
Citation: Rodriguez-Polo, I.; Behr, R.

Exploring the Potential of Symmetric

Exon Deletion to Treat Non-Ischemic

Dilated Cardiomyopathy by

Removing Frameshift Mutations in

TTN. Genes 2022, 13, 1093. https://

doi.org/10.3390/genes13061093

Academic Editor: Argelia

Medeiros-Domingo

Received: 30 March 2022

Accepted: 10 June 2022

Published: 19 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Communication

Exploring the Potential of Symmetric Exon Deletion to Treat
Non-Ischemic Dilated Cardiomyopathy by Removing
Frameshift Mutations in TTN
Ignacio Rodriguez-Polo 1,2,* and Rüdiger Behr 1,2

1 Research Platform Degenerative Diseases, German Primate Center—Leibniz Institute for Primate Research,
37077 Göttingen, Germany; rbehr@dpz.eu

2 German Center for Cardiovascular Research (DZHK), Partner site Göttingen, 37077 Göttingen, Germany
* Correspondence: irodriguezpolo@dpz.eu

Abstract: Non-ischemic dilated cardiomyopathy (DCM) is one of the most frequent pathologies
requiring cardiac transplants. Even though the etiology of this disease is complex, frameshift
mutations in the giant sarcomeric protein Titin could explain up to 25% of the familial and 18%
of the sporadic cases of DCM. Many studies have shown the potential of genome editing using
CRISPR/Cas9 to correct truncating mutations in sarcomeric proteins and have established the
grounds for myoediting. However, these therapies are still in an immature state, with only few
studies showing an efficient treatment of cardiac diseases. This publication hypothesizes that the
Titin (TTN)-specific gene structure allows the application of myoediting approaches in a broad range
of locations to reframe TTNtvvariants and to treat DCM patients. Additionally, to pave the way for
the generation of efficient myoediting approaches for DCM, we screened and selected promising
target locations in TTN. We conceptually explored the deletion of symmetric exons as a therapeutic
approach to restore TTN’s reading frame in cases of frameshift mutations. We identified a set of
94 potential candidate exons of TTN that we consider particularly suitable for this therapeutic
deletion. With this study, we aim to contribute to the development of new therapies to efficiently
treat titinopathies and other diseases caused by mutations in genes encoding proteins with modular
structures, e.g., Obscurin.
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1. Introduction/Background

Inherited cardiomyopathies are the leading causes of cardiac-related deaths [1,2]. Di-
lated cardiomyopathy (DCM) is a disease that affects approximately 1 out of 2500 persons
and has been found in the last few years with accelerated frequency [3–5]. DCM is diag-
nosed according to two criteria: (1) left ventricular enlargement, and (2) systolic dysfunction
recognizable by the reduction in the myocardial contraction force [5]. DCM patients can
display a broad range of phenotypes, ranging from heart failure to arrhythmias and throm-
boembolic disease [4]. Approximately 50% of the cases of DCM are inherited [6]. In familial
dilated cardiomyopathy (familial DCM), structural or functional abnormalities develop
due to a mutation, affecting the electrophysiological properties of the cardiomyocytes, e.g.,
calcium handling proteins, nuclear envelope proteins, or the contractile apparatus among
others [1,3]. Mutations in more than 30 genes can lead to DCM, making it a highly complex
and heterogeneous disease. A total of 25% of the cases of familial and 18% of sporadic
DCM cases can be related to mutations (non-sense, frameshift, or essential splice site) of
the sarcomeric protein Titin (TTN) [5,7–10]. Frameshift mutations in TTN alter the reading
frame, leading to the premature termination of translation and thus generating truncated
versions of the protein (TTNtv) [11,12].
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Titin is a giant sarcomeric protein that can code up to 35,991aa (theoretical protein)
(NCBI: NP_001254479) and spans half of the sarcomere [13]. The TTN gene encodes for the
largest human protein and is composed of 364 exons, including a first non-coding exon.
In humans, TTN is located on chromosome 2q31 [3]. TTN has a multitude of functions. It
acts as a biological spring between the Z-disk and the M-line and serves as a scaffold of
the sarcomere assembly. Additionally, it is a hot spot for protein–protein interactions, a
key mediator of signal transduction in cardiomyocytes, and determines the passive tension
of muscle fibers [8,11,12,14,15]. TTN regions are annotated according to their position in
the sarcomere visualized by immune-electron micrographs, i.e., Z-disc, I-band, A-band,
and M-line [16]. Titin undergoes extensive alternative splicing generating a plethora of
isoforms. N2B and N2BA are the major cardiac isoforms and comprise the four regions:
Z-line, I-band, A-band, and M-line [3,17]. The clinically most relevant mutations of TTN are
located in the I-band and the A-band. This often leads to early stop codons and a mutated
TTN lacking the C-terminal part of the A-band and M-line [12]. Additionally, TTNtv can
lead to both dominant and recessive forms of cardiac and skeletal phenotypes depending
on the nature of the mutation [15,18,19].

Many efforts have been made in the last few years to associate specific genotypic
alterations with the phenotypic (symptomatic) spectrum of DCM [7,10,20,21]. Mapping
the mutations that lead to TTNtv and ultimately to DCM is critical to generate efficient
treatments [7–9,11].

To date, there are only limited therapeutic alternatives for DCM. In severe cases, heart
transplantation is the only option. However, transplantation is a bottleneck due to the
limited availability of donor hearts. In contrast, promising approaches to the treatment of
a large number of DCM patients are genome editing technologies to restore the reading
frame of TTNtv [4,11].

The CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas system
evolved as a powerful biotechnological tool to modify genomes in prokaryotes and eu-
karyotes [22–24]. Cas9 nucleases can generate double-strand breaks at specific sites in the
genome. Cas9 is guided by short RNA guides (gRNA), derived from the CRISPR RNA
array (crRNA) and trans-activating crRNA (tracrRNA) [22]. In contrast to other nucleases,
such as transcription-activator-like effector nucleases (TALEN), zinc-finger nucleases (ZFN),
or meganucleases, the CRISPR/Cas system is easy to apply and highly efficient, making it
the method of choice for genome editing studies [25,26]. To date, CRISPR/Cas has had a
strong impact on disease modeling and the understanding of biological mechanisms. A
special focus is on the potential of CRISPR/Cas for in vivo genome editing [26–30].

A skip or deletion of in-frame mutated exons via the CRISPR/Cas9 system has long been
considered a potential strategy to treat DCM and other cardiovascular diseases [25,31–34].
Recently, a variety of endonuclease-based experimental treatments were tested and es-
tablished to overcome frameshift mutations in sarcomeric proteins [31,34–36]. These ap-
proaches can be categorized into three groups, i.e., (a) controlled splicing of mutated exons
by inducing indel mutations in the splice acceptor–donor site, (b) full fragment/exon
removal, and (c) restoration of the original wildtype sequence by targeting the mutated
locus [31,37]. Approaches (a) and (b) lead to an incomplete protein; however, they have the
potential to completely or partially restore its functionality [35,36]. In contrast, approach
(c) restores the wildtype form of the protein [31]. In a recent study using patient-derived
iPSC with a frameshift mutation in the A-band, the authors corrected the mutation by
restoring the wildtype sequence using a Cas9 plus a gRNA targeting the mutated TTN
allele and a single-stranded oligo as the donor for homology-directed repair. Furthermore,
the iPSC-derived cardiomyocytes derived from the corrected cell line showed wildtype
functionality as assessed by determining their force of contraction using engineered heart
muscle (EHM) [38,39].

Besides endonuclease-based approaches, RNA-based therapeutics and splice-switching
approaches have been tested to correct Titin, Dystrophin, and other sarcomeric protein
frameshift mutations [40]. In Duchenne muscular dystrophy (DMD), mutations are concen-
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trated in hotspots (exons 45 to 55 and exons 2 to 10). This allows a focus on specific gene
locations to cover most of the mutations. In contrast, the mutations in TTN associated with
severe DCM phenotypes are located in a wide range of sites and regions [10,11,15,40,41].
Recently, Gramlich et al. showed the beneficial potential of the TTN reframing strategy
using antisense oligonucleotide (AON-) mediated exon skipping by correcting in vitro
an autosomal dominant mutation in the giant TTN exon 326 [8]. Approaches relying on
splice site mutations and genomic deletions always have to consider exon symmetry (ex-
ons whose number of base pairs is a multiple of 3 are symmetric). In order to repair the
frameshift in an allele coding for a truncated version of a TTNtv protein (“reframing”), it
is essential to select symmetric exons. The deletion of symmetric exons will not affect the
reading frame of the wildtype protein but would restore a shortened version of the original
open reading [42]. Aiming to contribute to the development of therapies to treat familial
DCM, we evaluated the TTN structure from a therapeutic perspective.

2. The Hypothesis

We hypothesize that the Titin-specific gene structure allows the application of myo-
editing approaches in a broad range of locations to reframe TTNtv variants and to treat
DCM patients. Based on this, we selected exons that are highly accessible to recently
developed genome editing tools to facilitate the establishment of novel CRISPR-based
therapeutics to treat DCM.

The TTN gene has a very high percentage of symmetric exons compared to other
cardiac-relevant genes. This fact provides a high number of potential target exons that
can be deleted without altering the phase (Figure 1a). Additionally, the large number
of fibronectin (FN-III) and immunoglobulin (Ig) repeated domains of TTN increase the
probability of generating a functionally intact protein after the deletion of single symmetric
exons (Table S1) [43,44].

Following this therapeutic strategy, the first step is the identification of the symmetric
exons present in the gene (Figure 1a,b). However, to select candidate exons for deletion,
some additional considerations must be taken into account. Targeted exons should be
highly conserved amongst different isoforms, resulting in a high PSI (percentage of splice
in) value. A PSI value of 1 indicates that an exon is constitutively present in all isoforms. A
PSI value close to zero indicates that the respective exon is absent from most transcripts.
Mutations located in TTN exons with a low PSI usually lead to mild phenotypes [9,11,44,45].
Finally, exon size also needs to be considered. The selection of small to medium-sized exons
allows for deletion with a higher efficiency and prevents chromosomal alterations [46–48].
This will be particularly important regarding the (pre-) clinical translation of such therapies
(Figure 1).

In accordance with the characteristics mentioned above, we selected a set of candidate
exons for deletion from the TTN metatranscript (theoretical protein) (Table S1). We hypoth-
esized that exons selected by (1) symmetry, (2) high conservation (PSI > 0.9), and (3) size of
300 bp or less would be particularly suitable for genomic exon deletion (Figure 1d).
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Figure 1. (a,b) Percentage of symmetric exons. (a) Percentage of protein-coding symmetric exons in 
different cardiac genes. TNNT2 (8 symmetric exons/16 exons in total; 50%), TNNI3 (5/8; 62.5%), 
TNNC1 (2/6; 33.33%), TPM1 (2/9; 22.22%), ACTC1 (2/7; 28.57%), MYH7 (15/40; 37.5%), MYL3 (3/6; 
50%), MYL2 (2/7; 28.57%), MYBPC3 (14/35; 40%), TCAP (0/2; 0%), CSRP3 (0/7; 0%), MYOZ2 (2/6; 
33.33%), ACTN2 (11/21; 52.38%), LDB3 (3/14; 21.43%), DMD (40/79; 50.63%), NEB (177; 182; 97.25%), 
OBSCN (84/116; 72.41%), and  TTN (311/363; 85.67%). (b) Percentage of symmetric protein-coding 
exons in the major TTN isoforms. Meta-transcript (311 symmetric exons/363-coding exons in total; 
85.67%), N2BA (261/313; 83.38%), N2B (142/191; 74.34%), N2A (261/312; 83.65%), Novex-1 (143/191; 
74.87%), Novex-2 (143/192; 74.86%), Novex-3 (30/46; 67.39%) and Cronos (97/124; 78.22%). Accession 
numbers of the different sequences can be found in (Tables S2 and S3). (c) Plot representing coding 
length versus the percentage of splice in of the different exons in TTN (ENST00000589042). Blue 
squares represent symmetric exons and black dots asymmetric exons. Limits of the exons’ size (of 
≤300 bp) and PSI threshold of >0.9 are marked by dotted lines. The green square contains the exons 
highly suitable for removal according to the criteria set in this hypothesis. (d) Venn diagram of the 
parameters set for the identification of target exons. Selected exons are symmetric, have a high PSI 
(>0.9) value, and consist of 300 bp at a maximum. 
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coding length versus the percentage of splice in of the different exons in TTN (ENST00000589042).
Blue squares represent symmetric exons and black dots asymmetric exons. Limits of the exons’ size
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the parameters set for the identification of target exons. Selected exons are symmetric, have a high
PSI (>0.9) value, and consist of 300 bp at a maximum.

3. The Titin Gene Contains a Large Number of Potential Target Exons

The TTN metatranscript sequence (ENST00000589042) was exemplarily evaluated in
order to identify symmetric exons. Furthermore, the following major TTN isoforms were
analyzed: N2BA (ENST00000591111), N2B (ENST00000460472), N2A (ENST00000342992),
Novex-1 (ENST00000359218), Novex-2 (ENST00000342175), Novex-3 (ENST00000360870),
and the recently discovered Cronos isoform (Figure 1b) [11,44,49]. The TTN metatranscript
contains 85% (311/363) of symmetric protein coding exons, and the different isoforms
range from 67 to 83% (Novex-3 and the long cardiac isoform N2BA, respectively) (Figure 1b,
Table S3) [44].

To determine if the symmetric exon abundance was specific to TTN or if other relevant
cardiac genes also showed this characteristic, we compared symmetric exon abundance
in TTN, five thin filament proteins (TNNT2, TNNI3, TNNC1, TPM1, ACTC1), four thick
filament proteins (MYH7, MYL3, MYL2, MYBPC3), six Z-disk proteins (TCAP, CSRP3,
MYOZ2, ACTN2, OBSCN, LDB3), and the cytoskeletal protein Dystrophin (DMD). The
analysis showed that except TTN, only Nebulin (NEB) and Obscurin (OBSCN) genes had
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an abundance of more than 73% symmetrical exons, while the statistical probability for the
occurrence of symmetrical exons was ~33%. The remaining genes analyzed showed lower
percentages of symmetric exons (Figure 1, Table S2).

After the identification of symmetric exons, we further categorized them according to
their size. The CRISPR/Cas system has been tested in vitro for its efficiency to introduce
small and large deletions [8,50]. These studies demonstrated a high variability of the
efficiencies depending on the size of the removed DNA fragment, targeting location, and
expression strategy. We selected exons that had 300 bp or less, given the increased efficiency
in deletions with decreasing fragment size [46–48]. Furthermore, many exons in TTN are
small to medium size (between 201 and 300 bp, 38%). The length of the majority of the TTN
exons was ≤300 bp (307/363 exons, 84.56%) (Figures S1 and 1c). This analysis of symmetry
and size of the different exons indicated that TTN was particularly suitable for the proposed
gene therapy approach by genomic exon deletion. The third factor taken into consideration
was the level of conservation of the exons amongst the different isoforms. Only exons with
a splice-in percentage higher than 0.9 (PSI > 0.9) were taken into account. In conclusion,
candidate exons for therapeutic deletion were chosen according to size, symmetry, and PSI,
leading to a set of 94 candidate exons (Table S1, Figure 1d).

In addition, one additional consideration that must be taken into account to select
exons suitable for therapeutic deletion is the predicted function of the corresponding
protein domain. We categorized the domains associated with the selected 94 candidate
exons for deletion (Table S1). TTN is constituted mainly by repeated FN-III and IgI domains,
whose abundance is also reflected by the selected candidate exons for deletion (Table S1).
Proteins with a highly repetitive structure are more likely to conserve their integrity if
one of the exons coding for repeated domains is deleted. Additionally, by characterizing
the corresponding protein domains of the selected exons with tools such as DIGGER, it is
possible to (at least partially) predict the alterations in the TTN interactome resulting from
the deletion of specific exons. For instance, we exemplarily evaluated the impact of the
deletion exons 14 and 231, respectively (Table S4) [51]. Although it is possible to obtain
in silico information regarding the potential alterations in the interaction of TTN with its
partners, it is important to be cautious since these are only predictions, and the in silico
analysis needs to be proven experimentally (check Section 4, Evaluation of the Hypothesis).

In our analysis (Figure 1a), the direct comparison of symmetric exon abundance of
TTN compared with other cardiac relevant proteins revealed that OBSCN also contained
a high number (and high percentage) of symmetric exons compared to the rest of the
analyzed genes (Figure 1a). Additionally, this sarcomeric protein shared most of the
characteristics that make TTN an interesting candidate for the systematic exploration of
symmetric exon deletion. This includes length, highly repeated Ig and FN-III domains, and
most importantly, biomedical relevance, e.g., mutations in both TTN and OBSCN have been
linked with hypertrophic cardiomyopathy [52–54]. However, even though there is some
evidence [54,55], the extent of the involvement of mutations in OBSCN in the development
of heart disease has not finally been determined [56]. We applied a homologous strategy
for TTN to select OBSCN exons according to symmetry, size, and conservation (Figure S2).
For symmetry and size, the same parameters applied to select TTN exons were considered.
However, we based our selection of highly conserved exons on the known biological
functions of OBSCN isoforms. OBSCN contains several splice variants, including two
large main isoforms A (~720 kDa) and B (~870 kDa) (Figure S2a, Table S5). Therefore
we selected exons conserved between both isoforms (Figure S2b) [53]. After analysis, 59
OBSCN candidate exons were identified for potential therapeutic removal (Table S6).

Together with TTN and OBSCN, Nebulin (NEB) completes the family of three members
of giant sarcomeric proteins present in striated muscles. Additionally, NEB also presents a
high percentage of symmetric exons (97.25% in the metatranscrip and 97.79% in the two
major isoforms S21a and S21b) [57]. Furthermore, mutations in Nebulette, a member of the
Nebulin family, have been demonstrated to be involved in the development of different
cardiomyopathies [53,58–60]. However, the structure of NEB results from extensive du-
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plications leading to a gene mainly composed of tandem repeats constituting the middle
part of the gene as super-repeated areas. This is a clear difference compared with TTN and
OBSCN [53]. This has implications for myoediting since the flexibility and specificity of
targeting these areas with genome editing tools is limited. Therefore reframing strategies
for NEB deserve a separate approach; hence, this gene was not considered in detail in this
manuscript [53].

4. Evaluation of the Hypothesis

To address the potential for translation to the clinics, the safety and efficacy of this
approach have to be evaluated. Each of the 94 proposed TTN locations needs to be tested
individually to clarify gRNA efficiency for the deletions and possible adverse effects caused
by the resulting gene versions lacking specifically deleted exons [30]. Additionally, the
selected locations have to be related to mutations found in DCM patients.

The first step is to generate data for the in vitro validation of the system. This can
be completed in patient-specific induced pluripotent stem cell-derived cardiomyocytes
(piPSC-CM) [32,61–63]. To test the safety of the deletion, adverse effects derived from
the exon removal need to be evaluated. Once the treatment has been validated in vitro,
in vivo testing using different animal models will be required in an evolutionary bottom-up
approach using, e.g., zebrafish, mouse or rat, and for final preclinical testing non-human
primates [32].

The delivery of the CRISPR system in vivo is one of the major limitations of this
approach and for genome editing therapies of the heart in general [27,64]. AAV-based
therapies present a promising approach for gene-specific editing. Improvements in tissue-
and cell type-specific targeting of AAV serotypes enhance the specificity of the treatment,
thereby reducing off-target effects [27,65]. The traditional and recently engineered AAV
serotypes for tissue-targeted delivery in combination with minimal tissue-specific pro-
moters and specific administration routes for the virus make this system ideal for the
delivery of CRISPR/Cas [64,66]. Although AAVs are an attractive vehicle, their relatively
small viral genome and, therefore, reduced packaging capacity limits the delivery of large
transgenes. This has to be considered, especially when attempting to package Cas9 plus
the two gRNAs (Figures 2 and 3). Using smaller Cas9 orthologues, in comparison with the
most broadly used spCas9 (Streptococcus pyogenes-derived Cas9 (SpCas9) (4.1 kb)) can help
to overcome this problem. Campylobacter jejuni-derived Cas9 (CjCas9) (984 amino acids,
2.95 kb) or Staphylococcus aureus-derived Cas9 (SaCas9) (1053 amino acids, 3.16 kb), are both
validated endonucleases that can be used [66–68]. Additional space can be saved during the
vector construction using truncated regulatory elements such as the promoter driving the
expression of the Cas9 (miCMV/H1 promoter) or the polyadenylation signal [27]. Several
AAV serotypes have been tested in different animal and human models. AAV8 and AAV9
have been shown to infect the heart efficiently [27,69,70] (Figure 3). Using the mentioned
serotypes together with a suitable administration route may eventually lead to the efficient
and specific targeting of specific TTN exons in human cardiomyocytes in vivo.
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stop codon and ultimately to a protein with (b”) a non-sense C-terminus. Exemplarily presented with a
frameshift mutation in exon 231 of TTN that leads to a truncated and partially non-sense version of the
protein. The red color indicates a non-sense amino acid sequence different from TTN that originates
from the frameshift mutation. The frameshift causes, at the same time, the introduction of a stop codon
on the transcript level, which in turn results in a truncated protein variant. (c) Symmetric exon deletion
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5. Consequences of the Hypothesis and Discussion

TTN plays a key role in striated and cardiac muscle cells [9,12,14]. Frameshift muta-
tions in this giant sarcomeric protein lead to several diseases occurring due to alterations
in the biological function [10,12]. This includes non-ischemic DCM, which is the most
common form of cardiomyopathy and originates in 25% of the cases from truncation muta-
tions in TTN [3,10,43]. Dissecting the pathological phenotype derived from the different
truncation mutations is challenging, although the introduction of novel sequencing tech-
nologies, e.g., next-generation sequencing (NGS), has provided a new perspective on TTN
mutation studies [3,44,49]. Current therapies to overcome non-ischemic DCM are based on
treatments to inhibit the enlargement of the heart chamber in patients where the pathology
has not fully developed. Antiarrhythmics and drugs to decrease blood pressure are usually
the treatments of choice. Considering limited therapies and the lack of hearts available for
transplantation, the development of novel therapies is crucial. We and others think that
myoediting could be a solution to treat a substantial number of inherited and sporadic
DCM cases. CRISPR-based approaches have previously demonstrated their applicability in
sarcomeric protein mutation correction in vitro and in vivo [8,27,35,36,40].

Here, we hypothesized that the TTN gene structure allows the application of myo-
editing approaches in a broad range of locations to reframe TTNtv variants (Figure 1) [44].
In order to further substantiate our hypothesis, we generated a list of candidate sites that
could be promising for these therapies. Additionally, the OBSCN gene shares key charac-
teristics with TTN, including a high abundance of symmetric exons. Therefore, we also
considered this gene in our analysis. The illustrated approach has already been tested
in other sarcomeric proteins [1]; however, to our knowledge, it has never been applied
to TTN, or OBSCN [33]. We identified a set of candidate exons that fulfilled the require-
ments of (1) symmetry, (2) high conservation, and (3) size of ≤300 bp (Tables S1 and S6,
Figures 1 and S2). Symmetric exon deletion will conserve (or restore) the reading frame
and, therefore, the general integrity of the transcript. Mutations in exons not conserved be-
tween the different isoforms must be interpreted with caution because they may have little
or no effect on the resulting populations of TTN proteins within a specific cell [11,21,41].
Therefore, we only considered exons highly conserved in the various transcripts. Addition-
ally, filtering the exons by size is critical as an inverse correlation between exon size and
deletion efficiency has been shown [46–48]. This is a critical point regarding the translation
of the therapy to the clinics [37,46,48,71]. The TTN gene contains 94 candidate exons that
fulfill the criteria set in the present study, while OBSCN contains 59 such exons. Therefore,
TTN and OBSCN are promising candidate genes with a high clinical relevance for the
proposed type of gene therapy [13]. Additionally, using the information provided in this
study, it is possible to predict in silico the impact on the protein functionality of the deletion
of specific exons of TTN or OBSCN (Tables S1, S4 and S6).

Full exon deletion as therapy for average-sized genes has limited applicability (the
average number of exons per gene in the human genome is 8.8) [42,72]. The biological
function of proteins coded by a few exons will probably only be severely affected by the
removal of one exon. In the case of giant sarcomeric proteins, these therapies can be applied
with more confidence and in a broader range of locations due to the modular structure of
the encoded proteins (Tables S1 and S6). This increases the likelihood that the protein keeps
its biological function after the removal of a single exon [73]. Other authors have already
successfully tested the Cas9 protein plus two guide systems for reframing other striated
and cardiac muscle proteins [8,74].

We are aware that the application of the suggested therapy has to be carefully evaluated
in each particular case. (1) It is necessary to continue assessing the feasibility and safety
of the CRISPR system to efficiently delete full exons in vivo [24,30,32,66,68,75]. (2) The
functionality of the protein has to be evaluated after exon deletion. Specifically, deleted
exons could play a crucial role in the biophysical properties of the protein. (3) It is necessary
to design highly efficient and selective delivery systems, e.g., AAVs.
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Besides the specific tropism and moderate immunogenicity, another advantage of AAV
delivery is the loss of the viral vectors over time. This particularity could be an advantage
to achieve (desirable) transient CRISPR expression and reduce the possibility of off-targets
and chromosomal abnormalities [25,27,65,76,77].

Additionally, it is important to evaluate the suggested therapy in relation to the differ-
ent patient genotypes and phenotypes. For example, some forms of skeletal and cardiac
titinopathies are associated with recessive TTNtv and do not show phenotypic alterations
unless they are associated with another mutation [78,79]. In those cases, predicting the
therapeutic potential might be challenging. Each case would require an individual assess-
ment since one single TTNtv can derive a broad spectrum of phenotypes depending on the
associated mutation [15].

For the in vitro validation of the approach, it is important to consider that many
DCM phenotypes cannot be fully recapitulated in 2D cultures or in immature iPSC-CM.
Therefore, 3D cardiomyocyte cultures giving rise to myocardium-like structures can better
mimic DCM and validate possible phenotype rescue [12,31,39,63,80]. Additionally, the
maturation of the iPSC-CMs can be also increased by controlling the stiffness of the culture
substrates [81], or scaffolds [82], among others [7].

Even though the efforts that are yet to be made in order to optimize the approach
stated here are laborious, the outcomes will increase our understanding of the mutations
underlying DCM. The insights gathered from in vitro and in vivo experiments might lead
to the efficient treatment of at least a few of the proposed mutation sites. Moreover, it
is important to consider that the same validated CRISPR system could be used to treat
different mutations in the same exon. Additionally, we believe that with the establishment
and application of the proposed therapy approach, not only could DCM be treated, but
given the number of TTN-dependent myopathies, the reframing system could also be
translated to those pathologies [83]. For instance, other cardiac and skeletal muscle caused
by TTNtv could be addressed by the exon deletion approach [15,18,79]. This highlights
the broader applicability of the proposed approach to genetic diseases affecting a broader
range of patients [43].

Another application of this approach is in the investigation of the correlation between
the position of a mutation and the severity of the DCM phenotype. A variety of studies have
focused on finding the relationship between the severity of DCM and the position of the
mutation, focusing on (1) alternative splicing, (2) the alternative Cronos promoter (3), or the
proximity to the C-terminus [12,20,45]. In a recent study McAfee et al., showed the presence
of TTNtv in DCM patients and how this comes together with a reduced amount of full TTN
in DCM hearts. This study supported the view that both dominant-negative forms of TTNtv
and the haploinsufficiency of TTN, together with additional risk factors, contribute to the
development of DCM and eventually lead to DCM in patients bearing truncations [45].
These findings were supported by a parallel study by Fomin and colleagues [38]. Deleting
the proposed exons could further help to clarify how the mutations in the different parts of
TTN lead to the different DCM phenotypes, discriminating between frameshift and deletion
effects. If these experiments can explain the correlation between pheno- and genotype,
these insights may facilitate prophylactic treatments. This reframing strategy may, in the
future, be applied to affected infants or even in the fetus in order to prevent developmental
heart defects, which eventually may lead to functional impairments [43].

Available patient data shows that DCM-causing mutations are not solely located
in exons investigated in this study, e.g., exon 326. For this reason, we believe that it is
necessary to combine a broader panel of therapeutic approaches to address all different
sites of a gene. In the case of TTN exon 326, its size may exclude efficient deletion. Other
approaches such as targeting the splice acceptor–donor site or the recently emerging base
editing technology need to be considered in these cases [12].

In conclusion, we propose that the complete deletion of selected symmetric exons in
TTN and other giant sarcomeric proteins could be used as a therapy to overcome a subset
of cases of familial DCM with severe phenotypes. Additionally, we also propose a list of
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potential exons suitable to test this approach. We are already testing the deletion of some of
the selected exons in vitro using human iPSCs. In conclusion, we believe that exon deletion
approaches can expand the currently still experimental toolbox of approaches to efficiently
treat sarcomeric protein-related heart diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13061093/s1, Table S1: List of TTN candidate exons for
therapeutic removal; Table S2: Quantification of symmetric exons in selected cardiac relevant genes;
Table S3: Symmetric exon quantification in the major TTN isoforms; Figure S1: Distribution of TTN
exons according to their size; Table S4: Predicted alterations in TTN interactions with partner proteins
result from candidate exon deletion; Figure S2: OBSCN exon analysis for therapeutic removal;
Table S5: Symmetric exon quantification in the major OBSCN isoforms. Table S6: OBSCN list of
candidate exons for removal.
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