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Abstract: This study proposed a dynamic forming mechanism development of the negative Poisson’s
ratio elastomer molds—plate to plate (P2P) forming process. To dynamically stretch molds and
control the microstructural shape, the proposal is committed to using the NPR structure as a regula-
tory mechanism. The NPR structural and dynamic parallel NPR-molds to control microstructure
mold-cores were simulated and analyzed. ANSYS and MATLAB were used to simulate and predict
dynamic NPR embossing replication. The hot-embossing and UV-curing dynamic NPR P2P-forming
systems are designed and developed for verification. The results illustrated that the dynamic forming
mechanism of the negative Poisson’s ratio elastomer molds proposed by this study can effectively
control microstructure molds. This can effectively predict and calculate the geometrical character-
istics of the microstructures after embossing. The multi-directional dynamic NPR microstructural
replication process can accurately transfer microstructures and provide high transfer rate-replication
characteristics.

Keywords: negative Poisson’s ratio; elastomer; microstructure; dynamic forming; plate to plate (P2P)

1. Introduction

With the development of microstructure technology, various microstructural compo-
nents with different shapes, multiple directions, or even curved surfaces are now needed
as light-guided components, electrical materials, and biomedical modules. This is to meet
the needs of academic research and of the high-tech industry. Stephen Y. Chou [1,2] et al.
proposed a new micro/nano-lithography process with the advantages of fast production
and low cost in 1996. It made a structure with a high-resolution line-width below 50 nm.
It started the subsequent process innovations. In recent years, Chang and Yang et al. [3]
improved the shortcoming of direct embossing in the traditional hot-embossing machine.
They developed a fluid embossing method to replicate microstructures and replicated
microstructural patterns on large-area wafers by the isotropic and isobaric characteristics
of the fluid. Lee et al. [4] proposed a liquid roll-to-roll imprint technology (R-LTIL) with a
large-area process and both a micron-scale and nano-scale hybrid structure. It can transfer
structures with a pore diameter of 350 nm and a height of 250 nm onto 6 inch silicon wafers
and micron microlens substrates. Huichun et al. [5] proposed a roll-to-roll (R2R) embossing
process in 2018; it became a simple and rapid method to prepare semi-ellipsoidal microlens
arrays (SEMA). The replication error of transferring the polydimethylsiloxane (PDMS)
mold from a preformed SEMA prototype is less than 1.59%. Aaron et al. [6] developed
a method to accurately culture cells with PDMS. Moreover, the micro/nano-structural
substrates of different sizes and shapes [7,8] prepared by different processing methods
(top-down, bottom-up) have high SERS enhancement factors and can be used for medical
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detection. At present, microstructural components, such as micro-nano gratings [9–14],
polarizers, and lenses, can be completed by technologies such as nano-imprint, exposure,
and development [15–35]. However, there is a problem of material selection if etching is
used for microstructure fabrication. According to previous stumolds, in the etching process,
some materials cannot be used to fabricate the microstructural patterns according to the
design as required by researchers (the problem of material selection). If special comple-
mentary structures can be prefabricated with elastic molds, there will be more choices in
the replication process. It has been previously researched that the construction of the mold
mechanical model, specifically the Bayesian inversion, is a probabilistic model to identify
the material parameters in mechanical systems. Noii, N. et al. [36] developed a step-wise
Bayesian inversion framework for ductile fractures to provide accurate knowledge regard-
ing the effective mechanical parameters. Khodadadian, A et al. [37] proposed a Bayesian
approach to estimate material parameters for propagating fractures in elastic solids as well
as to solve the problem on a relatively coarse mesh and fit the parameters. For example,
in the Fresnel lens processing within the elastic limit, the molds with adjustable Poisson’s
ratios are stretched and formed by controlling the shape and characteristic parameters of
microstructural components through multi-axial stretching. It is estimated that various
types of Fresnel lenses with single microstructural components can be obtained. The
Fresnel lenses with the best spotlight effect and efficiency can be made quickly and easily.
Therefore, to meet the needs of practical applications, the microstructural characteristics
and mold sizes can be adjusted slightly and stably by the dynamic stretching according to
the adjustable Poisson’s ratio. This is helpful and innovative for industrial applications.

This study proposes the dynamic forming mechanism development of the negative
Poisson’s ratio elastomer molds—plate to plate (P2P) forming process. In this study, funnel-
shaped and SIN wave-shaped molds with NPR structures and flexible NPR structures are
fabricated with both a thermoplastic elastomer (TPE) and PDMS for the mechanical prop-
erty test (creep and stress relaxation). Through numerical simulation, the NPR geometric
position changes and the stress distribution of molds in the uniaxial dynamic stretching are
analyzed. This is conducted in order to adjust the different line-width of NPR structures
and to build a mechanical model of the flexible NPR microstructure molds. A stretching
test is carried out to obtain the predictable micro-deformation range of the linear elasticity.
The microstructure shape is fine-tuned by the self-developed fixture mechanism, which
can fine-tune the dynamic NPR mold control system. In addition, key processes such as
(1) the uniaxial hot-embossing NPR microstructure replication system and (2) the uniaxial
UV-curing NPR microstructure replication system are developed. It is anticipated that
through a series of stumolds, a prediction model on the viscoelasticity response of the
NPR structure and the material can be both integrated and summarized for simulation
evaluation and experimental analysis, establishing the mechanical modeling and dynamic
axial forming mechanisms of negative Poisson’s ratio polymer molds.

2. Stretching Deformation Mechanism of Negative Poisson’s Ratio Elastomer Molds
2.1. Prediction Modeling and Computational Evaluation Method on the Viscoelasticity Response of
the NPR Structure and Material

In this study, NPR polymer molds are controlled by the axial stretching method within
the elastic range of core materials. Therefore, under fixed stretching force (stretching
stress) and the fixed strain effect, there will be opportunities for creep and stress relaxation
over the stretching time. These are expected to build a mechanical model of the negative
Poisson’s ratio polymer molds. In the dynamic forming process, the real-time prediction
and effective forming process can be obtained. The exact geometric dimension changes
of microstructure molds can be learned at any time in the dynamic control process. To
construct a mechanical model of negative Poisson’s ratio core materials, dampers and
springs are used as the basic components. The Maxwell model and Kelvin–Voigt model are
adopted as methods to construct and evaluate the mechanical properties of the dynamic
stretching of a series of molds, as well as to obtain more accurate evaluations. This study
has developed a multi-component model prediction architecture to describe the NPR
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viscoelasticity mechanical model designed herein, based on the Maxwell and Kelvin–Voigt
methods.

2.2. Prediction Method for the Uniaxial Stretching Microstructure Position with the Dynamic
NPR Mold Control System

In this section, the uniaxial NPR is used in dynamic mold control to discuss the
geometric position of negative Poisson’s ratio stretching. Here, P(x, y) is the original
geometric position of the flexible mold structure and Pope

(
xope, yope

)
is the final geometric

position after dynamic deformation. According to Figure 1, the equation of the stretching
microstructure position is designed and deduced, as shown in Equation (1).

⇀
Pope =

↔
Mope ·

⇀
P

 x
y
z


ope

≈

 1 + εl 0 0
0 1 + εt 0
0 0 1

 x
y
z

 (1)

where, εl correspond to the longitudinal strain and εt corresponds to the transverse strain.
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Figure 1. Dynamical stretching geometry of the uniaxial flexible NPR microstructure mold.

2.3. Effects of Multidirectional Stretching on Molds under External Force

Environmental parameters and machine stability are required to be adjusted during
the process of dynamic mold stretching and control. Uncertain external thrust (non-
uniform material, mold inclination, and other factors) may cause failures during forming.
The external thrust in the three-directional mold stretch forming process may affect molds,
as shown in Figure 2.
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The effect of the forward external thrust on the total torque (Equation (2)) of a mold is
as follows:

∑(
⇀
r ×

⇀
F ) =

⇀
r A ×

⇀
F A +

⇀
r B ×

⇀
F B +

⇀
r C ×

⇀
F C

(MR) =

∣∣∣∣∣∣∣
⇀
i

⇀
j

⇀
k

rAx rAy 0
FAx FAy 0

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣
=

[(
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(
FByrBx − FBxrBy

)⇀
k +

(
FCyrCx − FCxrCy

)⇀
k
]

=
[(

FAyrAx + FByrBx + FCyrCx
)
−
(

FAxrAy + FBxrBy + FCxrCy
)]⇀

k

(2)

The effect of the angled external thrust on the total torque of a mold is shown in
Equation (3). It shall be considered in the process of embossing replication to avoid failures
during forming.

∑(
⇀
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⇀
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(3)

3. Experimental
3.1. Geometry Design of NPR Structure, Bonding in Mold Preparation, and Flexible NPR
Microstructure Mold Preparation
3.1.1. Geometry Design of NPR Structure and Bonding in Mold Preparation

In this section, the design and fabrication of the funnel-shaped flexible NPR mi-
crostructure molds are discussed. Through numerical simulation, the NPR geometric
position changes and the stress distribution of molds in uniaxial dynamic stretching were
analyzed. The stretching, creep, and stress relaxation tests were carried out to test the
mechanical properties of the constructed NPR microstructure molds. These tests allowed
us to obtain the mechanical properties and deformation within the elastic range according
to the standard sample specifications, as well as to build a mechanical model of the flexible
NPR microstructure molds. In this study, the main characteristic parameters (angle and line
width) were obtained based on the geometry of funnel-shaped flexible NPR microstruc-
tures. These are required for the design of the mechanical properties and Poisson’s ratio
changes of different scale parameters, as shown in Figure 3a. The Poisson’s ratio changes
during stretching within the elastic deformation range were simulated by ANSYS. The
uniaxial parallel flexible NPR microstructure mold bonding was adopted (Figure 3b).

The point-to-point array parallel connection at the intersection of NPR structures
was purposed with connecting PDMS female molds in parallel to form an NPR structure
mold layer which is divided into lower NPR structure layers and upper layers of PDMS
microstructure female molds. PDMS or TPE can be used as the material for the structural
layer. The contact faces of two layers were cross-linked by PDMS based on the cross-linking
characteristics of polymer materials. Due to the microstructures on PDMS female molds,
the lower NPR structure layer was controlled by dynamic stretching. The microstructures
on the upper layer of PDMS female molds would expand with the negative Poisson’s ratio
changes of NPR structures on the lower layer. This dynamically controls the deformation
of the microstructure dimensions within the elastic range.
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In this experiment, elastic flexible polydimethylsiloxane was used as the mold material
mainly because of its flexible characteristics. The mold material used by our team is also
known as organic polymeric material, which is non-toxic, non-flammable, and highly
elastic. It has been previously reported that the PDMS material of the mold, which are
the refractive indexes for each mold, are related to different variations of the synthesis
parameters and curing temperature. In this experiment (refractive indexes = 1.43), we used
uniform synthesis parameters (10:1) and the same curing temperature (140 ◦C), therefore
there were no disconnecting aspects in relation to this.

3.1.2. Uniaxial Parallel Flexible NPR Microstructure Mold Preparation

The procedure to fabricate uniaxial parallel flexible NPR microstructure molds was
as follows (Figure 4): (a) the complementary female molds of NPR structures defined
in this study were fabricated by high-precision 3D printing technology; (b) PDMS or h-
PDMS/s-PDMS bilayer composites defined in this study were accurately injected into
the complementary cavity of NPR membrane structures to cure and form NPR structures;
(c) PDMS microstructure molds with fixed bonding points at the top and microstructural
arrays at the bottom were prepared; and (d) the fixed connections at the top of PDMS
microstructure molds were bonded to NPR structures to obtain the point-bonded NPR
PDMS microstructure molds after curing.

3.2. Dynamic NPR P2P-Forming System Development and Uniaxial Parallel NPR-Embossing
Steps
3.2.1. Dynamic NPR P2P-Forming System Design

In this study, the existing embossing system and the self-developed dynamic mold
control system were used for the transfer experiment of the micro-dynamic control of
microstructure soft molds, including the uniaxial NPR microstructure hot-embossing
replication system and the uniaxial NPR microstructure UV-curing replication system, as
shown in Figure 5.

The NPR mold clamping system for multi-directional dynamic stretching (including
the quad-axial dynamic NPR mold clamping system and the triaxial dynamic NPR mold
clamping system) was designed as shown in Figure 6.

Some axial clamping systems are units and form the multi-directional dynamic mold
clamping system according to the symmetry defined by precision orbit-positioning.
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3.2.2. Uniaxial Parallel Flexible NPR Microstructure Forming Steps

The uniaxial parallel NPR microstructure UV-curing replication system uses the self-
developed dynamic NPR mold control system and the embossing system for embossing.
The procedure is as follows: (a) the clamping heads on both sides of the dynamic mold
control system clamp the flexible NPR microstructure mold at the two ends and the
photoresist is placed on the quartz glass substrate of the embossing and exposure system;
(b) the non-uniformity of microstructure molds is dynamically controlled within the elastic
range so that microstructures can be predicted and controlled within the elastic range;
(c) the back-pressure is defined for embossing, exposure, and curing; and (d) demolding is
carried out next to obtain finished products, as shown in Figure 7.
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Figure 7. Uniaxial parallel flexible NPR microstructure mold replication steps (a) the clamping heads
on both sides of the dynamic mold control system clamp the flexible NPR microstructure mold
at the two ends and the photoresist is placed on the quartz glass substrate of the embossing and
exposure system; (b) the non-uniformity of microstructure molds is dynamically controlled within
the elastic range so that microstructures can be predicted and controlled within the elastic range;
(c) the back-pressure is defined for embossing, exposure, and curing; and (d) demolding is carried
out next to obtain finished products.
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4. Results and Discussion
4.1. Simulation and Analysis of NPR Structures
4.1.1. Simulation and Analysis of Single SIN Waveforms and Array SIN Waveforms

This study is about tunnel-shaped structures but SIN waveforms are formed during
stretching. Hence, this section classifies the basic SIN waveforms into four types for
preliminary simulation analysis. This study was designed based on the results of software
simulation, namely A-type, A’-type, B-type, and B’-type, as shown in Figure 8.
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ANSYS software was used for uniaxial stretching simulation to analyze strain and
geometric characteristics. The set material simulation parameters used in the simulations
were as follows: density, 1.063 g/cm3; Young’s modulus, 2.4622 Mpa; and Poisson’s ratio,
0.5. The simulation results of the SIN waveforms with 2.5 mm of uniaxial stretching show
different total deformation, strain, and stress in the four groups, as shown in Figure 9.

In addition, they were arranged as 3 × 3 arrays (Figure 10) and 4 × 4 arrays.
The finite element software was used for the stretching tests to observe the changes in

the patterns, strains, and stresses of microstructures under different stretching conditions.
The arrays (3 × 3 and 4 × 4) were stretched to 5 mm, 10 mm, 15 mm, and 20 mm by four
kinds of NPR structures. According to the simulation results, the longitudinal changes
of patterns with simple structures became significant with the increase in stretching. The
stretching of four 3 × 3 (Figures 11 and 12) and 4 × 4 (Figures 13 and 14) array patterns
was simulated and analyzed. The axial and radial displacements of single structures were
compared and analyzed.

The Poisson’s ratio at different stretching lengths due to axial and radial strains is
shown in Figure 15. After the analysis, the Poisson’s ratios of A-type and A’-type patterns
were negative, and the Poisson’s ratio of B-type and B’-type patterns were positive. In this
simulation, the changes of the Poisson’s ratio became stable after they were stretched for
10 mm.

4.1.2. Simulation Analysis of Stress Distribution in Molds with Different Composite Ratios
and Uneven Stretching Angles

This section discusses the simulations of the uniaxial stretching of PDMS at three
different composite ratios of 5:1, 10:1, and 15:1 within the elastic range. According to the
stretching test, the elastic range of PDMS at three different composite ratios is shown in
Table 1.
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of software simulation, namely A-type, A’-type, B-type, and B’-type, and deformation simulation of 3 × 3 NPR arrays at
different stretching lengths.
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Table 1. Stretching test to test the elastic range of PDMS at three different ratios.

Elastic Range (mm) PDMS (Base Elastomer (Part A) and Curing Agent (Part B))

(Experiment) 5:1 10:1 15:1

1 4.55 5.88 7.21

2 4.59 5.84 7.13

3 4.62 5.87 7.18

Average 4.59 5.86 7.17

Table 2. Effects of stretching length on the mold stress within the elastic range of PDMS at different
composite ratios.

PDMS (Base Elastomer (Part A) and Curing Agent (Part B))

5:1 10:1 15:1Stretch Length
(mm)

Equivalent (Von-Mises) Stress (MPa)

2 0.0921 - -

3 - 0.1274 -

4 0.1841 - 0.0172

5 - 0.2123 -

6 - - 0.0259

Equivalent stress
increase per

millimeter (MPa)
0.0463 0.0425 0.0044
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of software simulation, namely A-type, A’-type, B-type, and B’-type, and deformation simulation of 4 × 4 NPR arrays at
different stretching lengths.
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In addition, the effects of different angles (except the horizontal angle) on the mold
stress distribution were simulated. According to the simulation results, the rotation angle
of PDMS at the composite ratio of 5:1 had high stress and the maximum stress would
increase and become larger than that at the composite ratios of 10:1 and 15:1, as the angle
would increase, as shown in Table 3.

Table 3. Effects of rotation angles on the maximum mold stress within the elastic range of PDMS at different composite
ratios.

PDMS (Base Elastomer (Part A) and Curing Agent (Part B))

5:1 10:1 15:1
Rotation Angle

(Degree)
Equivalent (Von-Mises) Stress (MPa)

15 0.1848 0.1201 0.0258

25 0.1865 0.1204 0.0260

Equivalent stress increase per
degree (KPa) 0.17 0.03 0.02
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4.2. Simulation and Analysis of Microstructure Mold Control by Using Parallel Dynamic
NPR Molds

This section compares the stability of methods to control microstructure molds by
using dynamic molds. Two parallel connections are compared in this section, namely the
overall microstructure mold laying and the single-point array laying.

4.2.1. Simulation Analysis of Overall Mold Laying

The overall laying is explained in this section. According to the simulation results, in
the stretching process, the warping angle increased as the stretching length increased. This
method does not apply to this study.

4.2.2. Simulation Analysis of Single-Point Array Laying

In the simulation analysis, the microstructure mold was 500 µm thick. Different NPR
microstructure mold dimensions and thicknesses affected the warping angle perpendicular
to the stretching direction at a fixed stretching length (Table 4).

According to the simulation results, the warping angle of the microstructure mold
became smaller at a fixed stretched length as the NPR microstructure mold became thicker.
A bigger single NPR structure perpendicular to the stretching direction induced the smaller
average warping angle, as shown in Figure 17.
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Table 4. Simulation results of the warping angle perpendicular to the stretching direction at a fixed stretching length with
different NPR structure mold dimensions.

NPR Structure (Unit-Structure), Stretching Direction, and Vertical Direction Length

7 mm, 5 mm 7 mm, 7 mm 7 mm, 10 mm
Thickness Ratio

(Microstructure Mold:NPR
Structure Mold) Warping Angle (Degree)

1:4 10.5 10 9.5

1:5 9 9 8

1:6 8 8.5 7

1:7 7.5 7 6.5

1:8 6 6 5

1:9 4.5 4.5 4

1:10 3 3.5 3

1:15 0.5 1 1
Polymers 2021, 13, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 17. Effects of different NPR structure mold dimensions on the warping angle perpendicular 
to the stretching direction at a fixed stretching length. 

The single-point laying is explained in this section. According to the simulation re-
sults, single-point laying with (without) edge reinforcement was adopted. For stretching 
control, the mold with edge reinforcement could control stably and had no warping angle. 
The NPR effects of the dynamic mold can be reflected on the microstructure mold. The 
characteristic changes of the microstructure mold can be controlled indirectly through dy-
namic mold control. 

4.3. Verification and Discussion of MATLAB Simulation and Dynamic NPR-Embossing 
Experiment 
4.3.1. Dynamic NPR-Embossing Replication Predicted by MATLAB Simulation  

MATLAB is used to predict and analyze the embossing replication of array micro-
structures after dynamic NPR-stretching. This section predicted stable stretching and em-
bossing of 7 × 7 arrayed microcolumn structures by MATLAB in uniaxial quantitative 
stretching. It then compared the forming at an inclination angle of 1 degree in uniaxial 
unstable stretching, as shown in Figure 18a. In multi-directional dynamic stretching, the 
molds lose their original angle due to external forces. They are rotated to a certain degree 
due to the external thrust. It was predicted that, at the inclination angle of 1 degree and at 

Figure 17. Effects of different NPR structure mold dimensions on the warping angle perpendicular to the stretching direction
at a fixed stretching length.



Polymers 2021, 13, 3255 17 of 20

The single-point laying is explained in this section. According to the simulation results,
single-point laying with (without) edge reinforcement was adopted. For stretching control,
the mold with edge reinforcement could control stably and had no warping angle. The NPR
effects of the dynamic mold can be reflected on the microstructure mold. The characteristic
changes of the microstructure mold can be controlled indirectly through dynamic mold
control.

4.3. Verification and Discussion of MATLAB Simulation and Dynamic NPR-Embossing
Experiment
4.3.1. Dynamic NPR-Embossing Replication Predicted by MATLAB Simulation

MATLAB is used to predict and analyze the embossing replication of array microstruc-
tures after dynamic NPR-stretching. This section predicted stable stretching and embossing
of 7 × 7 arrayed microcolumn structures by MATLAB in uniaxial quantitative stretching.
It then compared the forming at an inclination angle of 1 degree in uniaxial unstable
stretching, as shown in Figure 18a. In multi-directional dynamic stretching, the molds
lose their original angle due to external forces. They are rotated to a certain degree due
to the external thrust. It was predicted that, at the inclination angle of 1 degree and at the
additional rotation angle of 5 degrees (Figure 18b), it is enough to understand the errors
and interpretations, which may be caused by the dynamic stretching and through the
simulation prediction.
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Figure 18. Dynamic NPR-embossing replication of 7 × 7 arrayed micro-column structures were simulated and predicted by
MATLAB: (a) an inclination angle of 1 degree in uniaxial unstable stretching and (b) embossing replication prediction of an
inclination angle of 1 degree and a rotation angle of 5 degrees in multi-directional dynamic stretching.
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4.3.2. Discussion of Uniaxial Dynamic NPR Microstructure Replication

The uniaxial dynamic stretching NPR structure is used to control the embossing
replication of microstructure (diameter 150 µm, height 75 µm) array molds within the
elastic range. According to the experimental results, the formability of P2P hot-embossed
and P2P UV-cured (pressurized to 0.16 Mpa) materials is close to that of PC and photoresist-
formed materials. However, as the thickness of microstructure-molds changed (200 µm,
400 µm, and 600 µm), the control of the radial stretching was insufficient for embossing
replication, as shown in Figure 19.
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4.3.3. Discussion of Multi-Directional Dynamic NPR Microstructure Replication

The multi-directional dynamic stretching NPR structure is used to control the emboss-
ing replication of microstructure (diameter 150 µm, height 75 µm) array molds within the
elastic range. According to the experimental results, the formability of P2P hot-embossed
and P2P UV-cured (pressurized to 0.16 Mpa) materials is close to that of PC and photoresist-
formed materials. The three-directional and four-directional radial stretching of the system
can be controlled. The changes in the thickness of microstructure molds and the increase in
the length after stretching had no effects on the actual formability.

In this experiment, we used uniform synthesis parameters (10:1) and the same curing
temperature (140 ◦C), therefore the molds share the same Young’s modulus values, while
the mold with NPR geometric position changes and the stress distribution (Young’s mod-
ulus) of molds in dynamic stretching were changed. This was to adjust for the different
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research requirements of NPR structures and to build a mechanical model of the flexible
NPR microstructure molds.

5. Conclusions

This study is committed to developing a dynamic forming mechanism and forming
process of negative Poisson’s ratio elastomer molds, as well as is committed to the devel-
opment and innovation of this process. This study integrates properties of elastomer and
micro-electro–mechanical key technologies through systematic research. In addition, it
innovatively develops adjustable negative Poisson’s ratio microstructures. The controllable
characteristics of elastomer was used to achieve low cost and fast control. The control char-
acteristics of NPR structure molds were analyzed through a series of simulation analyses.
The microstructures were verified, replicated, and transferred for comparison. A uniaxial
parallel flexible NPR microstructure-mold fabrication method was proposed and a series
of dynamic NPR P2P-forming systems were designed. According to the experiment, the
multi-directional dynamic NPR microstructure replication process for the dynamic forming
technology of negative Poisson’s ratio elastomer molds is good and can achieve stable
control.
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