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Transgenic mice overexpressing human
TNF-α experience early onset spontaneous
intervertebral disc herniation in the
absence of overt degeneration
Deborah J. Gorth1, Irving M. Shapiro1 and Makarand V. Risbud 1

Abstract
There is a well-established link between cytokine expression and the progression of intervertebral disc degeneration.
Among these cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) are the most commonly studied. To
investigate whether systemic hTNF-α overexpression affects intervertebral disc health, we studied the spine
phenotype of Tg197 mice, a widely used hTNF-α transgenic line. These mice were studied at 12–16 weeks of age using
comprehensive histochemical and immunohistological analysis of the spinal motion segment. Micro-CT analysis was
performed to quantify vertebral trabecular bone architecture. The Tg197 mice evidenced spontaneous annular tears
and herniation with increased vascularity in subchondral bone and significant immune cell infiltration. The full-
thickness annular tear without nucleus pulposus (NP) extrusion resulted in neutrophil, macrophage, and mast cell
infiltration into the disc, whereas the disc with full-thickness tear and pronounced NP herniation showed additional
presence of CD4+ and CD8+ T cells. While the observed defects involved failure of the annular, endplate, and
vertebral junction, there were no obvious alterations in the collagen or aggrecan content in the NP and annulus
fibrosus or the maturity of collagen fibers in Tg197 mice. Despite elevated systemic inflammation and pronounced loss
of trabecular bone in the vertebrae, intact Tg197 discs were healthy and showed an increase in NP cell number. The
NP cells in intact discs preserved expression of phenotypic markers: CAIII, Glut1, and Krt19. In conclusion, elevated
systemic TNF-α increases the susceptibility of mice to spontaneous disc herniation and possibly radiculopathy, without
adversely affecting intact intervertebral disc health.

Introduction
Low back pain (LBP) is a profoundly debilitating and

increasingly prevalent condition with a huge societal
cost1. LBP is currently the leading cause of disability
worldwide; a recent study of the US and global population
ranked LBP as the first, and neck pain as the fourth
condition for years lived with disability2,3. The health of
the intervertebral disc is intricately linked with LBP4.

Patients with severely degenerated discs are 3.2 times
more likely to suffer from LBP5.
The disc comprises an inner gelatinous

glycosaminoglycan-rich nucleus pulposus (NP) sur-
rounded circumferentially by an organized fibrocartilagi-
nous annulus fibrosus (AF) and inferiorly and superiorly
by cartilaginous endplates (CEP). Disc degeneration is
characterized by increased fibrosis and decreased pro-
teoglycan content in the NP leading to reduced ability of
the tissue to bind and retain water, thereby compromising
the mechanical properties of the motion segment6–8.
There is also evidence of increased cell death and a
transition from notochordal cells to cells that exhibit the
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characteristics of hypertrophic chondrocytes7,9. Pro-
inflammatory cytokine expression is correlated with the
severity of disc degeneration10. Several studies have
shown that degenerated discs exhibit increased expression
of chemokines and inflammatory cytokines, and there is
evidence of immune cell infiltration11,12. Inflammatory
cytokines are produced both by NP and AF cells as well as
by infiltrating immune cells in herniated discs. Through
activation of matrix metalloproteinases (MMPs) and other
proteases, cytokines cause extracellular matrix breakdown
and enhance recruitment of immune cells thereby per-
petuating and promoting the inflammatory environ-
ment13–15. Among these cytokines, interleukin-1β (IL-1β)
and tumor necrosis factor-α (TNF-α) are the most com-
monly studied. In addition to its primary physiological
role, the regulation of immune cell function, TNF-α
paradoxically induces both apoptotic cell death as well as
cell proliferation and differentiation16–18. TNF-α dys-
function has been implicated in the pathogenesis of
numerous disorders, including rheumatoid arthritis,
asthma, septic shock, irritable bowel syndrome, and most
relevant to the present study, intervertebral disc dis-
ease19,20. Anti-TNF-α therapies are currently being
investigated for the treatment of disc degeneration, albeit
with mixed results21–23.
TNF-α is elevated in numerous systemic inflammatory

conditions related to disc health. High levels of circulating
cytokines including TNF-α are seen in patients suffering
radiculopathy following disc herniation24,25. Olmarker
and colleagues have shown that TNF-α recapitulates
effects of herniated NP tissue on dorsal root ganglion
apoptosis in a rat model of disc herniation26. Similarly, a
recent study by Lai et al. has demonstrated increased pain
behavior when TNF-α was injected in a rat model of disc
puncture27. Additionally, elevated levels of TNF-α in
individuals with high body mass index correlates with
both disc degeneration and LBP28. Increased TNF-α is
also seen in diabetic patients, a systemic inflammatory
condition correlated to disc disease29,30. Likewise,
inflammation in the neighboring vertebrae is associated
with symptomatic disc disease. Modic Type 1 changes are
strongly correlated with LBP and are indicative of bone
edema linked to inflammation31,32. Importantly, there is a
link between marrow edema and levels of circulating
TNF-α33. In summary, despite the association between
inflammation and disc disease, particularly elevated TNF-
α levels, the causative relationship between this cytokine
and disc disease is not firmly established.
A human TNF-α-overexpressing transgenic mouse line

(Tg197) is widely used to investigate the role of systemic
hTNF-α overexpression in inflammation-driven patholo-
gies34–36. These mice exhibit early-onset polyarthritis that
affects major arthrodial joints; this is characterized by
robust inflammation and structural degradation of

synovium, articular cartilage, and bone. To examine the
contribution of elevated systemic TNF-α levels and ver-
tebral bone inflammation to disc herniation and degen-
eration, we characterized the spinal phenotype of Tg197
mice. Our studies show that chronic inflammation due to
elevated systemic TNF-α promotes annular tears, her-
niation, and consequently immune cell infiltration in the
discs. Surprisingly, unaffected discs maintained their
structural integrity with minimal changes in the NP and
AF tissues.

Results
Tg197 mice show a higher incidence of disc herniations
characterized by immune cell infiltration
Our analysis of Tg197 mice at 12–16 weeks showed that

three of the ten animals exhibited spontaneous disc her-
niation at one of the three caudal levels interrogated
(Fig. 1a, b). In contrast, none of the discs in wild-type
(WT) mice showed signs of annular defects or herniation.
In one instance, the annular tear appeared as a cleft across
the entire width of the AF, stretching from the
endplate–AF junction to the NP (Fig. 1a). There was a
large population of cells that infiltrated into the aggrecan
matrix of the NP; the remnant NP cells did not display the
vacuolar morphology of healthy discs (Fig. 1a, a’). The
other herniated disc also exhibited a full thickness cleft;
however, the NP extracellular matrix and cells had
extruded outside the disc space and were surrounded by
cells (Fig. 1b). The cell response at the site of herniation
disrupted the integrity of the growth plate adjacent to the
endplate–AF junction. To verify the identity of the infil-
trating cells and to further characterize the nature of the
response, we performed immunofluorescence staining
using a panel of well-defined immune cell markers.
In the NP compartment of discs exhibiting annular tear

only, cells stained positive for CD68: a macrophage
marker, Ly6: a neutrophil marker, and Tryptase: a mast
cell marker (Fig. 1c–e’). However, staining for both CD4
and CD8, T cell markers, was limited and confined to few
positive cells in the vasculature of the neighboring ver-
tebral body (Fig. 1f, g’). Tryptase-positive cells were most
often centrally located in the NP (Fig. 1e, e’), followed by
CD68-positive cells (Fig. 1c, c’); the Ly6-positive cells were
clustered between the CD68+ cells and the endplate–AF
end of the cleft (Fig. 1d, d’). The lack of T cell staining in
the disc with annular tears suggested this to be an acute
event (Fig. 1f, g’). In contrast, in addition to other immune
cell types (Fig. 1h–j’), the disc with both AF tear and NP
extrusion stained positive for CD4 and CD8 (Fig. 1k, l’).
The staining for all the cell types was most pronounced in
the vertebral body adjacent to the endplate–AF junction
through which the AF cleft propagated and did not show
any specific pattern. To gain an overall understanding of
the nature of this immune response, the staining for each
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marker was quantified (Fig. 1m). It is interesting to note
that herniation lead to extensive cell death in the disc
compartment (Fig. 1n). In addition, both types of her-
niated discs showed elevated CD31 staining in the sub-
chondral bony plate, suggesting increased vascularity
(Fig. 1o).

Tg197 mice do not show evidence of early-onset disc
degeneration in intact discs
Tg197 mice have been characterized for their arthritic

phenotype. The transgenic animals are smaller than their

age-matched WT controls and display signs of arthritic
limb malformation and impaired movement34,36. Safranin
O/Fast green and hematoxylin staining showed that the
overall tissue structure of intact caudal and lumbar discs
was well preserved and comparable to WT control ani-
mals (Fig. 2a–h’). The discs of Tg197 mice were healthy,
as evident by the abundant aggrecan-rich extracellular
matrix in the NP compartment, vacuolated notochordal
NP cells, and well-organized lamellar collagen-rich AF
(Fig. 2a–h’). Interestingly, the NP tissue of intact Tg197
discs was more cellular, and the cells appeared larger and
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Fig. 1 Immune cell response to spontaneous herniation in Tg197 caudal discs. a, b’ Left column shows Safranin O/Fast Green/Hematoxylin
staining of spontaneous caudal herniation. Inset box (a, b) shows the location of the higher magnification image beneath (a’, b’). Each row shows
staining of successive sections of the same region, with white dashed outlines for positional context. Immunofluorescence staining of the annular
tear shows CD68-positive cells (macrophages) (c, c’), Ly6-positive cells (neutrophils) (d, d’), and tryptase-positive cells (mast cells) (e, e’), Note: these
sections were negative for CD4 and CD8, T cell markers (f, g’). The nucleus pulposus extrusion shows a large immune cell infiltration positive for all
macrophage (h, h’), neutrophil (i, i’), mast cell (j, j’), and T cell markers, including both CD4 and CD8 (k, l’) (first and third row, scale bars= 200 μm;
second and fourth row, scale bars= 50 μm). m Quantitation of the immune signal of each marker. n TUNEL staining of herniated disc sections. Insert
box showing DAPI signal beneath cluster of cells displaying high intensity TUNEL signal on bottom image. o CD31 staining showing increased
vascularity in the subchondral bony endplate of herniated discs
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Fig. 2 (See legend on next page.)
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vacuolated than the WT controls (Fig. 2a–h’). Unlike the
cartilages in other affected joints, the endplates in Tg197
mice showed normal morphology with a layer of hyaline
cartilage (CEP) and a subchondral bone plate that was
comparable to WT controls (Fig. 2c, c’, g, g’).
To quantitatively assess the histological changes, we

used modified Thompson grading and Boos scoring as
described previously7,37. No apparent differences in the
distribution of NP and AF grades were seen for either the
lumbar or caudal discs (Fig. 2i, j). To gain further insight
into disc health, we compared average NP and AF grades.
There was no significant difference between the average
grade of caudal NP or AF (Fig. 2k). Interestingly, the
average lumbar NP and AF grade in Tg197 mice was
significantly lower than the WT control animals (Fig. 2l).
Additionally, there was no difference in the NP aspect
ratio between the two genotypes (Fig. 2m). Furthermore,
micro-computed tomography (μCT) analysis of the bony
endplate showed comparable bone volume per total
volume (Fig. 2n), and Boos scoring showed no differences
in endplate scores between the genotypes (Fig. 2o).
Together, these results suggested that the lumbar discs of
hTNF-α-overexpressing mice were healthier than the WT
controls. Western blot analysis was performed using a
specific hTNF-α reactive antibody confirming that hTNF-
α was present in the disc of Tg197 mice (Fig. S2A-C).
Additionally, immunofluorescence staining of Syndecan 4,
a downstream target of TNF-α in the disc, showed
increased expression further indicating that there was
elevated TNF-α activity in the Tg197 discs (Fig S2D)38,39.
Together, these results suggested that the Tg197 mice do
not evidence signs of early-onset disc degeneration in
intact spinal levels.

The expression of major disc matrix components is
unaffected in Tg197 mice
To assess whether the difference in herniation incidence

was due to alterations in the AF matrix composition, we
investigated the expression and localization of specific
collagens using immunofluorescence staining. Surpris-
ingly, there were no differences in expression levels and
localization of collagen I and II between WT and Tg197
discs (Fig. 3a). However, there was a slight increase in
collagen X staining in the Tg197 NP compared to WT

controls (Fig. 3a). To gain further understanding of the
overall collagen architecture and compositional makeup
of these discs, Picrosirius Red staining was performed and
the collagen birefringence, as an indicator of fiber dia-
meter and maturity, was observed under polarized light40.
As expected, AF showed strong birefringence, while NP
tissue lacked any signal. Quantitative analysis showed that
the distribution of fiber sizes in AF was nearly identical
between the two genotypes (Fig. 3c). It is important to
note that while collagen II is the primary collagen in the
NP its concentration in the mouse disc is extremely low
compared to that of the AF (Fig. 3b). This is supported by
both the immunofluorescence and polarized microscopy,
along with previously published studies (Fig. 3a, b)7,41.
To gain further insights into matrix composition and

inflammatory environment of the Tg197 discs, we stained
sections for chondroitin sulfate (CS), aggrecan core pro-
tein (Acan), IL-6, IL-1β, MMP13, aggrecanase
(ADAMTS-1, -4, and -5)-generated aggrecan N-terminal
G1 neoepitope ARG (ARGxx), and MMP-generated N-
terminal neoepitope sequence (DIPEN) (Fig. 4a, b). CS,
MMP13, Acan, ARGxx, and DIPEN staining showed
similar distribution in the NP and AF of WT and Tg197
animals (Fig. 4a, b). While IL-6 staining appeared pro-
nounced within the vasculature of the subchondral bony
endplate, quantification showed no significant difference
between the genotypes (Fig. 4c). However, both IL-1β and
IL-6 staining was significantly higher in Tg197 mice than
in WT controls (Fig. 4a–c). Together, these results indi-
cated that, while there were no gross compositional dif-
ferences between the Tg197 and WT controls, there was
some evidence of an altered inflammatory environment in
the Tg197 discs.

Tg197 mice show increased cellularity in NP compartment
Safranin O/Fast green staining clearly showed increase

cell number in the NP compartment of Tg197 mice
(Fig. 1a). Consequently, we quantified the cellularity of the
discs by counting the number of nuclei. The number of
NP cells was significantly higher in Tg197 compared to
WT animals (Fig. 5a). Not only were there more cells in
the lumbar discs of Tg197 mice, but the NP cell band was
more than twice as thick as the WT mice, suggesting a
possible increase in size of the individual cells (Fig. 5b). To

(see figure on previous page)
Fig. 2 Tg197 discs are healthier or no different than wild-type controls. a–h Safranin O/Fast Green/Hematoxylin staining of coronal sections of
wild-type and Tg197 mouse intervertebral discs. Low magnification images of lumbar Tg197 discs show thickening of the nucleus pulposus cell band.
(top row, scale bars= 200 μm; middle rows, scale bars= 50 μm; bottom row, scale bars= 20 μm) i, j Distribution of histological grades using the
modified Thomson scale for i caudal and j lumbar intervertebral discs. k, l Average modified Thompson score for k caudal and l lumbar intervertebral
discs. m Aspect ratio of caudal and lumbar nucleus pulposus. n Bone volume/total volume of endplate in Tg197 and control mice (n= 5 mice/
genotype). o Endplate scoring of caudal and lumbar discs. Data was collected from 3 discs per mouse (n= 10 mice/genotype). Significance between
average grades was determined using unpaired t test. ns= not significant, **p ≤ 0.01, ****p ≤ 0.0001
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determine whether the NP cells in Tg197 mice are phe-
notypically similar to WT animals, we measured the
expression of known NP cell markers: carbonic anhydrase
III (CAIII), keratin 19 (Krt19), and glucose transporter 1
(Glut1)42,43. There were no differences in expression and
pattern of staining of any of the markers between the WT
and Tg197 mice (Fig. 5c). To explore whether the change
in cell number was due to active proliferation or cell
death, CDK4 and terminal deoxinucleotidyl transferase-
mediated dUTP-fluorescein nick end labeling (TUNEL)
staining was performed. At this age, there were no CDK4-
positive cells in either the Tg197 or control mice indi-
cating a lack of cell proliferation. Additionally, there were
few, if any, TUNEL-positive cells in both Tg197 and
control mice (Fig. 5d). These results implied that the
increased cell number in Tg197 did not arise owing to

active cell proliferation or cell death at 12–16 weeks. In
summary, these studies showed that disc of Tg197 mice
have increased NP cellularity than their age matched WT
controls, and these cells maintained their NP phenotype.

Vertebral bone of Tg197 mice show characteristic thinning
We performed μCT analysis to study vertebral bone

properties and measure disc height. μCT studies revealed
severe erosion in the lumbar and tail vertebrae (Fig. 6a).
There was significant reduction in bone volume per total
volume (BV/TV) in the caudal and lumbar vertebrae of
Tg197 mice indicating bone erosion (Fig. 6b). Trabecular
number (Tb.n.) was also significantly lower in Tg197
lumbar vertebrae (Fig. 6c). There was a significant
reduction in trabecular thickness (Tb.th) in both caudal
and lumbar levels (Fig. 6d), while trabecular spacing (Tb.
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sp.) remained unchanged (Fig. 6e). There was a small but
significant reduction in vertebral body length in the
lumbar but not in the caudal spine of Tg197 mice (Fig. 6f),
which was expected owing to the smaller size of the
transgenic mice36. However, disc height and disc height
index (DHI) showed no differences between the WT mice
and Tg197 mice (Fig. 6g, h). These results indicated that
the systemic inflammation in Tg197 mice severely affec-
ted the vertebrae without affecting disc height.

Discussion
Inflammation, intervertebral disc disease, and LBP are

linked. It has been demonstrated that elevated tissue and
systemic levels of inflammatory cytokines, in particular
TNF-α, characterize symptomatic disc disease12,25. How-
ever, despite many decades of research, the definitive
cause and effect relationship between systemic inflam-
mation and disc degeneration and herniation have not
been adequately established in vivo. To explore the role of
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TNF-α and systemic inflammation in the pathogenesis of
intervertebral disc disease, we used the Tg197 mouse, a
well-established model of TNF-α-driven systemic
inflammation34. We report here, for the first time, an in-
depth characterization of spinal phenotype in these
mutant animals. Tg197 mice develop robust bone and
joint inflammation. There was also increased incidence of
spontaneous disc herniation in Tg197 mice that involved
failure of the AF, the CEP, and tissue at the subchondral

bone junction together with a robust immune cell
response that was completely lacking in the WT animals.
This type of failure is in accord with the clinical picture of
disc herniation and the development of acute radicular
pain44. Surprisingly, despite the occurrence of sponta-
neous disc herniation, when intact, the Tg197 discs were
healthier and evidenced increased NP cellularity com-
pared to their WT controls. Based on these observations,
we conclude that elevated systemic TNF-α predisposes
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animals to spontaneous herniation but is not sufficient to
adversely affect the health of the intact discs at this
timescale.
Spontaneous annular tears and NP herniation was a

notable feature of the spinal phenotype of Tg197 mice,

which have not been reported in mice at this early
age45,46. Gaining insight into the immune response to
herniation has important clinical implications; many
lumbar disc herniations regress spontaneously not
necessitating costly surgery47. Current models of AF
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breach and exposure of NP to the immune system include
disrupting the skin, which alone can cause a pain response
secondary to an immune response48. The immune
response to herniation presented herein resembles the
response present in human surgical samples; CD68-
positive cells are found in the NP space in both Tg197
mice and human surgical samples11. Additionally, mast
cells were a significant part of the immune response after
spontaneous herniation in Tg197 mice and were recently
reported in painful human NP tissue49. The presence of
T cells in the NP extrusion sample further supports the
importance of T cell response in disc disease; Kepler et al.
found high levels of regulated T cell expressed and
secreted/C-C motif ligand 5 in painful intervertebral
discs50. The pathogenesis of the herniation in Tg197 mice
was not clear since there were no discernable differences
in the AF extracellular matrix and the organization of the
collagen fibrils between the Tg197 and WT mice. How-
ever, it is possible that elevated levels of IL-1β and IL-6
within the NP compartment may have reduced the
integrity of the already eroded underlying vertebral bone,
and this contributed to the increased incidence of failure
at the endplate–AF junction at select levels.
A dogma in disc research is the notion that cytokines

are a result and driver of disc degeneration. However,
intact Tg197 spinal levels, which evidenced severe ver-
tebral inflammation, had discs that were largely unaf-
fected. The histological studies revealed that distribution
of NP and AF grades in Tg197 mice were either similar or
in the case of the lumbar NP significantly better than the
WT animals. While there is a link between bone inflam-
mation, Modic changes, and LBP, the lack of an overt disc
phenotype in the Tg197 mice with severe vertebral
inflammation disputes the hypothesis that bone inflam-
mation is a driver of disc degeneration. Moreover, con-
sidering both the body of research linking elevated
cytokine levels to disc degeneration and the severe
arthritic phenotype of these animals, the finding that discs
in TNF-α transgenic mice maintained their health was
surprising. Furthermore, the lower average grades of the
lumbar discs in Tg197 mice suggested that the mutant
discs were not just functional but in a healthier state than
the controls. It is interesting to note that SM/J mice, a
recently reported model of early onset spontaneous disc
degeneration, are characterized by reduced systemic TNF-
α levels when compared with C57BL/6 mice, suggesting a
disconnect between TNF-α levels and extent of disc
degeneration7,51. The healthier NP grades in Tg197
reflected the increased NP cellularity, which is an
important criterion in the modified Thompson grading
scheme. However, since the NP compartment is avascular
and depends primarily on diffusion for both gaseous and
nutrition exchange, the long-term implications of
increased cellularity in relationship to disc aging are not

entirely clear52. It is plausible that, with increasing age and
sclerosis of endplates, the NP compartment may not be
able to support the increased metabolic demands of its
cells, and this fact alone may promote degeneration53–55.
Another surprising finding was that, despite the increased
cellularity of the Tg197 mice, the aspect ratio of the NP
compartment was similar between the two genotypes.
This further confirms the normal phenotype of intact
Tg197 discs since changes in disc shape and size are
associated with human disc degeneration56.
While the most striking effect of constitutive expression

of hTNF-α on the intact discs was increased cell number
and size, our results indicate that the difference did not
arise from increased cell death in WT animals. Instead,
the change was likely due to increased NP cell prolifera-
tion during early postnatal life in Tg197 mice, as pro-
liferation of NP cells takes place within the first 3 weeks
after birth57. For this reason, the lack of CDK4 staining in
Tg197 and WT mice was not surprising. These findings
indicate that the aberrant proliferation of NP cells at these
later post-natal time points was not the cause of the
observed increase in cell number. Consequently, a con-
ditional approach using disc-specific Cre drivers (e.g.,
foxA2-Cre or shh-CreERT2) to drive TNF-α over-
expression in the NP could discern the age at which TNF-
α leads to NP cell proliferation and whether the observed
effects are due to local production or diffusion of systemic
TNF-α into the disc. Nonetheless, it is important to note
that, while late-stage degeneration is associated with
reduced cellularity, clusters of proliferating cells exist in
the early stages of degeneration58. From this viewpoint,
the results clearly showed that systemic overexpression of
TNF-α affects the disc, whether this effect was transduced
through an indirect action of TNF-α or directly
through the pro-survival and pro-proliferative actions of
TNFRII remains to be seen59,60. From a clinical perspec-
tive, it is interesting to note that, following discectomy to
correct lumbar disc herniation, higher levels of TNFRII
protein were correlated with positive pain outcomes; in
contrast, raised levels of TNFRI is associated with nega-
tive outcomes, suggesting opposing activities of these
two TNF-α receptors in human disc disease61.
Another possibility is that the Tg197 mice were able to
block the deleterious effects of hTNF-α by producing
endogenous TNF-α inhibitors such as sTNFR or pro-
granulin62,63. Recent studies have shown early-onset
disc degeneration in progranulin and IL-1ra
knockout mice implying the importance of endogenous
TNF-α and IL-1β inhibitors in the maintenance of disc
health64,65. The idea that increased progranulin produc-
tion protects the Tg197 mice from disc
degeneration is also supported by evidence showing that
progranulin promotes proliferation of numerous cell
types66–68.
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In summary, while elevated systemic TNF-α is insuffi-
cient to promote disc degeneration in intact discs, it
predisposes mice to spontaneous herniation. Clinically,
herniation and disc degeneration are closely linked: the
presence of AF tears leads to significantly worse disc
scores69. From this perspective, the Tg197 mutant pro-
vides a new and exciting animal model to explore many of
the closely held assumptions concerning NP cell function
and the relationships among systemic inflammation, ver-
tebral inflammation, disc health, and degenerative disc
disease.

Materials and methods
Mice
All animal care procedures, housing, breading, and the

collection of animal tissues, were performed in accor-
dance with a protocol approved by the Institutional
Animal Care and Use Committee of Thomas Jefferson
University. The Tg197 transgenic mice between the ages
of 12 and 16 weeks harbor five copies of hTNF-α trans-
gene previously described by Kollias and colleagues34.
Both male and female mice were used in these studies.

Micro-CT analysis
Micro-CT scans (MicroCT40, SCANCO Medical,

Switzerland) were performed on the lumbar and caudal
levels of Tg197 and WT mice fixed with 4% paraf-
ormaldehyde. Ten mice per genotype were used and data
was averaged as a mean of 2–3 spinal levels, all levels were
plotted. Segments were scanned with an energy of 70 kVp,
a current of 114 mA, and a 200-ms integration time
producing a resolution of 16 mm3 voxel size. Trabecular
bone three-dimensional reconstructions of these scans
were compiled using Gaussian filter (σ= 1.0, support= 1)
and converted to binary images with a fixed gray-scale
threshold of 200. The data sets were then assessed using
the software supplied by the system manufacturer. DHI
was calculated by dividing average disc height by height of
adjacent vertebral bodies.

Histological analysis
Spines were decalcified in 20% ethylenediaminete-

tracetic acid (EDTA) at 4 °C for 15 days before embedding
in paraffin and 7-μm mid-coronal sections were prepared.
Xylene deparaffinization followed by graded ethanol
rehydration preceded all staining protocols. Safranin O/
Fast Green/Hematoxylin-stained slides were imaged using
Axio Imager 2 microscope, 5×/0.15 N-Achroplan or 10×/
0.3 EC Plan-Neofluar objectives, Axiocam 105 color
camera, and Zen2TM software (Carl Zeiss). Scoring was
performed using a modified Thompson grading scale (S1)
by 5–7 blinded observers70,71. Endplate scoring was

performed by five blinded observers following Boos cri-
terion37. Ten mice per genotype with three discs per
mouse in both caudal and lumbar levels were used.

Picrosirius RedTM analysis
Picrosirius RedTM staining visualized localization and

quality of the collagen fibrils40,72. Stained sections were
imaged on a polarizing microscope (Eclipse LV100 POL,
Nikon)7. Images containing only the AF were used for the
subsequent analysis of the surface area occupied by green,
yellow, or red pixels. Threshold levels for these three
colors remained constant for analysis of all samples.

Cell number quantification
DAPI (4,6-diamidino-2-phenylindole; Thermo Fisher

Scientific, P36934) stained mid-coronal 7-μm sections
were used to quantify the cell number in the NP. Three
sections per animal (n= 10) were used, and the NP area
was used for analysis. Using the ImageJ software (NIH),
images were converted to 32-bit, then the background was
subtracted using rolling= 50, next the images were auto-
thresholded, made binary, and then cell number was
calculated using the analyze particles function73.

Immunofluorescence microscopy
Mid-coronal 7-μm sections were used for all immuno-

fluorescence studies. Quantitative staining for IL-6, IL-1β,
ARGxx, and DIPEN was performed on six animals per
genotype, while for NP phenotypic makers and some
matrix molecules (CS and Acan) three animals per gen-
otype were used. Sections were de-paraffinized and
rehydrated as described above before antigen retrieval.
Antigen retrieval was accomplished in an antibody-
specific manner by either heated citrate buffer for
20min or proteinase K for 10 min at room temperature or
Chondroitinase ABC for 30min at 37 °C or TRIS/EDTA.
Sections were blocked in 5% normal serum (Thermo
Fisher Scientific, 10000 C) in PBS-T (0.4% Triton X-100 in
phosphate-buffered saline (PBS)), and incubated with the
primary antibody. The primary antibodies used were
Aggrecan (1:50, Millipore, AB1031), Collagen I (1:100,
Abcam, ab34710), Collagen II (1:400, Fitzgerald, 70R-
CR008), Collagen X (1:500, Abcam, ab58632), CA3 (1:150,
Santa Cruz, sc-50715), KRT19 (1:3, DSHB, TROMA-III/
supernatant), IL-1β (1:100, Novus, NB600–633), CD8
(1:1000, Abcam, ab209775), CD4 (1:1000, Abcam,
ab183685), Ly6 (1:500, Abcam, ab2557), CD68 (1:500,
Abcam, ab125212), CD31 (1:1000, Abcam 124432), or
MMP13 (1:200, Abcam, ab39012) in blocking buffer at
4 °C overnight. For GLUT-1 (1:200, Abcam, ab40084),
ARGxx (1:200, Abcam, ab3773), CS (1:300, Abcam,
ab11570), DIPEN (1:500, mdbiosciences, 1042002), IL-6
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(1:50, Novus, NB600-1131), and tryptase (1:1000, Abcam,
ab2378) staining, Mouse on Mouse Kit (Vector labora-
tories, BMK-2202) was used for blocking and primary
antibody incubation. Tissue sections were washed and
incubated with the appropriate Alexa Fluor®-594 con-
jugated secondary antibody (Jackson ImmunoResearch),
at a dilution of 1:700 for 1 h at room temperature in dark.
The sections were washed again with PBS-T (0.4% Triton
X-100 in PBS) and mounted with ProLong® Gold Anti-
fade Mountant with DAPI (Thermo Fisher Scientific,
P36934). All mounted slides were allowed to set overnight
before visualization with Axio Imager 2 using 5×/0.15 N-
Achroplan or 10×/0.3 EC Plan-Neofluar objectives,
AxioCam MRm camera, and Zen2TM software (Carl
Zeiss). Exposure settings remained constant for all gen-
otypes. Staining percentage of area quantification was
performed using the ImageJ software (NIH), thresholds
remained constant for each antibody.

TUNEL assay
TUNEL assay was performed on disc tissue sections

using an “In situ cell death detection” Kit (Roche Diag-
nostic)7. Sections were permeabilized with Proteinase K
(20 μg/mL) for 15min at room temperature before the
TUNEL assay and imaged as described above.

Protein extraction and western blotting
Following sacrifice, NP material from lumbar and cau-

dal discs was surgically isolated and homogenized in
T-PERTM, 1× protease inhibitor mixture (Roche), NaF
(5 nM), and Na3VO4 (200 μm). Proteins were resolved on
a 10% sodium dodecyl sulfate-polyacrylamide gel and
transferred by electroblotting to polyvinylidene difluoride
membranes (Bio-Rad). Ponceau S staining (0.1% (w/v)
Ponceau in 5% (v/v) acetic acid) verified equal protein
loading. The membranes were washed with TBS and
blocked with 5% nonfat dray milk in TBS with Tween 20
and incubated overnight with αhTNF antibody (1:1000,
ab6671, rabbit, Abcam) and then with appropriate sec-
ondary antibodies for 1 h at room temperature. Immu-
nolabeling was detected using the ECL reagent
(Amersham Biosciences). Recombinant hTNF and mTNF
(PeproTech) was used to verify antibody specificity.

Statistics
Ten animals per genotype per time point were used for

analysis (n= 10), and data are presented as mean ± SD.
Differences between genotypes were analyzed using the
Student’s t test when only two groups presented on graph
or one-way analyses of variance with Sidak’s multiple
comparison test between groups. Three lumber or tail
levels per mouse were combined and averaged for both
μCT and histological analysis. At least five independent
blinded individuals performed histological grading.

Significance between collagen fiber distributions was
determined using χ2 test. All statistical analyses were done
using Prism7 (GraphPad Software). p ≤ 0.05 was the
threshold for statistical significance.
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