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ARTICLE INFO ABSTRACT

Keywords: The surveillance of tuberculosis infections has largely depended on clinical diagnostics and hospitalization data.
Tuberculosis The advancement in molecular methods creates an opportunity for the adoption of alternative surveillance sys-
Mycobacteria ) tems, such as wastewater-based epidemiology. This study presents the use of conventional and advanced poly-
Avg Zi:‘:]:f;w" tuberculosis complex merase chain reaction techniques (droplet digital PCR) to determine the occurrence and concentration of total

mycobacteria and members of the Mycobacterium tuberculosis complex (MTBC) in treated and untreated waste-
water. Wastewater samples were taken from three wastewater treatment plants (WWTPs) in the city of Durban,
South Africa, known for a high burden of TB/MDR-TB due to HIV infections. All untreated wastewater samples
contained total mycobacteria and MTBC at varying percentages per WWTP studied. Other members of the MTBC
related to tuberculosis infection in animals, M. bovis and M. caprae were also detected. The highest median
concentration detected in untreated wastewater was up to 4.9 (+£0.2) Log10 copies/ml for total mycobacteria, 4.0
(40.85) Log10 copies/ml for MTBC, 3.9 (+0.54) Log10 copies/ml for M. tuberculosis, 2.7 (+0.42) Log10 copies/
ml for M. africanum, 4.0 (+0.29) Log10 copies/ml for M. bovis and 4.5 (+0.52) Log10 copies/ml for M. caprae.
Lower concentrations were detected in the treated wastewater, with a statistically significant difference (P-value
< 0.05) in concentrations observed. The log reduction achieved for these bacteria in the respective WWTPs was
not statistically different, indicating that the treatment configuration did not have an impact on their removal.
The detection of M. africanum in wastewater from South Africa shows that it is possible that some of the TB
infections in the community could be caused by this mycobacterium. This study, therefore, highlights the po-
tential of wastewater-based epidemiology for monitoring tuberculosis infections.

Droplet digital PCR

1. Introduction

Tuberculosis (TB) is a notifiable communicable disease caused by a
group of closely related, slow-growing mycobacteria collectively named
Mycobacterium tuberculosis complex (MTBC) (Forbes et al., 2018). Most
TB infections in humans are caused by M. tuberculosis, however, there are
other members of the MTBC that cause TB in both humans and animals.
These include M. bovis, the causative agent of tuberculosis mainly in
animals.M. bovis causes disease in humans because of its zoonotic ca-
pacity, but it is mainly the agent of animal and particularly bovine TB
infections (bovines being the main maintenance host of the bacterium)
(Walter et al., 2012; Howell et al., 2019; Nugent et al., 2017; Inlamea
et al., 2020), Mycobacterium africanum, the causative agent of human
tuberculosis (mainly in Western Africa) (Gehre et al., 2016; Tientcheu
et al., 2016) and Mycobacterium canetti isolated in the Horn of Africa
(Loukil et al., 2019) and reported in human infections, however, its
natural reservoir, host range, and mode of transmission still remains
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debatable. Other members of this group are M. microti, M. caprae, M.
pinnipedii and M. mungi, usually associated with animal infections with
possible transmission to humans.

In 2019, an estimated 10.0 million (range, 8.9-11.0 million) people
worldwide were infected with tuberculosis, with 1.5 million deaths per
year (Visca et al., 2021; WHO TB report, 2020). In most African coun-
tries, particularly in South Africa, HIV infection is regarded as a signifi-
cant risk factor for contracting tuberculosis (TB), with co-infection linked
to increased morbidity and mortality (Mesfin et al., 2014; Travis et al.,
2019). Over 70% of people with TB and HIV/AIDS (6 million) live in
Sub-Saharan Africa, where bovine TB is a threat to human health (Ayele
et al., 2004; Bovine Tuberculosis, 2021; Ntloko et al., 2019). WHO pro-
duces annual estimates of the burden of disease caused by tuberculosis,
which are measured in terms of incidence, prevalence, and mortality,
based on data collected through surveillance systems (case notifications
and death registrations), special studies (including prevalence surveys),
mortality surveys, "inventory studies" of under-reporting of detected TB,
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in-depth analysis of surveillance and other data, expert opinion, and
consultations with countries (Glaziou et al., 2016). However, in
resource-poor countries, monitoring of tuberculosis/drug-resistant
tuberculosis (DR-TB) is a major challenge because assays are costly and
time-consuming, and laboratories are ill-equipped. This has led to
underestimation/reporting of TB cases in such countries (Oga-Omenka
et al., 2020; Zarowsky et al., 2020; WHO, 2020), therefore alternative
means of estimating to complement the existing surveillance systems
would be beneficial. There is evidence to support the detection of
tuberculosis causing organisms in human faeces (Diirr et al., 2013; Bosch,
2018; Abaye et al., 2017; Walters et al., 2018). Few studies from the
1960s-70s reported on the isolation of M. tuberculosis from the envi-
ronment, such as hospital sewage (Buczowska, 1965; Buraczewski and
Osinski, 1966), households (Buczowska, 1965; Buraczewski and Osinski,
1966; Poptsova, 1974) and farms (Kazda et al., 2010; Skurski et al., 1965;
Szulga et al., 1965). Therefore, the concept of wastewater-based epide-
miology (WBE) could be adopted to provide additional information on
the TB burden. WBE assumes that any stable substance excreted by
humans and found in sewage/wastewater can be used to estimate the
original concentration excreted by the serviced population. When path-
ogens are excreted in the feces/urine of infected people, the same
concept can be used to analyze pathogen circulation in sanitary sewers in
a given population (Prado et al., 2021; Mao et al., 2020; Polo et al.,
2020). This method is useful, especially when clinical diagnosis resources
are limited and reporting systems are unavailable or inefficient (Kitajima
et al., 2020; Hart and Halden, 2020; Thompson, 2020; Prado et al.,
2021). This approach has seen increased interest during the COVID-19
pandemic (Ahmed et al., 2020; Gonzalez et al., 2020; Hart and Halden,
2020) WBE studies may be able to aid in the reconstruction of spatially
explicit transmission chains, such as not only "who infected who," but
also "where they were infected," which may provide insight into how
they were infected (Sims and Kasprzyk-Hordern., 2020; Martinez et al.,
2019).

TB primarily spreads person-to-person by aerosolized infective tu-
bercle particles (Shiloh, 2016). However, there are observations that TB
could be transmitted through other means, such as through faecal-oral
transmission (Santos et al., 2015; Lombard, 2011; Allen et al., 2021).
Despite the potential role of the environment in TB transmission, there is
limited information on the occurrence of the causative organisms in the
environment. This could be attributed to the lack of sensitive and scalable
techniques to detect MTBC in environmental samples (Santos et al., 2015;
Barbier et al., 2016; Martinez et al., 2019). M. tuberculosis can be cultured
from soil and other materials, but due to bacterial overgrowth and the
presence of "differentially culturable" (or "viable but non-culturable")
organisms, sensitivity may be limited (Martinez et al., 2019; Chengal-
royen et al.,, 2016; Mukamolova et al., 2010; Velayati et al., 2015).
Methods for optimal promotion of M. tuberculosis complex's growth
following recovery from the environment are needed to gain a better
understanding of their viability in various environmental matrices
(Martinez et al., 2019). This challenge could be addressed with the use of
molecular techniques, such as the reverse transcription polymerase chain
reaction (RT-PCR) (Lu et al., 2003; Young et al., 2005). Molecular
detection of M. tuberculosis complex has been demonstrated in filtered air
samples (Wood et al., 2016), but few studies are investigating its detec-
tion in water or wastewater samples (Fine et al., 2011; Velayati et al.,
2015; Li et al., 2015; Rosso et al., 2018; Guo et al., 2019).

The use of more sensitive and accurate molecular methods for the
detection of tuberculosis-causing mycobacteria in wastewater could play
a significant role in developing the WBE approach for estimating the TB
burden. This will complement or be used as an alternative to the current
surveillance methods in place. Additionally, these methods could theo-
retically be used to ascertain the potential risk of TB infection in com-
munity settings due to exposure to wastewater. The aim of the paper is to
evaluate a molecular surveillance strategy for the detection of
tuberculosis-causing mycobacteria in both untreated and treated (post-
chlorination) wastewater in KwaZulu Natal (KZN), South Africa.
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2. Methodology
2.1. Study site

Three wastewater treatment plants (WWTPs) in the city of Durban,
South Africa, were sampled for municipal wastewater: WWTP A, WWTP
B, and WWTP C, on four different occasions. The WWTPs were chosen
based on whether or not they served a population of at least 10,000
people and whether or not they received hospital sewage. The treatment
configurations and capacities of these WWTPs were also different. For
example, WWTP A does not have an activated sludge treatment or sec-
ondary clarification process, whereas WWTP B and C both do. There are
other differences in the treatment processes, as shown in Table 1 and the
schematic diagrams in Figures S1-S3 (Supplementary material), that are
important to consider when discussing the efficacy of these WWTPs in
removing mycobacteria.

2.2. Sample collection and processing

Each WWTP's influent (raw/untreated wastewater) and effluent
(treated wastewater) received a 1-L composite sample. Composite sam-
ples made up of many subsamples were taken, for example, one small
sample was taken, followed by a 30-second interval, and then the next
sample was taken, and so on, until the required sample volume (1 L) was
reached. The samples were transported to the lab in an ice-filled cooler
box, kept at 4 °C, and analyzed within 48 h. Per WWTP, two samples
were taken (influent and effluent (post-chlorination)). Samples were
homogenized before analysis, and 50 mL subsamples were taken and
centrifuged at 3000 rpm for 20 min, with the supernatant discarded and
the pellet used for DNA extraction. The DNA was extracted using a
DNeasy Powersoil DNA extraction kit (QIAGEN) according to the man-
ufacturer's instructions, with no changes. IMPLEN NanoPhotometer
NP80 - All-in-One Spectrophotometer was used to determine the quan-
tity and quality of the extracted DNA. All of the analyses were carried out
in triplicate.

2.3. Optimization of polymerase chain reaction (PCR) conditions for
detection of target organisms in wastewater

Method optimization was done using published primers targeting
total mycobacteria, M. tuberculosis complex, M. tuberculosis, M. africanum,
M. bovis and M. caprae. In this study, regions of differences (RDs) in these
various organisms were targeted based on their uniqueness. However, it
must be noted that some of these regions of differences are shared among
the species within the M. tuberculosis complex and difference studies
report them differently. For instance, the total mycobacteria were tar-
geted using the 16s rRNA gene (Chae et al., 2017), Rv0577 for
M. tuberculosis complex (Chae et al., 2017), RD9 for M. tuberculosis
(Perez-Osorio et al., 2012; Chae et al., 2017), RD1 present for M. bovis
(Kim et al., 2013), RD4 present for M. caprae (Domogalla et al., 2013).
During the method development and optimization, the PCR amplicons
were sent for sequencing for confirmation of the organisms targeted.

The limit of detection (LOD) of the PCR protocol was determined
using positive control DNA of M. tuberculosis H37Rv strain. The concen-
tration of the target was diluted (10~1- 10™*) to the following copies/pl:
59.2, 18.6, 13.75 and 7.06 respectively for conventional PCR to deter-
mine the lowest concentration of M. tuberculosis detectable.

The lowest detectable concentration of M. tuberculosis. The PCR
mixture for all targeted organisms contained 12.5 ul of OneTaq 2X
Master Mix with Standard Buffer (New England BioLabs inc), 2 1 of
primer mix (final concentration of 0.2-0.4 M), 1 1 (60 ng/1) of DNA
template, and 9.5 1 of molecular grade water in a final volume of 251in a
reaction tube. The VeritiTM 96-Well Thermal Cycler was used for PCR
amplification. Optimised thermocycling conditions were initial dena-
turation step at 95 °C for 10 min and followed by 30 cycles of 96 °C for 45
s. The annealing temperatures varied for each primer (organisms), total
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Table 1. Details of the wastewater treatment plants used for this study.

Treatment Design Primary  Activated Secondary Bio- Sludge Tertiary Remarks

works Capacity Settling  Sludge clarification filters Digestion  treatment
M¢t/d)

WWTP A 18.8 Yes No No Yes Yes Yes Receives from Hospital A, which has 17 clinics and provides
health care to the community on a regional and district level,
receives funds. The hospital is one of the sites for HIV
transmission from mother to child (MTCT) and is home to the
country's largest crisis center, now known as the 'Place of
Comfort.'

WWTP B 4.90 N/A Extended Yes No No Yes Receives from Hospital B, which serves the people of

Aeration Chatsworth and the surrounding area, as well as the Inner and
Outer West, with boundaries extending from Yellowwood Park
to Richmond. This hospital also serves as a referral center for
another hospital and clinic.

WWTP C 70.0 Yes Conventional Yes No Yes Yes Receives from Hospital C complex which offers specialised

services for Multi Drug Resistant (MDR) and complicated TB

Information sourced from: Cross and Buckley (2016); Mtetwa et al. (2021).

mycobacterial species (16s rRNA gene- 500bp) at 61.5 °C for 45 s,
M. tuberculosis complex (Rv0577-700bp) at 54 °C for 60 s, M. tuberculosis
(RD9 present- 369 bp) at 59 °C for 60s, M. africanum (RD8 present- 150
bp) at 68 °C for 60 s, M. bovis (RD1 present-264bp) at 57 °C for 60s and
M. caprae (RD4 present) at 58 °C for 60s and extension at 72 °C for 40 s.
The final extension step was performed at 72 °C for 10 min.

After amplification, 3 pl of ethidium bromide (final concentration of
0.2-0.5 pg/mL) was added on 2% agarose gel in of 1 x Tris-borate-EDTA
(TBE) buffer and analysed via agarose gel electrophoresis. The assay
products were electrophoresed for 45-60 min at 70 V in 1x TBE buffer,
and the gels were visualized using a Bio-Rad Gel Doc™ XR.

2.4. Determination of the presence of total mycobacteria, MTBC,
M. tuberculosis, M. africanum, M. bovis and M. caprae in treated and
untreated wastewater by conventional PCR

The optimized conventional PCR protocol was used to determine the
presence of the selected organisms or group of organisms in wastewater
from Durban, South Africa. Wastewater samples were collected and
processed using the methodology described above (Section 2.2).

2.5. Determination of the concentration of total mycobacteria, MTBC,
M. tuberculosis, M. africanum, M. bovis and M. caprae in treated and
untreated wastewater

The Rv0577 primer for M. tuberculosis complex mentioned in section
2.3 was used to determine the limit of detection for M. tuberculosis using a
measured DNA template (1.5 ng/pl of M. tuberculosis H37Rv strain). The
DNA template was serially diluted from 107! to 107°.

The concentration of these organisms was determined using the
droplet digital PCR (ddPCR). The same set of primers presented in
Table 2 were used. The ddPCR analysis was performed in a 20 pL reaction
volume, containing, 10 pL of 2X QX200 ddPCR EvaGreen Supermix (Bio-
Rad), 1-20 ng/pL of template DNA quantified by the IMPLEN Nano-
Photometer NP80 — All-in-One Spectrophotometer, forward primers (FP)
and reverse primers (RP), each at a final concentration of 250 nM and
RNase/DNase free water.

Droplets were generated using the automated droplet generator and
the following amplification protocol was followed: Optimised thermo-
cycling condition included an initial denaturation step at 95 °C for 10
min and followed by 30 cycles of 96 °C for 45 s. The annealing tem-
peratures varied for each primer (organisms), total mycobacterial species
(16s rRNA gene- 500bp) at 61.5 °C for 45 s, M. tuberculosis complex
(Rv0577-700bp) at 54 °C for 60 s, M. tuberculosis (RD9 present- 369 bp)
at 59 °C for 60s, M. africanum (RD8 present- 150 bp) at 68 °C for 60 s,
M. bovis (RD1 present-264bp) at 57 °C for 60s and M. caprae (RD4 pre-
sent) at 58 °C for 60s and final incubation step was performed at 98 °C for

10 min (ramp rate 2.2 °C/s). These conditions were applied to the
wastewater samples. After thermal cycling, the ddPCR plates were read
using the QX200 droplet reader (Bio-Rad). Droplet counts and ampli-
tudes were analysed with QuantaSoft™ analysis Pro software (Bio-Rad).

The standard/reference M. tuberculosis (H37Rv strain) DNA was
determined to have an average of 9226 (£642.1) copies/mL using this
protocol/assay. The LOD after ten-fold serial dilutions was determined to
be 3.0 (+0.06) gc/ml (Figure S4) with an average of 18,892 droplets
generated per well.

2.6. Statistical analysis

Descriptive statistics was calculated using Microsoft Excel, and a test
of normality was conducted using the Akaike Information Criterion (AIC)
score, which was calculated using @Risk (Palisade Inc. USA). The
Kruskal-Wallis tests, followed by Dunn's Multiple Comparison tests, were
used to compare the concentrations of different tuberculosis-causing
mycobacteria based on the normality tests. The Mann-Whitney tests
were used to compare the concentrations of mycobacteria in untreated
and treated wastewater. All statistical tests had a 95% confidence inter-
val, and a p-value of less than 0.05 was considered statistically signifi-
cant. GraphPad Prism was used for all statistical analyses (Version 7.0,
GraphPad Software, USA).

3. Results

3.1. Determination of the presence of total mycobacteria, MTBC,
M. tuberculosis, M. africanum, M. bovis and M. caprae in treated and
untreated wastewater by conventional PCR

Conventional PCR was optimized with limit of detection determined
to be 18.6 copies/pl using Rv0577 for total M. tuberculosis complex
primer. The detected mycobacterial organisms varied between the three
WWTPs. Total mycobacteria was detected in all (treated and untreated)
wastewater samples analysed (Figure 1). Similarly, M. tuberculosis com-
plex (MTBC) was present in all (100%) untreated and majority (75%) of
treated wastewater samples from all the three WWTPs (Figure 1).
M. bovis and M. caprae were detected in 100% of all untreated wastewater
and M. bovis was present in 50%, 75% and 100% of the treated waste-
water in WWTP A, WWTP B and WWTP C respectively. M. tuberculosis,
the main causative agent for human tuberculosis, was detected in 75% of
untreated samples from both WWTP A and WWTP C and 100% of un-
treated wastewater samples from WWTP B.

The least prevalent was M. africanum, which was detected in 25% of
untreated samples in WWTP A, 50% in WWTP B, and not detected in
WWTP C. However, their presence in the treated wastewater was lower,
with 25% at WWTP A and no detection in both WWTP B and WWTP C.
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Table 2. Median (standard deviation) concentration and range of the concentration (Log10 copies/mL) of total Mycobacteria, M. tuberculosis Complex, M. tuberculosis, M. africanum, M. bovis and M. caprae in influent and

effluent wastewater at the three WWTPs.

WWTP C

WWTP B

WWTP A

Effluent

Influent

Effluent

Influent

Effluent

Influent

Range

Median(+SD)
4.0 (0.8)

Range

Median(£SD)
4.8 (0.47)
3.3 (0.52)
2.8 (0.75)
2.7 (0.42)
3.6 (0.44)
4.1 (0.81)

Range

Median(4SD)
3.9 (0.15)
3.4 (0.52)
3.7 (0.44)
2.3 (0.18)
3.8 (0.74)
4.3 (0.87)

Range

Median(+SD)
4.8 (0.06)
3.8 (0.33)
3.9 (0.54)
2.5 (0.29)
3.8 (0.43)
4.5 (0.52)

Range

Median(£SD)
4.4 (0.03)
2.9 (0.94)
3.5 (0.34)
2.5 (0.31)
2.8 (0.97)
3.7 (0.36)

Range

Median(4+SD*)
4.9 (0.2)

3.2-4.7
2.5-3.4

2.5-3.8

4.4-5.2
2.5-3.8
2.8-4.3

3.8-4.2
2.8-4.0
3.2-4.1
2.2-2.6
2.5-4.1
2.7-4.6

4.8-4.9
3.2-4.0
2.9-4.1

4.3-4.4
1.8-3.9

3.3-4.1
2.0-2.7
2.0-4.1

4.8-5.2

Total mycobacteria

MTBC”

3.0 (0.44)
2.7 (0.62)
2.5 (0.16)
3.9 (0.68)
3.8 (0.84)

2.3-4.2
3.3-4.0
2.0-2.7
3.5-4.2
3.7-4.5

4.0 (0.85)
3.9 (0.31)
2.3 (0.29)
4.0 (0.29)
4.0 (0.36)

M. tuberculosis
M. africanum

M. bovis

2.3-2.6
3.2-4.5
2.7-4.6

2.1-3.1
3.2-4.2
2.5-4.3

2.2-2.8
3.4-4.2
3.5-4.7

3.2-4.1

M. caprae

Means Standard deviation.
# refers to M. tuberculosis complex, n = 4.

*
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3.2. Determination of the concentration of total mycobacteria, MTBC,
M. tuberculosis spp., M. africanum spp., M. bovis spp., M. caprae spp. in
treated and untreated wastewater

Comparing the concentration of the six organisms or group of or-
ganisms measured in the untreated wastewater across the three WWTPs
showed differences in their concentrations. Between the WWTPs, a sta-
tistically significant difference in concentrations of each organism was
observed. The highest median concentration for total mycobacteria in the
untreated wastewater was recorded in WWTP A (4.9 (+0.2) Logl0
copies/ml), with the lowest median concentration of 4.8 (+0.06) and 4.8
(£0.47) Logl0 copies/ml in WWTP B and WWTP C, respectively. The
M. tuberculosis complex members were more abundant in WWTP A, with
a concentration of 4.0 (+£0.85) Logl0 copies/ml as compared to both
WWTP B (3.8 (£0.33) LoglO copies/ml) and WWTP C (3.3 (+0.52)
Log10 copies/ml).

WWTP A and WWTP B influent had similar median concentrations of
M. tuberculosis (Table 2) and lower concentration of 2.8 (+0.75) Logl10
copies/ml was recorded in WWTP C. The organism with the lowest
concentrations irrespective of WWTP was M. africanum, this correlated
with the percentage of samples with positive detection of this organism
described in the section 3.1 above (Figure 1). As shown in Table 2, the
other two rarely occurring mycobacteria (M. bovis and M. caprae) were
also recorded in low concentrations. However, comparing with M. bovis
and M. caprae, the concentrations of M. africanum in the untreated
wastewater samples were significantly lower (P value < 0.05).

Furthermore, within each WWTP, the concentration of these organ-
isms was lower in the treated wastewater compared to the untreated
wastewater concentrations described above. For instance, the concen-
tration of total mycobacteria in the treated and untreated wastewater
were statistically significant (P value <0.05) in all the WWTPs, except
WWTP C. However, the difference in MTBC, M. tuberculosis, M. africanum,
M. bovis and M. caprae concentrations in the treated and untreated
wastewater in all the WWTPs was not statistically significant (P value
>0.05). Despite the reductions observed in all the WWTPs, concentra-
tions up to 4logl0 for these mycobacteria are released into receiving
water environments (Table 2).

3.3. Reduction in the concentration of tuberculosis-causing mycobacteria
during wastewater treatment

The observed log reduction in each WWTP as presented in Figures 2,
3, and 4 did not show any statistically significant differences when
compared between the three WWTPs, irrespective of the organism or
group of organisms (P value >0.05). The highest median log reduction of
0.91 (£0.20) for total mycobacteria was achieved by WWTP B. Similarly,
WWTP A, had the highest median log reduction in M. tuberculosis com-
plex members of 0.71 (+£0.65). Despite these differences in log reduction
as can be seen in Figure 2, the Kruskal-Wallis test did not show any
statistically significant differences.

Specifically, looking at tuberculosis causing mycobacteria, the high-
est median reduction in M. tuberculosis was observed in WWTP B (0.36
(£0.41)) and the lowest at WWTP A (0.21 (+0.29)). In respect of
M. africanum, the highest reduction was recorded at WWTP C (0.22
(£0.28)) and the lowest at WWTP A (see Figure 3). The highest log
reduction of M. bovis and M. caprae was observed in WWTP A (Figure 4).
This study could not identify any single WWTP to have the most efficient
log reduction for all mycobacteria tested.

4. Discussion

Wastewater contamination with total mycobacteria, members of the
M. tuberculosis complex and the other tuberculosis-causing mycobacteria
could be attributed to several factors, including shedding of these or-
ganisms in human and animal faeces which end up in wastewater
treatment plants from hospital sewage or domestic sewage. This study
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Figure 1. Percentage of influent and effluent wastewater samples showed positive for total mycobacteria, M. tuberculosis Complex, M. tuberculosis, M. africanum, M.
bovis and M. caprae (N = 4).
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Figure 2. Log reduction of total Mycobacteria and M. tuberculosis complex achieved by each WWTP.

.9 .
8 20, S 20-
3 8
S R
$ 157 % 1.5
o~ .
s =
b

- o -
5 10 5 1.0
5 n £
B 0.5 . N S 0.5- . A
S B .
i | = =+ Pl =
1=
o 0.0 oo " §’ 0.0-
3 v

& & & &€&

Figure 3. Log reduction of M. tuberculosis and M. africanum achieved by each WWTP.

has shown the presence of different species of Mycobacterium in SA of Mycobacterium. The prevalence of M. tuberculosis in untreated waste-
wastewater in varying abundance. The presence of mycobacteria known water was between 75%-100% and M. africanum ranged from 25%-50%
to cause tuberculosis infections in humans was considerably lower than (Figure 1). Comparing the two species, the prevalence of M. tuberculosis
the total mycobacteria, which is expected as it is comprising of all species in this study correlates with the high prevalence reported in clinical
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Figure 4. Log reduction of M. bovis and M. caprae achieved by each WWTP.

studies conducted in KZN (Mzembe, 2020; Naidoo et al., 2018; Brown
et al., 2019). M. caprae and M. bovis was prevalent in 100% of the un-
treated wastewater from WWTP A and WWTP B and 75% of untreated
wastewater for WWTP C, for M. bovis. Although M. bovis and M. caprae
are mainly known as causative agents of TB in animals, reports of human
TB caused by these mycobacteria have been published (Prodinger et al.,
2014; Lan et al., 2016). Bhembe, and Green (2020) reported via molec-
ular analysis of sputum samples that 8.7% of 184 TB patients were
infected with M. caprae. Therefore, the presence of this mycobacterium in
the wastewater could be due to the excretion in feces of both infected
humans and animals. One of the significant findings is the detection of
M. africanum in wastewater within South Africa. This organism consists
of two phylogenetically distinct lineages, the M. africanum West African 1
(MAF1) and M. africanum West African 2 (MAF2) (Gagneux et al., 2006).
M. africanum is endemic to West Africa and is known to cause up to half of
the human TB in that region (De Jong et al., 2010). Therefore, the
detection of M. africanum in wastewater from South Africa potentially
indicates that some of the TB infections within the country could be
caused by M. africanum. A study in the mid-2000s reported M. africanum
as not the major cause of tuberculosis in Cape Town, South Africa
(Demers et al., 2010), which is supported by the findings in the Eastern
Cape province of South Africa, where about 2.2% of TB infections were
determined to be caused by M. africanum (Bhembe, and Green, 2020).
The detection of these organisms could be due to the migration of people
from West African countries into South Africa, thereby leading to the
potential spread of the mycobacteria within the South African popula-
tion. The detection of the various tuberculosis-causing mycobacteria,
most especially M. africanum, in the untreated wastewater shows the
potential for molecular surveillance of these organisms in wastewater
contributing to WBE. Lorenzo and Pico (2019) proposed that this
approach can become an early warning system for outbreaks of disease
and a unique tool for the identification of hotspots for pandemics. The
usefulness of WBE has already been exhibited with the current studies in
relation to COVID-19 infections, where several countries, such Australia
(Ahmed et al., 2020), the Netherlands (Naughton et al., 2021), USA
(Gonzalez et al., 2020), France (Barcelo, 2020) and South Africa (Pillay
et al., 2021) have established national WBE systems. Therefore, the re-
sults obtained in this study further advocates this approach in com-
plementing the existing surveillance systems for TB infections.

The concentration of the mycobacteria analyzed varied both by
WWTP and by organism. However, it was observed that total mycobac-
teria and MTBC concentrations were largely within the 4-log;¢ concen-
trations per ml of wastewater. Comparatively, the concentrations
recorded in our study for total mycobacteria or MTBC were higher than
the results published by Radomski et al. (2011). In the referenced study,
mycobacteria concentrations of up to 2.7 (+2.6) log;o copies/mL in un-
treated wastewater were reported. However, it is worth mentioning that
Radomski et al. (2011) focused on non-tuberculosis mycobacteria
(NTM). These are also known as environmental mycobacteria, consisting
of more than 150 species, and are globally ubiquitous in both natural and

man-made environments (Nishiuchi et al., 2017; Tortoli, 2014; Cai and
Zhang, 2013, 2014). The higher concentrations determined in this study
could potentially be attributed to higher infection numbers in connected
populations. The high concentrations observed in WWTP A for all spe-
cies, could be attributed to the hospital sewage that the WWTP receives.
WWTP A receives wastewater from 17 clinics which could represent a
highly concentrated sewage compared to the other two WWTPs,
regardless of the volume received daily.

The high concentration of the mycobacteria in the treated wastewater
(up to 4 logl0) could be due to resistant nature of these organisms to
environmental conditions and predators. For example, tuberculosis-
causing bacteria have been reported to be amoeba-resistant which may
enhance their survival in the environment, especially wastewater
(Ghodbane and Drancourt, 2013). M. tuberculosis and M. bovis could
survive for hours to days in the amoebal trophozoites (Hagedorn et al.,
2009; Mardare et al., 2013). The finding that M. tuberculosis and M. bovis
organisms were engulfed by Acanthamoeba polyphaga trophozoites was
consistent with previous findings made when M. tuberculosis organisms
were co-cultured with the free-living amoeba Dictyostelium discodium
(Medie et al., 2011; Butler et al., 2020). Additionally, the higher con-
centrations observed in this could be due to the use of ddPCR platform for
quantification of these microbes as against the qualitative PCR (qPCR)
technique used by Radomski et al. (2011). The ddPCR platform has been
reported to be more sensitive, accurate and less affected by PCR in-
hibitors, compared to qPCR (Racki et al., 2014; Jahne et al., 2020).
Furthermore, it is worth noting that detection of these organisms via PCR
does not indicate viability. Therefore, the concentrations detected could
be from both live and dead mycobacteria.

The percentage of treated wastewater samples with these organisms
was lower than the untreated samples (Figure 1). This could be attributed
to the reduction achieved by the wastewater treatment processes. The log
reductions of the mycobacteria achieved by the three WWTPs varied,
perhaps due to differences in treatment configuration or performance.
However, it was observed that each WWTP achieved highest removal for
at least one member of MTBC. For instance, the highest log removal for
total mycobacteria was WWTP C, WWTP A achieved the highest removal
of MTBC and WWTP B had the highest removal of M. tuberculosis. These
WWTPs have different treatment processes or configurations, for
instance WWTP A has four processes i.e primary settling, biofilters,
sludge digestion and tertiary treatment (Table 1). In contrast WWTP B
has three processes: extended aeration, secondary clarification, and a
tertiary treatment process, usually involving chlorination. Therefore, the
WWTPs had different treatment processes/steps. This indicates that
despite differences in the treatment configuration for these WWTPs,
there was no difference in their effectiveness in removing these myco-
bacteria. Therefore, the removal of mycobacteria could potentially be
due to other factors apart from the WWTP configuration. These factors
could include the attachment of the mycobacteria cells to solids in the
wastewater and capacity of these cells to form biofilms due to the hy-
drophobic nature of these organisms (Loret, and Dumoutier, 2019; Cao
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etal., 2019; Jing et al., 2018). Additionally, the operational conditions of
the WWTPs could have influenced the reduction achieved. For instance,
sub-optimal performance of the WWTPs could potentially result in a less
efficient treatment process, thereby resulting the detection of the bacteria
in the treated wastewater. Hruska and Kaevska (2012) observed that as of
2012 there were no internationally accepted legal directives on how to
control the public health risk associated with environmental mycobac-
teria. Therefore, the detection of potentially human pathogenic myco-
bacteria, like M. tuberculosis and M. africanum and potentially zoonotic
species like M. bovis and M. caprae in the treated wastewater could
potentially cause public health issues. However, it must be noted that
detection of these organisms via DNA-based PCR does not necessarily
indicate the presence of infectious pathogens. Furthermore, it is worth
noting that the presence of extracellular DNA in wastewater has been
reported (Yuan et al., 2019; Zhang et al., 2019; Slipko et al., 2019; Cal-
deron-Franco et al., 2021). These extracellular DNA could have also
contributed to the concentration of the mycobacteria in the treated
wastewater. However, several studies have reported the deactivation or
removal of extracellular DNA using different methods, such as chlori-
nation, UV (Zhang et al., 2019; Augsburger et al., 2019). Therefore, the
concentrations reported in the effluents could be from dead mycobacteria
or extracellular DNA, however it is important to pay attention to their
presence in the final effluents since a proportion of the concentrations
reported could still be viable, posing significant health risks.

4.1. Limitations of the study and remarks on further work

Although this study detected members of MTBC in both untreated and
treated wastewater, the presence of these organisms may not necessarily
translate to tuberculosis infections. Studies on the viability and infec-
tivity of these organisms isolated from wastewater are essential. Also,
longitudinal studies to assess the presence of these organisms over a
period time are warranted. The detection of these organisms in higher
concentration in both untreated and treated wastewater does highlight
the need for further studies on the possibilities of health implication from
the exposure to untreated wastewater and surface water that may be
contaminated with wastewater.

5. Conclusion and recommendations

This study was successful in the application of molecular techniques
for the detection of total mycobacteria, members of M. tuberculosis
complex in total, M. tuberculosis, M. africanum, M. bovis and M. caprae in
untreated and treated wastewater. Detection of these tuberculosis-
causing mycobacteria in wastewater could potentially provide insight
into infection epidemiology in the connected sewershed, provide infor-
mation on potential infection risks and help in assessing the efficiency of
wastewater treatment plants in removing these organisms. The detection
of M. africanum in wastewater within South Africa shows the likelihood
that some of the TB infections reported in the region could be caused by
this bacterium, which is largely reported to be endemic in Western Af-
rican countries. Furthermore, the detection of M. caprae indicates po-
tential zoonotic infections with this mycobacterium as has been reported
in some clinical studies. The findings, therefore, make a significant
contribution towards the adoption of wastewater-based epidemiology as
a cost-effective tool for TB surveillance.

It was also observed that the reduction in mycobacteria concentra-
tions in wastewater could be due to other factors apart from the WWTP
configuration; this is based on the observation that the reduction ach-
ieved by the different WWTPs was not statistically significant. For
instance, the WWTP operational parameters could have potentially
impacted on the log reductions observed. Additionally, each WWTP re-
ported highest log reductions for at least one mycobacteria. The detection
of potentially human pathogenic species of mycobacteria, such as
M. tuberculosis and M. africanum highlights the potential health risks for
populations that may be exposed to either the treated or the untreated
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wastewater. However, it must be mentioned that PCR data does not
differentiate between viable or non-viable bacteria, therefore future
studies should focus on determining the viability and infectivity of these
bacteria in the treated wastewater. This will provide additional infor-
mation necessary for decision-making with respect to risk reduction
strategies.
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