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Abstract Extracellular Polysaccharides (EPS) from both

prokaryotes and eukaryotes have a great deal of research

interest as they protect the producer from different stresses

including antibiotics, ionic stress, desiccation and assist in

bio-film formation, pathogenesis, adhesion, etc. In this

study haloalkaliphilic Bacillus sp., known to cope with

osmophilic stress, was selected and screened for EPS

production. The EPS were isolated, partially purified and

chemical characteristics were documented using liquid FT-

IR followed by assessment of heavy metal biosorption

(lead, copper and cadmium) using Atomic Absorption

Spectroscopy (AAS). The EPS extracted from three iso-

lates B. licheniformis NSPA5, B. cereus NSPA8 and B.

subtilis NSPA13 showed maximum biosorption of Lead

followed by Copper and Cadmium. Of the tested isolates,

the EPS from isolate B. cereus NSPA8 showed maximum

(90 %) biosorption of the lead.

Keywords Solar � Salterns � Bacillus sp. � Extracellular
polysaccharides and metal biosorption

Introduction

EPS are polymeric substances excreted by the microor-

ganisms when growing in environment of abundance or

after establishing in a suppressing one and play a major

role in the formation of bio-films to grow on the substrates

in environments where normally others cannot colonise

(Sutherland 2001). In some species, EPS play an essential

role in imparting antibiotic resistance to the organism by

denying permeability to the antibiotics (Costerton et al.

1987).

Depending on the genera these EPS are made of dif-

ferent carbohydrates, proteins and their derivatives as

hetero as well as homo-polymers, which make them

potential contender for multiple field applications. EPS are

being actively employed in food, bioremediation and

pharmaceutical sectors owing to their gelling nature which

allows them to be used as preservative, viscosifying agent,

flavouring agent and form super-absorbing gels, biosorp-

tion agents etc., (Sutherland 1998; Challouf et al. 2011). It

is well established that these EPS have large surface area of

interaction particularly with cations (metals), which comes

handy during surviving in diverse contaminated areas and

the same is applicable in remediation of heavy metal

contamination (Pal and Paul 2008).

In this study, a moderately haloalkaliphilic bacteria of

the genus Bacillus was studied from artificial hyper saline

habitats i.e., solar salterns, which are wide spread in dis-

tribution and primarily present in the tropical and sub-

tropical regions constructed by humans near coastal

regions for the purpose of edible salt production. As the

current knowledge regarding potential applications of

microbes from artificial hyper saline environments and

their applicability in metal detoxification is very limited,

this study was focused to evaluate the metal biosorption

ability of EPS extracted from three different types of

haloalkaliphilicbacteria.& Syed Shameer
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Materials and methods

Isolation, selection and characterisation of Bacillus

sp., from solar salterns

For the isolation of the Bacillus sp., 1.0 g of soil sample

was collected from solar salterns by employing standard

method of soil sampling (Carter 1993) and was inoculated

into 100 ml of the modified nutrient medium with 7 %

NaCl and the final pH was adjusted to 8.2. After inocula-

tion, flasks were incubated on orbital shaker at 130 rpm/

min with regular monitoring of the turbidity of the media at

37 �C. After 48–72 h of growth, loop full of culture was

spread plated/pour plated on the nutrient agar (Agar 1.5 %

w/v) plate and incubated at 37 �C for 5 days. Based on the

colony characteristics such as form, elevation and margin

various discrete and distinct colonies were selected and

purified. The selected isolates were screened for standard

biochemical reactions to establish preliminary identity of

the isolates (Cappuccino et al. 2005). Molecular charac-

terization was carried out according to the protocols of

Sambrook et al. (1989), Saiki et al. (1988), Weisburg et al.

(1991) and Higgins et al. (1992) for genomic DNA isola-

tion, PCR amplification, Amplicon sequencing and phylo-

genetic relationship analysis, respectively.

Screening for extracellular polysaccharides (EPS)

production

EPS production was screened by visual and by microscopic

observation. The colonies were picked from pure culture

plates of three potential isolates and spread plated using a

disposable L-rod and incubated at 37 �C for 48 h.

Mucoidness of colonies was determined by visual appear-

ance and the ropiness of colonies in liquid broth was

determined by testing with a sterile inoculation needle.

Further EPS production was also confirmed by scanning

electron microscopy according to Bulla (1970) and Kaláb

et al. (2008) where the isolate’s EPS layers were picked up

and transferred to a particle free graphite cover slip and

dried at 35 �C and processed for SEM imaging.

Production and extraction of extracellular

polysaccharides

All the three isolates were inoculated into EPS production

medium containing Glucose 10.0 g/L, Yeast extract 3.0 g/L,

Malt extract 3.0 g/L, Peptone 5.0 g/L, MgSO4�7H2O

1.0 g/L, KH2PO40.3 g/L, vitamin B1 0.001 g/Land pH 7.0

(Banerjee et al. 2009) and incubated in rotatory shaking

incubator at 180 rpm for 96 h at 40 �C. After 96 h of

incubation the cultures were treated with 10 psi steam for

20 min to loosen the attached polymer, centrifuged at

8000 rpm and supernatant was collected. To the supernatant,

chilled Iso-proponal was added in equal volume. This

mixture was agitated for few minutes and left overnight at

4 �C (Brown and Lester 1980; Donota et al. 2012). The

precipitated EPS were separated by centrifugation at

7000 rpm for 20 min. The supernatant was dried in an oven

at 60 �C until it reaches constant weight. The precipitate was

used for protein analysis and dried supernatant was used for

total carbohydrate and reducing sugars estimation.

Dry weight of the extracellular polysaccharides

Extracted EPS were dried in a pre weighed density bottles

at 60 �C till it attains constant weight. Dry weight of

polymer was calculated in relation to the volume of

supernatant used for extraction (Ohno et al. 2001).

Weight of dry polymer ¼ B� A

A weight of empty density bottle, B weight of bottle with

dry polymer

Characterisation of extracellular polysaccharides

Characterisation of physical properties of EPS

The physical properties of EPS such as colour and texture

were analysed by macroscopic and Electron microscopic

observation. The dried EPS layer was placed on the particle

free carbon tape and attached to the metallic studs and

placed in the Gold sputtering chamber to coat the particles

to create electron dense and sparse regions. The difference

in the gold coated particles gives dark and brighter regions

creating an electron image (Sutton et al. 1994).

Chemical composition of extracellular polysaccharides

The extracted EPS were subjected to total carbohydrate and

reducing sugar estimation as described by Dubois et al.

(1956), where 2.0 ml of EPS solution was taken into a test

tube and 0.05 of 80 % phenol is added followed by rapid

addition of 5.0 ml concentrated sulphuric acid. The tubes

were allowed to stand for 10 min then, shaken well and

placed in water bath at 30 �C for 20 min. The absorbance

was measured at 490 nm and calculated against a standard

of glucose treated similarly.

The reducing sugars were estimated following DNS

method, where 1.0 ml of EPS was mixed with 3.0 ml of

DNS reagent and kept in a boiling water bath for 5.0 min

and allowed to cool and absorbance was measured at

540 nm, concentration was calculated using standard

curve.

194 Page 2 of 10 3 Biotech (2016) 6:194

123



The EPS were subjected to protein estimation as per

Lowry et al. (1951), where to 1.0 ml of EPS solution

4.5 ml of alkaline copper sulphate reagent is added and

incubated at room temperature for 10 min. Then 0.5 ml of

Folin-Phenol reagent is added and incubated for further

30 min and absorbance was measured at 660 nm, protein

concentration was calculated against a standard curve.

Structural elucidation of the extracellular polysaccharides

Structural elucidation of the EPS was done using Fourier

Transform Infrared Spectroscopy (FT-IR, from Perkin

Elmer, Germany). For FT-IR analysis, 2.0 mg of extracted

EPS was grounded with 200 mg of KBr and then pressed in

a mould. The absorption spectrum was recorded in the

frequency range of 4000–400 cm-1 to analyse different

functional groups present in the EPS. Thus, obtained pel-

lets were analysed for different functional groups to asses’

structural characters (Lijour et al. 1994; Verhoef et al.

2005; Denkhaus et al. 2007).

Metal biosorption by extracellular polysaccharides

The metal biosorption potential of the EPS against heavy

metals Lead, Copper and Cadmium was studied by adding

the whole EPS at 1.0 mg/100 ml of the test metal solution

having 1000 ppm of respective metal at 37 �C under con-

stant stirring of 250 rpm for 24 h. After incubation, the EPS

were separated by centrifugation at 10,000 rpm and the

metal biosorption was measured using Atomic Absorption

Spectroscopy (AAS) (Bass et al. 2001). The metal biosorp-

tion potential is deducted by calculating as follows (Volesky

and Holan 1995). Metal removal (q), from the solution was

expressed as mg metal removed/g dry weight-1, which was

calculated using the following formula

q mg g�1
� �

¼ V Ci�Cf

� �
m�1

where V is the sample volume (l), Ci and Cf are the initial

and final metal concentrations (mg/l), respectively,m is the

amount (g) of dry biomass.

Results

Extracellular Polysaccharides production

and applications

Isolation, selection and characterisation of Bacillus sp.,

from solar salterns

A total of 14 bacterial isolates were initially isolated

from solar salterns on modified nutrient agar medium

and the isolates were selected on the basis of cultural

characteristics such as colony size, colour, form, mar-

gin and elevation. Based on the Bergey’s manual of

systemic bacteriology, those fitting the description of

Bacillus sp were selected for molecular characterisation

(Bergey et al. 1939). The selected isolates were taxo-

nomically classified using phylogenetic analysis. The

amplified 16S rDNA gene using polymerase chain

reaction resulted in a single discrete band of a 1.5 kb

size in agarose gel. This amplified PCR product was

BLAST searched against NCBI Genbank and RDP

(Ribosomal Database Project) database 11.0. A distance

matrix was constructed based on nucleotide sequence

homology using kimura-2 parameter and phylogenetic

trees were made using neighbour joining method.

Based on nucleotide homology and phylogenetic anal-

ysis the isolates NSPA5, NSPA8 and NSPA13 showed

highest similarity (99.0 %) with Bacillus licheniformis

(Genbank Accession no AB301011) and nearest

homolog was found to be Bacillus sp. (Genbank

FR823409), Bacillus cereus st.GUFBSS253-84 (Gen-

bank. JN315893) 99 %, respectively, and nearest

homolog was found to be Bacillussp.BP9_4A (Genbank

JN644555) and Bacillus subtilis st.HS-116 (Genbank

JQ062996) 99 % and nearest homolog was found to be

Bacillus subtilis st.69 (Genbank JN582031), respec-

tively. The sequences were submitted to Genbank with

Accession No: JQ922113, KC686834 and KC686835

for the sequences of NSPA5, NSPA8 and NSPA13re-

spectively (Fig. 1).

Screening for extracellular polysaccharide (EPS)

production

The isolates B. licheniformis NSPA5, B. cereus NSPA8 and

B. subtilis NSPA13 showed mucoidal growth during their

isolation and purification. The bacterial cells were clearly

observed as encapsulated by the EPS through capsule

staining and gram’s staining observations. Further the SEM

images clearly established the presence of extracellular

polymer attached to the bacterial cells, and the cells grew

as a Bio-film. Images showing the Bio-film formation are

presented below (Figs. 2, 3).

Dry weight of the extracellular polysaccharides

The EPS total dry weight of the isolates B. licheni-

formis NSPA5, B. cereus NSPA8 and B. subtilis

NSPA13 measured up to around 22.25, 21.2 and

19.3 mg/10 ml, respectively. The amount of EPS pro-

duced varied even though the growth medium and

condition were identical.
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Characterisation of extracellular polysaccharides

Characterisation of physical properties of EPS

The EPS of the isolates was granular powder in case of B.

licheniformis NSPA5 and B. subtilis NSPA13 but that of B.

cereus NSPA8 was finely amorphous in nature from naked

eye examination. Similar characteristics were established

by SEM image analysis of the dried powdered EPS and

mucoidal layers of the isolates. SEM imaging elucidates

Mucoidal layers as intact relatively long polymeric in

nature; while the precipitated EPS is highly fragmented

when compared with mucoidal layers. The isolate B. cereus

NSPA8 has very thin polymeric chains than the rest of the

Fig. 1 Phylogenetic analysis of

the isolates based on 16S rDNA

sequence analysis.

a Phylogenetic tree of isolate

NSPA5; b Phylogenetic tree of

isolate NSPA8; c phylogenetic

tree of isolate NSPA13

Fig. 2 Isolates showing mucoidal growth on modified nutrient agar medium. Bar indicates 2.5 cm
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isolates i.e., B. licheniformis NSPA5 and B. subtilis

NSPA13. It is clearly evident that alcohol treatment almost

completely denatured the EPS of all the isolates apparent

from the SEM images as shown below (Fig. 4) when

compared with the untreated ones (Fig. 5).

Chemical composition of EPS

The total carbohydrate content in the Extracellular

polysaccharide after extraction by precipitation was found

to be 2.8, 4.4 and 3 mg/100 mg of the total EPS produced

by B. licheniformis NSPA5, B. cereus NSPA8 and B. sub-

tilis NSPA13, respectively. Total carbohydrate determina-

tion shows isolate B. cereus NSPA8 has produced

maximum and B. licheniformis NSPA5 the least amount of

carbohydrates among the three tested isolates. The same

were found to be comprised of reducing sugars which were

found to be around 2, 2 and 1.8 mg/100 mg of EPS of B.

licheniformis NSPA5, B. cereus NSPA8 and B. subtilis

NSPA13, respectively. The isolates B. licheniformis NSPA5

and B. cereus NSPA8 contained similar amount of reducing

sugars in their EPS. The total protein content in the EPS

was 4.3, 2.5 and 3.5 mg/100 mg of EPS from B. licheni-

formis NSPA5, B. cereus NSPA8 and B. subtilis NSPA13,

respectively; isolate B. licheniformis NSPA5 produced

maximum content in its EPS. The results are presented in

Fig. 6.

Structural elucidation of the EPS

IR spectra of EPS from isolates are presented in Fig. 7. The

spectra of three EPS are similar and indicate the presence

of the same functional groups mentioned in Table 1. Sev-

eral intense characteristic bands can be attributed to protein

and polysaccharide functional groups. These different

functional groups observed agree with results of (Guibaud

2003, 2005) and are in accordance with the EPS bio-

chemical composition.

Fig. 3 SEM images of Isolates showing extracellular polysaccharides attached to the cells and the cells growing as a bio-film

Fig. 4 SEM images of dried EPS of isolates after separation by Iso-proponal precipitation
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Metal biosorption by EPS of B. licheniformis

NSPA5, B. cereus NSPA8 and B. subtilis NSPA13

atomic absorption spectroscopy (AAS)

After analysing the treated samples in AAS, the EPS of

isolate B. cereus NSPA8showed maximum biosorption of

the tested metals. The results show all the three isolates

were able to adsorb lead at a concentration of 1000 ppm.

The metals which expressed lesser inhibition effect in the

metal tolerance assay in this case copper and cadmium

were the least adsorbed ones; the metal concentration in the

bacterial treated medium is reduced to 210.45, 140.2 and

154.65 ppm by the EPS of B. licheniformis NSPA5, B.

cereus NSPA8 and B. subtilis NSPA13, respectively, in the

case of Lead. Copper biosorption was somewhat different

as the EPS showed varied biosorption when compared with

other two metals; all the three EPS’s showed very distinct

abilities as compared with Lead and Cadmium. The EPS of

B. licheniformis NSPA5, B. cereus NSPA8 and B. subtilis

NSPA13 reduced the metal concentration to 985.42, 840.5

and 920.48 ppm, respectively, from the original 1000 ppm

concentration. In case of copper biosorption all the EPS’s

limited themselves to reducing the initial metal concen-

tration to around 942.85, 945.03 and 928.28 ppm by the

EPS of B. licheniformis NSPA5, B. cereus NSPA8 and B.

subtilis NSPA13, respectively, showing uniformity in the

copper biosorption ability unlike with Lead and Cadmium.

The biosorption studies of the selected metal showed

that the metal’s toxicity plays crucial role in the biosorp-

tion ability, the EPS of B. cereus NSPA8 showed maximum

biosorption of all the three tested metals except copper.

Lead was the maximum adsorbed one at almost 90 %. The

EPS of B. licheniformis NSPA5 and B. subtilis NSPA13

also showed maximum biosorption of lead but still less

when compared with B. cereus NSPA8. The other two

metals cadmium and copper were too adsorbed but, neg-

ligible when compared with lead. The metal biosorption

efficiency of the EPS of the isolates is depicted in the

Fig. 8 below as determined from AAS.

Discussion

In recent years, exopolysaccharides (EPS) produced by

bacteria have been employed in diverse fields ranging from

food to pharma. So, in this study the EPS produced by the

three isolates B. licheniformis NSPA5, B. cereus NSPA8 and

B. subtilis NSPA13 were extracted and its characteristics

and metal biosorption were studied. The chemical and dry

weight analysis revealed the EPS from the isolates has both

carbohydrate and protein components and the quantity

produced were more or less in agreement with previous

reports (Maria et al. 1996; Shih et al. 2010). The same was

contradicted by reports from Mitsuda et al. (1981) and Shih

et al. (2010) where EPS were majorly composed of carbo-

hydrates and their derivatives. FT-IR analysis showed the

Fig. 5 SEM images of mucoidal layers of the isolates showing highly dense polymeric structures
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Fig. 7 FT-IR spectrum showing characteristic peaks along with finger print Zone of precipitated EPS of isolates. a B. licheniformis NSPA5; b B.

cereus NSPA8; c B. subtilis NSPA13
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presence of active carboxylic groups and the results were in

harmony with reports other workers like Suh et al. (1993)

and Ganesh et al. (2004) where Haloalkaliphilic Bacillus sp.

was studied. The EPS when screened for heavy metal

biosorption showed variation in results to that of previous

reports (James 1986; Chen et al. 2002; Salehizadeh and

Shojaosadati 2003; Yilmaz 2003) when Bacillus sp, was

studied. The major difference being EPS in this study has

significant biosorption of Lead only but above reports

indicates it was the least biosorbed. In case of Copper and

Cadmium which was higher in their reports, our study

showed only minimal biosorption. All the isolate’s EPS

biosorbed the tested metals Lead, Cadmium and Copper,

but Lead was the most sorbed by all the isolates as deter-

mined by AAS at a concentration of 1000 ppm, but previ-

ous studies were with lower concentrations at around

100 ppm only. Thus, EPS from haloalkaliphilic Bacillus sp.

have potential applications in treatment of metal contami-

nated waters specially lead contamination as proposed by

Ha et al. (1991) (Loaëc et al. 1997; Beyenal and Lewan-

dowski 2004; Pal and Paul 2008).
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