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Background. The goal of this study was to characterize urinary metabolomics for the noninvasive detection of cellular inflam-
mation and to determine if adding urinary chemokine ligand 10 (CXCL10) improves the overall diagnostic discrimination.
Methods. Urines (n = 137) were obtained before biopsy in 113 patients with no (n = 66), mild (borderline or subclinical;
n = 58), or severe (clinical; n = 13) rejection from a prospective cohort of adult renal transplant patients (n = 113). Targeted, quan-
titative metabolomics was performed with direct flow injection tandem mass spectrometry using multiple reaction monitoring (ABI
4000 Q-Trap). Urine CXCL10 was measured by enzyme-linked immunosorbent assay. A projection on latent structures discrim-
inant analysis was performed and validated using leave-one-out cross-validation, and an optimal 2-component model developed.
Chemokine ligand 10 area under the curve (AUC) was determined and net reclassification index and integrated discrimination index
analyses were performed.Results.PLS2 demonstrated that urinary metabolites moderately discriminated the 3 groups (Cohen κ,
0.601; 95% confidence interval [95% CI], 0.46-0.74; P < 0.001). Using binary classifiers, urinary metabolites and CXCL10 demon-
strated an AUC of 0.81 (95% CI, 0.74-0.88) and 0.76 (95% CI, 0.68-0.84), respectively, and a combined AUC of 0.84 (95% CI,
0.78-0.91) for detecting alloimmune inflammation that was improved by net reclassification index and integrated discrimination index
analyses. Urinary CXCL10 was the best univariate discriminator, followed by acylcarnitines and hexose. Conclusions. Urinary
metabolomics can noninvasively discriminate noninflamed renal allografts from those with subclinical and clinical inflammation, and
the addition of urine CXCL10 had a modest but significant effect on overall diagnostic performance. These data suggest that urinary
metabolomics and CXCL10 may be useful for noninvasive monitoring of alloimmune inflammation in renal transplant patients.
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Arecent study of over 1300 transplant recipients
found that even with modern immunosuppression,

rejection accounts for up to one third of renal allograft
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subclinically—that is, in the absence of graft dysfunction.
Moreover, subclinical TCMR is found in up to 30%of pa-
tients that undergo surveillance biopsies2-4 and is associ-
ated with the development of interstitial fibrosis and
tubular atrophy (IFTA),5,6 de novo donor-specific antibod-
ies,7,8 and AMR, all of which are associated with graft
loss. The inability of serum creatinine to detect subclin-
ical TCMR combined with the limitations of surveillance
biopsies (morbidity, sampling error, and cost) argue for
the development of noninvasive tests for renal allograft
monitoring to guide the titration of immunosuppression.

Renal allograft inflammation has been shown to down-
regulate tubular epithelial proteins involved in solute and
water transport in both rodent and human models,9-11

whichmay alter the urinary metabolome. To this end, several
groups have evaluated urinary metabolomics as a potential
noninvasive marker of renal allograft inflammation using
different approaches.12-15 Similarly, urinary chemokines
have been evaluated as noninvasive markers for rejection.
Urine chemokine ligand 10 (CXCL10) has been found to
be a promising rejection marker16-30 that rises before serum
creatinine,16,17 decreases after treatment of rejection,16-20

and is sufficiently sensitive to detect both borderline and sub-
clinical tubulitis.21-24

Taken together, urine CXCL10 has been shown to outper-
form standard of care monitoring—however, urine CXCL10
only detects subclinical tubulitis with an area under the curve
(AUC) of 0.69.21 Therefore, the goal was to characterize uri-
nary metabolomics for the noninvasive detection of rejection
and determine if metabolomics can be added to urine
CXCL10 to improve its overall diagnostic performance.
METHODS

Patients and Biopsies

This study was approved by the ethics committee of the
University of Manitoba and all participating patients gave
written informed consent. This is a retrospective analysis of
a prospective, observational selected cohort of adult renal
transplant patients consisting of 137 renal transplant biop-
sies with paired urine samples obtained in 113 patients with
surveillance or clinically indicated biopsies. Most biopsies
(n = 122) were surveillance biopsies obtained at 3, 6, and
12 months posttransplant in patients with stable graft func-
tion. The remaining biopsies (n = 15) were performed for
graft dysfunction, defined as a 20% or greater rise in serum
creatinine from baseline or proteinuria. Two biopsy cores
were obtained using an 18-gauge needle under ultrasound
guidance. Biopsies were reported using the Banff schema, ap-
plying the most up-to-date criteria at time of reporting, and
the pathologist was blinded to the metabolomics results.31

Thirty-five patients received induction therapy at the time
of transplant; 31 patients received anti-CD25 antibody, and
4 patients received thymoglobulin. Maintenance immunosup-
pression consisted of cyclosporine/mycophenolate mofetil/
prednisone in 39 patients, and tacrolimus/mycophenolate
mofetil/prednisone in 74 patients. Acute rejectionwas treated
with pulse steroids.

There were 3 clinical-pathological groups according to
their degree of inflammation:
1. No inflammation (n = 66)

a. Normal histology (n = 33): i0 t0-1g0 v0 ci0-1 ct0-1
cg0 cv0-1

b. IFTA (n = 33): i0-1t0-1g0 v0 ci ≥ 1 ct ≥ 1 cg0 cv0-1

2. Mild inflammation (n = 58)

a. Borderline changes (n = 18): i1-2t1g0 v0 ci0-1 ct0-1
cg0 cv0-1

b. IFTAwith inflammation (n = 10): i1-2t1g0 v0 ci≥ 1 ct≥ 1
cg0 cv0-1

c. Subclinical TCMR (n = 30): i ≥ 2t ≥ 2 ci0-1 ct0-1 cv0-1

3. Severe inflammation (n = 13)

a. Clinical TCMR (n = 13): i ≥ 2t ≥ 2 ci0-1 ct0-1 cv0-1

Other inflammatory states, such as urinary tract infection, cyto-
megalovirus, and polyomavirus,were excluded fromall groups.

A subsequent analysis to evaluate the potential confound-
ing influence of acute tubular necrosis (ATN) was performed
in patients with indication of biopsy-proven ATN and serum
creatinine of 20% or greater from baseline (n = 14).
Urine Collection

Midstream urine samples were obtained immediately be-
fore surveillance or clinically indicated biopsies were per-
formed and were frozen at −80°C until analysis.
Urine Metabolome Analysis

Metabolomics was performed by direct flow injection mass
spectrometry (MS) using the commercially available Absolute-
IDQ kit (Biocrates Life Sciences AG, Austria), in combination
with an ABI 4000 Q-Trap (Applied Biosystems/MDS Sciex)
mass spectrometer as previously described.32 Briefly, urine
samples were thawed on ice, vortexed, and then centri-
fuged at 13 000 rpm. Ten microliters of urine supernatant
was loaded onto the kit's filter paper substrate and dried
under nitrogen. Metabolite extraction was achieved using
methanol containing 5 mM ammonium acetate. A stan-
dard flow injection protocol consisting of two 20-μL injec-
tions (1 for the positive and 1 for the negative ion detection
mode) was applied for all measurements. Urine metabo-
lites were quantified by multiple reaction monitoring MS/
MS using isotope-labeled internal standards from the kit
plate filter.

Metabolites below the limit of detection were analyzed
as limit of detection/2, and metabolite concentrations were
normalized by urine creatinine to correct for dilution. The
Biocrates MetIQ software was used to control the assay
workflow from sample registration to automated calcula-
tion of metabolite concentrations to the export of data into
other data analysis programs. An average of 95 metabolites
was measured in each urine sample (range, 75-98) from the
following classes: amino acids, acylcarnitines, hexose, creati-
nine, glyercophospholipids, and sphingolipids. Preliminary
analysis demonstrated that only acylcarnitines and hexose
were discriminatory (Table S1, SDC, http://links.lww.
com/TXD/A24), so these were used for subsequent analy-
ses (n = 34, plus creatinine).

http://links.lww.com/TXD/A24
http://links.lww.com/TXD/A24


TABLE 1.

Patient characteristics

Characteristic No inflammation Mild inflammation Severe inflammation

Histological classification Total Normal IFTA IFTA and borderline Borderline Subclinical Clinical ATN

n 137 33 33 10 18 30 13 14
Sex (male, %) 84 (61) 22 (67) 21 (64) 8 (80) 9 (50) 14 (47) 10 (77) 8 (57)
Recipient age, y 44 ± 12 44 ± 12 46 ± 12 46 ± 12 42 ± 12 43 ± 11 44 ± 14 51 ± 12
Ethnicity (white, %) 103 (75) 25 (76) 20 (61) 7 (70) 15 (83) 24 (80) 12 (92) 8 (57)
Panel-reactive antibody, % 6 ± 19 7 ± 22 9 ± 21 4 ± 13 6 ± 20 6 ± 21 0 4 ± 9
Total HLA mismatch 3.4 ± 1.2 3.1 ± 1.2 3.4 ± 1.4 2.9 ± 1.3 4.1 ± 1.1 3.5 ± 1.3 3.8 ± 0.8 3.1 ± 1.5
Donor age, y 39 ± 15 33 ± 15 48 ± 12 51 ± 11 35 ± 15 36 ± 12 32 ± 12 46 ± 14
Living donor (%) 62 (45) 17 (52) 14 (42) 7 (70) 6 (33) 10 (33) 8 (62) 5 (36)
Delayed graft function (%) 21 (15) 2 (6) 5 (15) 1 (10) 4 (22) 8 (27) 1 (8) 6 (43)
Banff i score 1.0 ± 1.0 0 0.3 ± 0.5 1.1 ± 0.3 1.1 ± 0.2 2.1 ± 0.5 2.5 ± 0.5 0
Banff t score 1.0 ± 1.1 0.03 ± 0.2 0.06 ± 0.2 1.3 ± 0.5 1.1 ± 0.2 2.5 ± 0.5 2.5 ± 0.5 0.07 ± 0.3
Banff g score 0.02 ± 0.1 0 0 0 0 0.07 ± 0.3 0.08 ± 0.3 0.07 ± 0.3
Banff v score 0.04 ± 0.2 0 0 0 0 0.07 ± 0.3 0.2 ± 0.4 0
Banff ci score 0.5 ± 0.6 0.03 ± 0.2 1.1 ± 0.4 1.4 ± 0.5 0.1 ± 0.3 0.4 ± 0.6 0.3 ± 0.5 0.3 ± 0.5
Banff ct score 0.5 ± 0.6 0.2 ± 0.4 1.1 ± 0.4 1.2 ± 0.4 0.1 ± 0.3 0.4 ± 0.5 0.3 ± 0.5 0.8 ± 0.4
Banff cg score 0.02 ± 0.1 0 0 0 0 0.03 ± 0.2 0.08 ± 0.3 0
Banff cv score 0.3 ± 0.6 0.07 ± 0.2 0.6 ± 0.7 1.0 ± 0.9 0.1 ± 0.3 0.2 ± 0.5 0.1 ± 0.3 0.8 ± 0.7
Surveillance biopsy (%) 122 (89) 32 (100) 32 (97) 10 (100) 18 (100) 30 (100) 0 14 (100)
Biopsy posttransplant, wk 25 ± 24 21 ± 8 48 ± 36 23 ± 9 18 ± 8 11 ± 6 17 ± 18 2 ± 1
Creatinine at biopsy, μmol/L 121 ± 40 106 ± 24 125 ± 53 148 ± 30 105 ± 31 112 ± 29 170 ± 31 516 ± 356
MDRD eGFR* at biopsy, mL/min 56 ± 17 63 ± 13 55 ± 17 45 ± 7 64 ± 21 57 ± 15 38 ± 11 17 ± 15
Urine CXCL10: Cr, ng/mmol* 1.77 ± 3.5 5.71 ± 7.9 13.4 ± 13.5 19.4 ± 29.2

Data are represented as mean ± SD or count (%).

*Modification of Diet in Renal Disease estimated Glomerular Filtration Rate
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Urine CXCL10 Analysis

Urinary CXCL10 was quantified by ELISA according to
previously described protocols, on a Biotek Synergy 4 mi-
croplate reader (Gen 5 software; Fisher Scientific).21-23

The sensitivity was 1.95 pg/mL, and the intra-assay and
inter-assay coefficients of variation were 3.90% and 4.54%,
respectively. Urine CXCL10 was corrected for dilutional
factors using urine creatinine determined from the metabo-
lomics analysis.

Statistical Analysis

JMP Pro software version 11.0 (SAS Institute Inc., Cary,
NC) was used for the patient demographics. Descriptive sta-
tistics are presented as means ± SD or median (interquartile
range) as appropriate. Parametric continuous data were ana-
lyzed by Student t tests and nonparametric continuous data
were analysed by the Wilcoxon rank-sum or Kruskal-Wallis
rank sum tests. Frequencies of categorical variables are pre-
sented as counts and percentages and compared with Fisher
exact test or Pearson χ2 test.

Statistical analysis of metabolomic data was performed
usingMetaboAnalyst and the R pls package.13,33-35Metabo-
lite data was log10-transformed to reduce skew but was not
scaled. Classifiers were trained on pairwise comparisons with
a projection on latent structures discriminant analysis
(PLS-DA): none versus mild inflammation and none versus
any inflammation. The optimal number of PLS components
was identified by single cross-validation based on Q2 statistic
(n = 5 considered), and the discriminant score and the AUC
receiver operating characteristic calculated. The diagnostic
threshold was determined using the “left upper corner
criterion,” which maximizes the sum of sensitivity and spec-
ificity. Area under the curve confidence intervals that do not
cross 0.5 (the diagonal line of chance agreement) are statisti-
cally significant by classical testing, which was confirmed in
all cases by permutation testing on 1000 replicates. Leave-
one-out cross-validation (LOOCV)34 was used to externally
validate all classifiers on samples not included in the develop-
ment of the classifier. In LOOCV, the model was refitted
137 times, each time omitting 1 observation. We then used
the fitted model to predict the omitted case, which pro-
vided 137 predictions where the predicted observation
was “out of sample.” The weighted sum of absolute regres-
sion coefficients was used to determine the relative impor-
tance of each metabolite, with weights being proportional
to the reduction in the error sum of squares across PLS
components.

The AUC diagnostic performance of CXCL10 was deter-
mined using logistic regression. Using the methods of Pencina
et al,36 we calculated the continuous net reclassification in-
dex (NRI) and the integrated discrimination index (IDI). A
statistically and clinically meaningful improvement in NRI
and IDI were defined as an increase in NRI greater than
10% and relative IDI greater than 10%. We also included
urinary CXCL10 as an additional predictor in the PLS-DA
analysis described above.
RESULTS

Patient Characteristics

The patient demographics and histological diagnoses are
shown in Table 1. Donor age was significantly greater in



FIGURE 1. Urinarymetabolites can distinguish the severity of under-
lying alloimmune inflammation using a 3-way PLS2 classifier. Meta-
bolomics significantly distinguishes no inflammation (blue), from mild
(green) and severe (red) inflammation.
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both IFTA groups (P < 0.0001). The Banff scores were
significantly different between groups, by definition. As
expected, serum creatinine was significantly higher in pa-
tients with clinical rejection compared with the other groups
(P < 0.0001). Only 1 patient in the cohort developed a de
novo donor-specific antibody. Finally, the biopsies with IFTA
were done significantly later posttransplant than biopsies
with inflammation.

Urinary Metabolomics Distinguishes Alloimmune
Inflammation

The PLS2 algorithm seeks a common set of PLS compo-
nents to distinguish the 3 distinct histologic phenotypes. A
score plot on the first 3 PLS components (Figure 1) suggests
that this PLS decomposition may be usefully applied to clas-
sify all 3 phenotypes with a single model, by using these
scores as predictors in a multinomial regression model that
assigns a probability for each mutually exclusive outcome.
The predicted class with the highest assigned probability
can then be compared with the observed histology. The per-
formance of this 3-way classifier was measured in terms of
FIGURE 2. Urinary metabolites distinguish alloimmune inflammation, us
3D score plot demonstrates separation of no inflammation (blue), fromm
of the (B) Full PLS-DA model (n = 34 metabolites); (C) Performance of the
tative metabolite scores in patients with sequential biopsies.
agreement between predicted and actual phenotype using a
Cohen κ, with κ = 0.601 (95% confidence interval [95%
CI], 0.46-0.74; P < 0.001), which is substantial agreement
by the Landis-Koch criteria. Encouraged by these results,
we then sought to formally train a classifier using specific
pairwise comparisons.

No Inflammation Versus Mild Inflammation

This classifier was developed by training no inflammation
versus mild inflammation. The optimal 2-component model
yielded an AUC of 0.78 (95%CI, 0.70-0.86), with a sensitiv-
ity of 0.67 and specificity of 0.78. These findings were con-
firmed by permutation testing (P < 0.003) and LOOCV
(P < 0.01). The full PLS-DA model (n = 34 metabolites) dem-
onstrated a stepwise increase in classification scores with in-
creasing alloimmune inflammation (data not shown).

The weighted sum of absolute regression coefficients iden-
tified the top 10 metabolites, and diagnostic performance
was characterized for the top 10 (AUC, 0.77; 95% CI,
0.69-0.85; P < 0.001) and top 3 metabolites (AUC, 0.74;
95% CI, 0.65-0.83). The top 3 metabolites contributing to
this classifier were hexose, C8:1, and C2 which experienced
log2-fold changes of 0.65 or higher between the no inflamma-
tion and mild inflammation groups.

No Inflammation Versus Any Inflammation

This classifier was developed by training no inflammation
versus any inflammation. The optimal 2-component model
yielded an AUC of 0.81 (95%CI, 0.74-0.88) with a sensitivity
of 0.76 and specificity of 0.63. These findings were confirmed
by permutation testing (P < 0.001) and LOOCV.When the full
PLS-DAmodelwas applied to the full data set (n = 137 urines),
this demonstrated a significant and step-wise increase in
classification scores with increasing alloimmune inflam-
mation (Figure 2). These findings were externally validated
ing a classifier trained on no inflammation versus any inflammation. A,
ild (green) and severe (red) inflammation. The diagnostic performance
classification scores in the full cohort (n = 137 urines); (D) Represen-



TABLE 2.

Scaled VIP scores and individual diagnostic performance of
the top 10 contributing analytes

Metabolite or protein VIP Univariate AUC (95% CI)

CXCL10 100 0.76 (0.68-0.84)
Hexose 52.3 0.65 (0.56-0.75)
C8:1 45.5 0.68 (0.59-0.77)
C4 33.3 0.60 (0.50-0.69)
C0 30.4 0.59 (0.50-0.69)
C3-DC/C4-OH 28.4 0.59 (0.49-0.68)
C2 27.2 0.58 (0.48-0.67)

© 2016 Wolters Kluwer Ho et al 5
with additional severe inflammation samples (clinical re-
jection, n = 6; classification score, 0.72 ± 0.2; P = 0.0003
compared with no inflammation).

The weighted sum of absolute regression coefficients
identified the top 10 metabolites, and diagnostic perfor-
mance was characterized for the top 10 (AUC, 0.78; 95%
CI, 0.71-0.86; P < 0.001) and top 3 metabolites (AUC,
0.78; 95% CI, 0.70-0.86). The top 3 metabolites contribut-
ing to this classifier were hexose, C8:1, and C3-DC/C4-OH
which experienced absolute log2-fold changes of 0.82 or
higher between the no inflammation and any inflammation
groups (Figure 2).
C10:1 26.5 0.70 (0.62-0.79)
C9 21.1 0.64 (0.55-0.74)
C5.1. DC 20.4 0.64 (0.55-0.74)

VIP, variable importance.
Urine Metabolites Reflect Differential Alloimmune
Inflammation Within Patients

The histology and urine metabolite signature changed in
sequential biopsies in some patients with mild subclinical in-
flammation thatwasmore severe on repeat biopsy performed
for graft dysfunction, whereas others had treatment of
subclinical/clinical rejection that resulted in histological im-
provement and a metabolite signature of no inflammation
(Figure 2). These observations suggest that in stable patients,
the inflammation signature may precede a clinical rejection
episode and that successful treatment of a rejection episode
may result in normalization of the urine signal.
FIGURE 3. Urinary CXCL10 distinguishes alloimmune inflammation
and improves the diagnostic performance of urinary metabolites. A,
Urinary CXCL10 demonstrates increasing levels with increasing se-
verity of alloimmune inflammation. B, The combination of urine
CXCL10 and metabolites improves the overall diagnostic perfor-
mance for alloimmune inflammation.
Urine CXCL10

Urine CXCL10:Cr showed a significant stepwise increase
according to increasing severity of alloimmune inflammation
as expected (Figure 3). Urine CXCL10:Cr alone showed sim-
ilar diagnostic performance (AUC, 0.76; 95%CI, 0.68-0.84)
as the urinemetabolite panel (AUC, 0.81; 95%CI, 0.74-0.88).
The addition of urine CXCL10 to the PLS model increased
the overall diagnostic performance (combined AUC, 0.84;
95% CI, 0.78-0.91), which was a statistically significant
improvement using both the DeLong test for comparing 2
correlated ROC curves (P < 0.05) and the continuous
NRI/IDI comparisons (P < 0.001) (Figure 3).

In addition to adding urine CXCL10 to the PLS scores,
urine CXCL10 was also included as an additional predic-
tor within the standard PLS-DA analysis of none versus
any inflammation. The optimal 2-component model in-
cluding urine CXCL10 yielded an AUC of 0.845 (95%
CI, 0.78-0.91), which was confirmed by permutation test-
ing (P < 0.001) and LOOCV. Interestingly, the variable im-
portance scores demonstrated that urinary CXCL10 was
the most important predictor with twice the score of the
next most predictive metabolite (Table 2).

Any Inflammation Versus ATN

Confounding was noted when the rejection classifier was
applied to patients with ATN (n = 14), with a classification
score of 0.78 ± 0.2 which was significantly different from
the no inflammation group (P < 0.0001). As expected urinary
CXCL10 did not distinguish ATN from rejection.37 For this
reason, we next sought to determine if alloimmune inflam-
mation could be distinguished fromATN. This ATN classifier
was developed by training any inflammation (n = 71) versus
ATN (n = 14). The 3-component model had excellent perfor-
mance in discriminating ATN from any inflammation with
anAUCof 1.0 (95%CI, 1-1), whichwas confirmedwith per-
mutation testing (P < 0.001) and LOOCV (P < 0.0001). The
ATN classifier yielded significantly different scores in patients
with any inflammation versus ATN (Figure 4). Interestingly,
the metabolites were different in the ATN versus rejection
classifiers; and the top 5 ATN metabolites (C16.1. OH, C16,
C3OH, C2, and C0) showed no overlap with the top 5 rejec-
tion metabolites.

This ATN classifier is useful for sequential application
because it did not identify biopsies with no inflammation



FIGURE 4. Urinary metabolites distinguish any alloimmune inflammation from ATN, using a classifier trained on any inflammation versus ATN.
A, 3D score plot demonstrates separation of any inflammation (red) from ATN (blue). The diagnostic performance of the (B) Full PLS-DA model
(n = 34 metabolites); (C) Performance of the classification scores in any inflammation (n = 71) versus ATN (n = 14).

6 Transplantation DIRECT ■ 2016 www.transplantationdirect.com
in the original training set. Specifically, the rejection classi-
fier could be used to identify potential alloimmune inflam-
mation, followed by the ATN classifier to rule out ATN.
DISCUSSION

This study demonstrates that a quantitative urine MS
metabolomic signature is capable of discriminating between
grafts with no inflammation (normal histology, IFTAwithout
inflammation) from those with subclinical inflammation
(borderline inflammation with or without IFTA; subclinical
TCMR), and clinical TCMR. From the panel of 34 metabo-
lites used here, the urine metabolites that best discriminated
between the various degrees of cellular inflammation in the
renal allograft were the acylcarnitines and hexose. The addi-
tion of the urine chemokine protein CXCL10 improved the
overall diagnostic discrimination of urine metabolites alone,
and indeed was the most important predictor of alloimmune
inflammation when included in the PLS-DAmodel. Finally, a
novel ATN classifier was developed to accurately discrimi-
nate alloimmune inflammation from ATN.

Carnitine (1-3-hydroxy-4-N, N,N-trimethyaminobutyrate)
is an essential metabolite required for the translocation of acti-
vated long-chain fatty acids from the cytosol to the mitochon-
drial matrix, where β-oxidation of fatty acids takes place
providing energy to the cells. In humans, 75% of carnitine
comes from dietary animal sources, but 25% is endogenously
synthesized, primarily in the liver and kidney. The kidney re-
claims filtered carnitine through the organic cation transporter
2 (OTCN2) (encoded by the SLC 22 A5 gene) present in the
brush border of the proximal tubule.38,39

The expression of gene transcripts for several organic cat-
ion transporters has been shown to be decreased in clinical
TCMR in bothmouse and human kidneys, as part of nonspe-
cific tubular epithelial cell injury that occurs also in ATN.9-11

However, there are no data, to our knowledge, on the expres-
sion of the carnitine transporter OTCN2 either in animal
models of renal transplantation or in human renal transplant
recipients. Nevertheless, patients with mild inflammation
showed an altered pattern of urine acylcarnitine excretion
compared with those patients with biopsies showing no in-
flammation. Moreover, in severe inflammation cases with
clinical rejection, the urine concentration levels of several
acylcarnitines, and in particular that of the acylcarnitine
C3-DC/C4-OH andC8:1, weremarkedly increased over that
observed in patients with no ormild inflammation, consistent
with a decrease in the tubular expression or function of the
OTCN2 transporter, as has been reported for other cation
transporters in rodents and humans.9-11

The differences in urine carnitine excretion in patients
with subclinical or clinical rejection may also be related
to the composition of the cellular infiltrate in the graft.
There is a preponderance of activated monocytes in clini-
cal rejection as compared with subclinical rejection in
which the infiltrating cells are mostly lymphocytes.40 Both
lymphocytes and monocytes contain free carnitine and
acylcarnitines, with monocytes containing approximately
4-fold more total carnitine per cell than lymphocytes.41

Moreover, monocytes activated in vitro with phorbol es-
ters increase their free carnitine levels by greater than
50%.42 Lymphocytes and monocytes infiltrating the kid-
ney allograft during acute rejection undergo apoptosis,43

and it is plausible therefore that the increased urinary
amounts of carnitines, such as C3-DC/C4-OH, observed
in clinical rejection may in part be the result of increased
amounts of filtered carnitines derived from apoptotic
monocytes in the graft that are not reclaimed by the de-
creased tubular expression of the OTCN2 transporter.

Notably, the urinary metabolite profile accurately reflected
changing alloimmune inflammation in individuals with
sequential biopsies. These findings are consistent with
Foxall et al12 who showed that the urinary excretion of
trimethylamine-N-oxide detected by nuclear magnetic reso-
nance spectroscopy increased 2 days before a clinical
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rejection episode and returned to normal after its treatment.
In further support of these observations, in an experimental
rat renal allograft model, Edemir et al11 showed that the
downregulated expression of aquaporin 2 and epithelial Na
channel genes that occurred with clinical rejection was in-
creased toward normal after treatment with cyclosporine.

As anticipated, the urinary CXCL10 findings were highly
consistent with the reported literature.21-23,37 Interestingly,
however, the urine metabolites that discriminated between
inflamed and noninflamed renal parenchyma in our adult
renal transplants were different from those observed by
others.12-15 These differences may relate to the different
metabolites and platforms used for evaluation and rein-
force the need for independent validation studies.

The evaluation of subclinical rejection allowed us to eluci-
date the interactions between alloimmune inflammation and
graft function. Notably, patients with subclinical rejection
had equivalent Banff scores as the clinical rejection group de-
spite having similar graft function as those patients with no
inflammation. The observed stepwise increase in the classifier
scores between no inflammation, mild, and severe inflamma-
tion suggests that the rejection classifier is independent of
graft function. Furthermore, both the clinical rejection and
ATN groups had poor allograft function despite highly diver-
gent Banff scores; moreover, the ATN classifier accurately
distinguished these 2 groups, demonstrating that urinary me-
tabolites reflect underlying tubular pathophysiology inde-
pendent of graft function.

There are some limitations to this study. First, the number
of patients is relatively small, particularly those with clinical
rejection. However, these findings were validated with per-
mutation testing, LOOCV, and additional clinical rejection
samples. Second, this analysis was performed in highly se-
lected cases and controls resulting in selection bias; and thus
the diagnostic performancemay be an overestimate of its per-
formance in a larger, unselected population. Third, patients
were studied predominantly in the early posttransplant pe-
riod; therefore, pathologies that tend to present later (eg,
recurrent glomerulonephritis, AMR) are not represented.
Finally, there are no patients with inflammatory conditions,
such as bacterial or viral infections as controls. These
discovery-based metabolomic studies require validation
in independent cohorts.

Nevertheless, despite the above limitations, we believe that
quantitativeMS-based urine metabolomics may be useful for
the diagnosis of renal allograft inflammation. Importantly,
this approach to biomarker development demonstrates that
urine metabolomics in conjunction with urine CXCL10
improves the overall diagnostic discrimination and that se-
quential application of different metabolite classifiers can
be used to rule out confounders, such as ATN. Ultimately,
noninvasive strategies for the early detection of alloimmune
inflammation may improve long-term graft survival for renal
transplant patients.
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