAbs utilizing VH3-
72 showed significantly higher affinities compared to those uti-
lizing other VH germline genes (Fig. 5E). Finally, although the
proportion of mAbs targeting each antigenic site did not change
dramatically over time, we observed a suppression of 4G2/5A
competitor mAbs at later time points in donor 1 (days 270 and
360) (Fig. 5B). Furthermore, in both donors, mAbs that com-
peted with both 5A and ADI-45107 did not emerge until days 28
to 90 (Fig. 5B). Altogether, the results suggest that the vast
majority of the YFV E-specific response is directed against
epitopes within or proximal to the FL on domain II and that
there are only minor shifts in Ab immunodominance hierarchy
during the maturation of the B cell response to YFV-17D.

The Majority of Highly Potent nAbs Recognize FL-Proximal Epitopes.
We next investigated the relationship between antigenic site and
neutralization potency. Strikingly, over 90% of the mAbs that
competed either with 5A only or both 5A and ADI-45107
showed neutralizing activity (Fig. 6A). Moreover, the majority
(78%) of highly potent nAbs (IC50 <1 nM) in the panel belonged
to these two competition groups (Fig. 6 B and C). Analysis of the
sequence features of 5A-only or 5A/ADI-45107 competitor nAbs
revealed that nearly 40% utilized VH4-4/VL1-51 germline gene
pairing and did not show evidence of a convergent CDRH3 se-
quence, suggesting a common mode of germline-encoded anti-
gen recognition (Fig. 6D and SI Appendix, Table S2). In line with
prior studies of other flaviviruses (25), most of the DIII-directed
mAbs also showed highly potent neutralizing activity (Fig. 6 A
and B). In contrast to the 5A competitors and DIII-directed
mAbs, only a minority of the mAbs belonging to other compe-
tition groups showed neutralizing activity (Fig. 6 A and B). For
example, only 12% and 20% of mAbs that competed with 4G2
only or both 4G2 and 5A, respectively, displayed neutralization
IC50s <100 nM (Fig. 6 A and B). Overall, the results demonstrate
that, in these two donors, the nAb response to YFV-17D is
primarily mediated by Abs that recognize FL-proximal epitopes
within DII of the YFV E protein.

A Subset of mAbs Display Binding Cross-Reactivity with Other
Flavivirus E Proteins. Since human flavivirus infections are
known to induce flavivirus cross-reactive Ab responses (26–28),
we next evaluated whether any of the isolated mAbs displayed
binding reactivity to recombinant DENV-2, DENV-4, WNV, or
ZIKV E proteins. In both donors, about 6% of YFV E-reactive
mAbs showed cross-reactivity to at least one heterologous fla-
vivirus E protein (Fig. 7A). The majority of these cross-reactive
mAbs targeted the highly conserved FL and bound to all five
flavivirus E proteins with high apparent affinities (KD

Apps <10 nM)
(Fig. 7 B and C). Correspondingly, the small subset of mAbs
that bound to epitopes outside of the FL generally displayed
more limited cross-reactivity profiles and lower affinities (Fig.
7C). Importantly, only 6 out of 50 cross-binding mAbs showed
neutralizing activity against YFV-17D, and none of these mAbs
showed significant cross-neutralizing activity against ZIKV,
WNV, or JEV (Fig. 7 and SI Appendix, Fig. S17). We conclude
that YFV-17D vaccination induces a subset of Abs that display
broad flavivirus binding activity, the majority of which target the
highly conserved FL and show little to no cross-neutralizing activity.

Discussion
A deep understanding of the kinetics, dynamics, and specificities
of human MBC responses elicited by successful vaccines may
provide insights into the design of vaccines for refractory path-
ogens. To dissect the antigen-specific MBC response induced by
the YFV-17D vaccine—widely considered to be the “gold-
standard” of antiviral vaccination—we cloned and character-
ized hundreds of YFV E-specific mAbs from two healthy donors
at multiple time points following primary YFV-17D vaccination.
In most individuals, YFV serum neutralizing activity appears

∼10 to 14 d following primary YFV-17D vaccination (29, 30),
which corresponds to the peak PB response and suggests the
presence of nAbs in this compartment. Indeed, we found that
about one-third of the YFV E-specific mAbs isolated from day
14 PBs showed neutralizing activity. The PB-derived nAbs orig-
inated from both mutated and unmutated cells, suggesting that
both activated naïve and MBCs contribute to the nAb response
to YFV-17D. Interestingly, the average binding avidities and
neutralization potencies of the mAbs isolated from day 14 PBs
were higher than those isolated from day 14 MBCs, which is
consistent with previous studies in mouse models showing that
higher-affinity cells are preferentially recruited into the PB
compartment (31, 32). Hence, the immune system appears to
place a priority on the rapid production of high-affinity serum
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nAbs, which likely provides the basis for the early protection
afforded by the YFV-17D vaccine.
Previous studies in mouse models have demonstrated that

antigen-specific IgM+ MBCs are induced early after immuniza-
tion and remain numerically stable over time (8–10). In contrast,
the longevity of swIg+ MBCs has been suggested to be dependent
on the frequency of high-affinity germline-encoded precursors in
the naïve B cell repertoire, with the presence of high-affinity
naïve precursors associated with unstable swIg+ MBCs (8, 9).
Interestingly, despite the presence of germline-encoded BCRs
with high avidity for YFV E in both donors, we observed that
classical IgM+ MBCs waned rapidly over time, whereas swIg+

MBCs remained stable until at least day 360 postvaccination.
Although the results from these two vaccinated donors may not
be representative of the entire YFV-17D–vaccinated pop-
ulation, we also observed transient IgM+ MBCs and long-lived
swIg+ MBCs in the context of PUUV infection and others have
reported long-term maintenance of swIg+ MBCs following
smallpox vaccination (33), suggesting that primary viral infec-
tions commonly induce a stable swIg+ MBC population. The
discrepancy between our results and those observed in mouse
models may reflect differences between the hierarchy of
IgM+ versus swIg+ MBC response in mice and humans and/or
differences in the response to replicating versus nonreplicating
antigens.
We observed increases in SHM, Ab affinity, and neutralization

potency for 6 to 9 mo following YFV-17D vaccination, suggest-
ing that GC activity continues for many months following the
period of detectable viral replication in peripheral blood. This
could either be due to low level viral replication in secondary
lymphoid organs or prolonged capture of inert viral antigens on

the surface of follicular dendritic cells (FDCs). Although we
cannot distinguish between these two possibilities, previous
studies have shown that viral antigens, in the form of complement-
coated immune complexes, can be sequestered by FDCs for ex-
tended periods of time for presentation to GC B cells (34–37).
Importantly, recent studies have also shown that MBCs induced by
Ebola virus infection and influenza virus vaccination continue to
undergo affinity maturation for 6 to 12 mo (6, 38, 39), suggesting
that prolonged maturation of the MBC response may be more
common than previously appreciated. Given that Ab responses
induced by live viral infections have been shown to have half-
lives of 50 y or more, whereas responses to nonreplicating
protein antigens wane relatively quickly and require booster
vaccinations (40), it will be of interest to investigate whether
protracted affinity maturation is also observed for vaccines that do
not induce long-lived Ab responses (e.g., the tetanus toxoid and
diphtheria vaccines).
In both donors the nAb response induced by YFV-17D vac-

cination was primarily directed against FL-proximal epitopes
overlapping the 5A binding site. Interestingly, a substantial
fraction of these “5A-class” nAbs displayed convergent VH/VL
germline gene pairing, suggestive of a so-called public Ab re-
sponse (41). The relatively high abundance of these two germline
genes (VH4-4 and VL1-51) in the naïve B cell repertoire perhaps
provides a molecular explanation for how the YFV-17D vaccine
is able to induce protective neutralizing Ab responses in such an
extraordinarily high proportion of individuals (>95%) (42, 43).
Furthermore, a subset of these nAbs displayed exceptionally
potent neutralizing activity, with IC50s that were about 10 times
lower than previously described YFV mAbs (13, 14). Given the
recent YFV outbreaks in Brazil and the Democratic Republic of
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Congo, coupled with YFV-17D vaccine supply shortages and the
lack of effective treatments for YFV disease, these mAbs rep-
resent promising candidates for prophylaxis and/or therapy.
Interestingly, about 6% of Abs induced by YFV-17D vacci-

nation showed binding reactivity to heterologous flavivirus E
proteins. As expected based on prior studies of flavivirus in-
fection (26–28), we found that the majority of these mAbs tar-
geted the highly conserved FL and lacked measurable cross-
neutralizing activity. Although nonneutralizing Abs are unlikely
to contribute to protection or Ab-dependent enhancement of
secondary flavivirus infections (44), the corresponding cross-
reactive B cells may be preferentially activated and expanded
upon subsequent flavivirus infection. Thus, it will be of interest
to study if and how preexisting YFV immunity impacts the B cell
response to heterologous flavivirus exposure and vice versa.
Altogether, the results of this study provide a comprehensive

view of the dynamics and complexity of the human MBC re-
sponse induced by the highly successful YFV-17D vaccine.
Similar studies performed on other vaccines and natural infec-
tions may shed light on features of the MBC response associated
with the induction and maintenance of long-term protective Ab
responses.

Materials and Methods
Human Subjects. Informed consent to participate in this study was obtained
before vaccination. Study subjects aged between 25 and 32 y were vacci-
nated with the YFV-17D Stamaril vaccine. Heparinized blood (50 to 100 cc)
was obtained from subjects before vaccination and on days 10, 14, 28, 90,
180, 270, and 360 following vaccination. Samples were processed in the
Immune Monitoring and Flow Cytometry Core laboratory at the Geisel
School of Medicine at Dartmouth College to obtain plasma and to isolate
peripheral blood-derived B cells. Isolated cells and plasma were stored fro-
zen in aliquots at −80 °C. This study complies with all relevant ethical
regulations for work with human participants and was approved by the

Committee for the Protection of Human Subjects, Dartmouth-Hitchcock
Medical Center, and Dartmouth College.

Blood samples from the two PUUV-experienced donors were obtained
on days 20, 35, 82, 130, 161, 237, and 349 postdiagnosis. Both donors were
hospitalized due to PUUV-associated disease. Samples were processed at the
University Hospital of Northern Sweden to obtain plasma and to isolate
peripheral blood-derived B cells. The two subjects were 43 (donor 165) and 75
(donor 192) y of age at the time of hospitalization. Ethical approval was
obtained by the regional Ethical Review Board at Umea ̊ University, Umea ̊,
Sweden. Signed informed consent was obtained from both donors.

Single B Cell Sorting and Variable Gene Amplification.MBCs were stained using
anti-human CD19, CD20, CD3, CD8, CD14, CD16, IgD, IgM, CD27, CD21, CD71,
and a mixture of dual-labeled (APC and PE) YFV E tetramers. B cells that
showed reactivity to the YFV E tetramers were single-cell-sorted for mAb
cloning, as described previously (45).

Microtiter Neutralization Assays. Monoclonal antibodies were serially diluted
in cell culture medium and incubated at room temperature with the test
viruses (YFV-17D or ZIKV) or test reporter virus particles (RVPs) (WNV or JEV)
for 1 h then added to cells. Infection levels were measured 2 d later by
staining infected cells with the pan-flavivirus mouse mAb 4G2 on a Cytation-
5 automated fluorescence microscope (BioTek).

Data Availability. All data are included in the manuscript and SI Appendix. All
reagent and data requests should be directed to L.M.W. The sequences of
neutralizing antibodies isolated in this study have been deposited in the
GenBank database, https://www.ncbi.nlm.nih.gov/genbank (accession nos.
MN993290–MN993593).
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