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Simple Summary: A considerable number of diabetic patients are in favour of using oral antidiabetic
drugs in combination with certain herbs instead of using oral antidiabetic drugs alone. Artemisia
judaica (AJ) is one of the herbs documented to have antidiabetic effects. This study examined the effect
of using combination of A. judaica extract (AJE) and the oral hypoglycemic drug glyburide (GLB,
5 mg/kg) on diabetic rats. Fasting blood glucose (FBG), insulin levels, glycated hemoglobin (HbA1c)
percentage, serum lipid profile, and oxidative stress biomarkers were estimated. The histopathologi-
cal examination of the pancreas and the immunohistochemical analysis of anti-insulin, anti-glucagon,
and anti-somatostatin protein expressions were also performed. The analysis of the hepatic mRNA
expression of peroxisome proliferator-activated receptor α (PPAR-α) and nuclear factor erythroid
2-related factor-2 (Nrf2) genes was performed using quantitative reverse transcription-polymerase
chain reaction (qRT-PCR). Combination of GLB and 500 mg/kg of AJE highly improved FBG, insulin
levels, HbA1c, and lipid profile in blood when compared with GLB monotherapy. Furthermore,
GLB plus 500 mg/kg of AJE combination was the most successful in restoring insulin content in the
β-cells and diminished the levels of glucagon and somatostatin of the α- and δ-endocrine cells in the
pancreatic islets, restoring PPAR-α and Nrf2 mRNA expression in the liver. In conclusion, these data
indicate that GLB plus 500 mg/kg of AJE combination gives greater glycemic improvement than
GLB monotherapy.

Abstract: Several members of the genus Artemisia are used in both Western and African traditional
medicine for the control of diabetes. A considerable number of diabetic patients switch to using
oral antidiabetic drugs in combination with certain herbs instead of using oral antidiabetic drugs
alone. This study examined the effect of Artemisia judaica extract (AJE) on the antidiabetic activity of
glyburide (GLB) in streptozotocin (STZ)-induced diabetes. Forty-two male Wistar rats were divided
into seven equal groups. Normal rats of the first group were treated with the vehicle. The diabetic rats
in the second–fifth groups received vehicle, GLB (5 mg/kg), AJE low dose (250 mg/kg), and AJE high
dose (500 mg/kg), respectively. Groups sixth–seventh were treated with combinations of GLB plus
the lower dose of AJE and GLB plus the higher dose of AJE, respectively. All administrations were
done orally for eight weeks. Fasting blood glucose (FBG) and insulin levels, glycated hemoglobin
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(HbA1c) percentage, serum lipid profile, and biomarkers of oxidative stress were estimated. The
histopathological examination of the pancreas and the immunohistochemical analysis of anti-insulin,
anti-glucagon, and anti-somatostatin protein expressions were also performed. The analysis of the
hepatic mRNA expression of PPAR-α and Nrf2 genes were performed using quantitative RT-PCR.
All treatments significantly lowered FBG levels when compared with the STZ-control group with the
highest percentage reduction exhibited by the GLB plus AJE high dose combination. This combination
highly improved insulin levels, HbA1c, and lipid profile in blood of diabetic rats compared to GLB
monotherapy. In addition, all medicaments restored insulin content in the β-cells and diminished
the levels of glucagon and somatostatin of the α- and δ-endocrine cells in the pancreatic islets.
Furthermore, the GLB plus AJE high dose combination was the most successful in restoring PPAR-α
and Nrf2 mRNA expression in the liver. In conclusion, these data indicate that the GLB plus AJE high
dose combination gives greater glycemic improvement in male Wistar rats than GLB monotherapy.

Keywords: Artemisia judaica; streptozotocin; glyburide; PPAR-α; rats

1. Introduction

Diabetes is a metabolic disorder multifaceted by impaired carbohydrates, fat, and
protein metabolism due to the lack of insulin secretion and/or increased tissue resistance
to insulin. Based on the World Health Organization (WHO) statistics, the number of
global diabetic patients is expected to approach 366 million by 2030 [1]. Protocols for the
treatment of diabetes depend on the use of insulin and other oral hypoglycemic drugs such
as biguanides, sulphonylureas, α-glycosidase inhibitors, and amylin analogues, which, at
higher doses, result in adverse effects ranging from diarrhea, lactic acidosis, liver problems,
and hypoglycemia [2]. Many herbal medicines are also recommended for the management
of high glucose blood level. It is declared that up to 72.8% of diabetic people use herbal
remedies for their effectiveness, fewer adverse effects, and the relative lower cost [3]. Many
of the medicinal plants are thought to have significant antidiabetic benefits and have been
used in the treatment of diabetes [4,5]. The leaves of the olive plant (Olea europaea L.) have
been used for centuries in folk medicine to manage diabetes [6]. Momordica charantia, also
referred to as bitter melon, is commonly used as a traditional treatment for diabetes in Asia,
Africa, and South America [7].

Members of the genus Artemisia belonging to the family Asteraceae are generally
small herbs and/or shrubs with more than 480 species [8]. Many of Artemisia species have
been well studied concerning the treatment of diabetes [9–11] and several members of
the genus are used in both Western and African traditional medicine for the control of
diabetes [12]. Moreover, some species of the genus possess diverse biological activities
such as anti-inflammatory, antioxidant, antimalarial, antibacterial, and antiseptic [13]. AJ
(Shih Baladi) is an aromatic plant widely distributed in Sinai Peninsula, Jordan, Palestine,
and Saudi Arabia [14]. It is used in the Arabian Gulf folk medicine to manage numer-
ous disorders, including diabetes, and for treating parasites infestation [15–17]. Further,
Jordanian Bedouins are using plant infusion for the control of both diabetes and sexual
dysfunction [18]. The hypoglycemic effect of AJE was traced to the eudesmanolid, vulgarin,
and its isomer epivulgarin [19].

Several patients with diabetes are recognized to use medicinal plants with antidiabetic
characteristics in addition to oral antidiabetic drugs. Concurrent use of these plants and
oral antidiabetic drugs may lead to interactions with each other, resulting in drug–herb
interactions. For instance, St. John’s wort extract was found to inhibit the Cytochrome
P450 family 2 subfamily C member 9 (CYP2C9) and Cytochrome P450 family 3 subfamily
A member 4 (CYP3A4), and the conventional antidiabetics such as glibenclamide and
rosiglitazone are substrates of CYP2C9, whereas pioglitazone and repaglinide are sub-
strates of CYP3A4. Therefore, diabetic patients receiving these combinations should be
carefully monitored for possible signs of reduced efficacy [20]. Another example of possible
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herb–drug interaction is the increased efficacy when using Karela or Momordica charantia
fruit extract together with metformin or glibenclamide, allowing for reduced doses of
metformin [21]. In this investigation, the outcomes of using GLB plus AJE were evaluated
and compared with the antidiabetic efficacy of GLB monotherapy.

2. Materials and Methods
2.1. Plant Material and Extraction

The total ethanol extract of authenticated samples of AJ was quantified for the ac-
tive sesquiterpenes vulgarin and epivulgarin as described earlier [22,23] and used in the
current study.

2.2. Experimental Animals

Healthy adult male albino Wistar rats (250 ± 10 g), in-house bred at the Animal
House Colony of the National Research Centre (NRC), Egypt were procured for the study.
All animals were kept in polypropylene cages under standard environmental conditions
(temperature 25 ± 2 ◦C, relative humidity 55 ± 10% and 12:12 light:dark cycle) and food
and water were freely accessible to them. The experimental protocol complied with the
National Institutes of Health Guide lines and was approved by the Institutional Animal
Care and Use Committee, Cairo University (approval no.: CU-II-F-86-18).

2.3. Induction of Experimental Diabetes

Rats were fasted overnight before intraperitoneal injection of STZ dissolved in 0.1 M
citrate buffer (pH 4.5) (Sigma-Aldrich Corp, St. Louis, MO, USA) at a dose of 60 mg/kg
body weight to induce diabetes [24]. Control rats were administered only citrate buffer.
Rats with blood glucose level >250 mg/dL measured by Accu-Chek Performa blood glucose
meter (Roche Diagnostic, Germany) after three days from STZ injection in blood samples
collected from the tail vein by were assigned as diabetic and included in the study.

2.4. Experimental Design

Diabetic and non-diabetic rats were randomly arranged into seven groups (n = 6) and
received the following treatments: Group I: Non-diabetic control (NC) + the vehicle (3%
Tween 80), Group II: STZ control + the vehicle, Group III: STZ + GLB (5 mg/kg), Group IV:
STZ + AJE at 250 mg/kg (AJE-250), Group V: STZ + AJE at 500 mg/kg (AJE-500), Group VI:
STZ + GLB (5 mg/kg) + AJE-250, and Group VII: STZ + GLB (5 mg/kg) + AJE-500. GLB
and AJE were administered as suspension in 3% Tween 80. GLB and AJE were given orally,
once daily using an oral tube for eight successive weeks. The animals’ body weights were
recorded at the start of the study (0-time), at the end of weeks 2, 4, and 8.

2.5. Estimation of Biochemical Parameters

Blood samples were collected into sampling tubes through retro-orbital venous plexus
from pentobarbital sodium (35 mg/kg, ip) anesthetized rats fasted overnight at week 0 and
the ends of the 2nd, 4th, and 8th weeks of treatment. Blood samples were centrifuged for
20 min at 5000 rpm to separate the sera.

2.5.1. Effect on Blood Glucose and Insulin Levels

Both FBG and insulin levels in serum were estimated in the collected samples using
the commercially available Spinreact ELISA kits (Spain) and Cobas ELISA kits (Belgium)
following the manufacturer’s manual, respectively.

2.5.2. Effect on Total Hemoglobin and Glycosylated Hemoglobin Levels

Other blood samples were similarly collected from each animal at the end of the
experiment (after 8 weeks of the medication period) into tubes containing ethylenediamine
tetraacetic acid (EDTA) as an anticoagulant for the assessment of both total hemoglobin
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(Hb) and glycosylated hemoglobin (HbA1c) with the aid of commercially available kits
(QCA, Spain).

2.5.3. Effect on Blood Lipid Profile

The blood samples obtained at the end of the 8th week of treatments were used to
assess the lipid profile. Levels of triglycerides (TGs), total cholesterol (TC), and high
density lipoprotein cholesterol (HDL-C) were determined in serum spectrophotometrically
using commercially available kits. Low density lipoprotein (LDL-C) concentrations were
estimated according to the following formula given by Friedewald et al. [25] as follows:
LDL-C = TC − [HDL-C + TG/5)] where TG/5 is equivalent to the amount of very low-
density lipoprotein (VLDL)-cholesterol.

2.6. Tissue Collection

At the end of the experiment and after blood collection, rats were euthanized via
cervical decapitation. Liver, kidney, and pancreas tissue samples were removed, carefully
washed in ice-cold saline, and stored at −80 ◦C until the time of analysis.

2.7. Effect on Oxidative Stress and Lipid Peroxidation (LPO) Markers

Pancreas tissues in 0.1 M Tris-HCl (pH 7.4) were separately homogenized and then
centrifuged for 10 min at 1700 rpm. The obtained supernatants were preserved at −80 ◦C
and used for biochemical assessments. The levels of innate antioxidant enzymes as glu-
tathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), as well as the
reduced glutathione (GSH) and malondialdehyde (MDA) levels were determined using
Biodiagnostic assay kits (Egypt) following the manufacturer’s instructions.

2.8. Histopathological Investigation of Pancreas

Pieces of pancreatic tissues from all groups were separately collected and fixed in
10% neutral buffered formalin for 24 h and used for obtaining 3–4 µm paraffin embedding
sections, following the methods described by Abdel-Rahman et al. [26].

2.9. Immunohistochemical Analysis

The immunohistochemical investigation of the insulin expression in the pancreatic
islets of the different experimental groups was done according to the methods described
by Abdel-Rahman et al. [27] and Khamis et al. [28]. Firstly, the tissue sections were
deparaffinized, rehydrated, and antigenically retrieved by methods described by Abu-
Elala et al. [29]. Secondly, tissue sections were incubated with mouse monoclonal insulin
(Sc-8033; Santa Cruz Biotechnology, Inc.; Dallas, TX, USA) at a dilution of 1:100, mouse
monoclonal anti-glucagon antibody (MABN238; Millipore) at a dilution of 1:8000, and
rat monoclonal anti-somatostatin antibody (MAB354; Millipore) at a dilution of 1:100 for
overnight, followed by adding the blocking solution to block the endogenous peroxidase
activity. The tissue sections were incubated with a sheep anti-mouse antibody (AQ300D;
Millipore) and goat anti-rat antibody (AP136P; Millipore) for 10 min; then, sections were
incubated with streptavidin peroxidase (Thermo Fisher Scientific; Waltham, MA, USA).
At the end, tissue sections were incubated with 3,3′-diaminobenzidine tetrahydrochloride
(DAB; Sigma) for 10 min to visualize the reaction. In each field, the immune-positive areas
were analyzed by using image analysis software (Image J, version 1.46a, NIH, Bethesda,
MD, USA) in 7 microscopic high-power fields (X400). Calculation of the percentage of
positive stained area (%) was done. The morphometric analysis of the pancreatic islet cells
composition was accomplished to estimate the percent of insulin positive β-cells/total
islets area, as well as α-cell/total islet area % and δ-cell/total islet area %, according to the
approach stated by Abdel-Rahman et al. [24].
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2.10. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) Analysis

Total RNA was extracted from frozen liver tissue samples using a TRIzol RNA Isolation
Reagent (Invitrogen) and then quantified by a NanoDrop 2000 spectrophotometer. Real-
time RT-PCR reactions were carried out by using RNA samples templates, and the condition
used for the RT-PCR reaction was: 50 ◦C for 5 min for cDNA synthesis, 95 ◦C for 2 min, then
40 cycles of 95 ◦C for 15 s, 55 ◦C for 15 s and 72 ◦C for 20 s. The amplification curves were
specific primers for PPAR-α and Nrf2 genes, and One-Step SYBR GreenER Kit (Invitrogen).
The thermal analyzed by a software (QIAGEN) to obtain the Ct values of target genes and
β-actin (reference gene). The relative mRNA expression of each gene was calculated as fold
change of the negative control after normalization to β-actin expression [30]. The primer
sequences are presented in Table 1.

Table 1. Oligonucleotide primer sequences.

Gene Primer Sequence (5′-3′) Accession no.

PPAR-α
Forward TTCGGAAACTGCAGACCT

NM_013196.1Reverse TTAGGAACTCTCGGGTGAT

Nrf2
Forward CACATCCAGACAGACACCAGT

XM_006234398.3Reverse CTACAAATGGGAATGTCTCTGC

β actin
Forward ATGGTGGGTATGGGTCAG

NM_031144.3Reverse CAATGCCGTGTTCAATGG

2.11. Statistical Analysis

Data are presented as mean ± SEM. The obtained data were statistically evaluated by
one-way ANOVA as well as Tukey’s multiple comparison post hoc test using GraphPad
Prism; version 5.0 (GraphPad Software, Inc., San Diego, CA, USA). Data were considered
statistically significant when p ≤ 0.05.

3. Results
3.1. Effect on Body Weight

Changes in the body weights of the control and experimental rats are displayed in
Table 2. A significant reduction in the body weights of STZ-control animals was observed
until the end of the study (8 weeks’ treatment) when compared with treated groups. By
the end of the study period, 12.02% reduction in body weight was recorded in the diabetic
untreated group. GLB, AJE-250, AJE-500, and GLB plus AJE-250 reversed the STZ-mediated
body weight reduction after 2, 4, and 8 weeks of medications. At the end of 8 weeks of
treatment, GLB caused an increase in body weight by 28.34%. Similarly, AJE-250, AJE-500,
and GLB plus AJ-250 caused increases in body weight by 29.12%, 34.25%, and 32.73%
respectively. AJ-250, AJE-500, and GLB plus AJE-250 did not result in any change in body
weight in comparison with the GLB-treated group. The combination of GLB and AJE-500
exhibited a superior effect on the percentage of weight gain of STZ-control animals at the
end of the 2nd until the end of the 8th week of treatment. At these times, the combination
increased the body weights of diabetic rats by 11.45%, 29.14%, and 44.64%, respectively.
Interestingly, GLB plus AJE-500 combination therapy normalized the body weight of
STZ-diabetic animals after 4 weeks of treatment.

3.2. Effect on Blood Glucose Levels

The levels of FBG in the control and experimental groups are depicted in Table 3. At
baseline, the vehicle and other medication groups were matched with respect to the FBG
level. However, STZ-control rats showed increased FBG concentrations when compared to
NC rats, which remained significantly (p ≤ 0.05) elevated until the end of the experiment.
Following 2, 4, and 8 weeks of GLB treatment, diabetic rats showed significantly (p ≤ 0.05)
reduced FBG levels (186.2 ± 6.53, 169.2 ± 8.62, and 135.3 ± 7.43 mg/dL, respectively) in
comparison with STZ-control rats (352.2 ± 9.58, 337.8 ± 16.47, and 326.5 ± 16.52 mg/dL,
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respectively). The antidiabetic effects of AJE-250, AJE-500, and GLB plus AJE-250 were
comparable to that of GLB. Maximum reductions in FBG level of AJE-250 (57.81%), AJE-500
(65.93%), and GLB plus AJE-250 (63.37%) treated groups were observed on week 8. Impor-
tantly, GLB plus AJE-500 treatment induced more statistically significant reduction in the
FBG level of diabetic rats when compared with those exposed to GLB alone. Furthermore,
GLB plus AJE-500 allowed to restore the FBG levels in diabetic rats to normal values
(112.6 ± 8.62 and 96.62 ± 6.52 mg/dL) after 4 and 8 weeks of treatment, respectively.

Table 2. Effect of GLB, AJE, and their combination on body weights of STZ-diabetic rats.

Treatment Groups
% of Body Weight Gain (g)

2 Weeks 4 Weeks 8 Weeks

NC 13.65 ± 0.88 33.96 ± 1.82 49.84 ± 2.93

STZ-control −2.90 ± 0.18 • −7.15 ± 0.31 • −12.02 ± 0.47 •
STZ + GLB 7.16 ± 0.41 •# 14.71 ± 0.96 •# 28.34 ± 2.11 •#

STZ + AJE-250 7.35 ± 0.43 •# 15.72 ± 0.97 •# 29.12 ± 1.98 •#
STZ + AJE-500 8.52 ± 0.75 •# 18.17 ± 1.74 •# 34.25 ± 1.75 •#

STZ + GLB + AJE-250 7.86 ± 0.55 •# 17.51 ± 1.47 •# 32.73 ± 1.95 •#
STZ + GLB + AJE-500 9.45 ± 0.76 •#Φ 29.14 ± 1.73 #Φ 44.64 ± 2.82 #Φ

Data presented as mean ± SEM (n = 6). • Statistically significant difference from the NC group at p ≤ 0.05.
# Statistically significant difference from the STZ-control group at p ≤ 0.05. Φ Statistically significant difference
from GLB group at p ≤ 0.05. Multiple group comparisons were done by analysis of variance (ANOVA) and
Tukey’s multiple comparison post hoc tests.

Table 3. Effect of GLB, AJE, and their combination on serum levels of FBG in STZ-diabetic rats.

Treatment
Groups

FBG (mg/dL)

0-Time 2 Weeks 4 Weeks 8 Weeks

M ± SEM M ± SEM % M ± SEM % M ± SEM %

NC 96.3 ± 5.43 94.5 ± 4.67 −1.87 95.7 ± 6.97 −0.62 94.4 ± 5.70 −1.97

STZ-control 349.2 ± 7.57 • 352.2 ± 9.58 • 0.86 347.8 ± 16.47 • −0.40 340.5 ± 16.52 • −2.49

STZ + GLB 347.1 ± 5.08 • 186.2 ± 6.53 •# −46.36 169.2 ± 8.62 •# −51.25 135.3 ± 7.43 •# −61.02

STZ + AJE-250 339.4 ± 9.87 • 194.7 ± 9.20 •# −42.63 175.3 ± 8.50 •# −48.35 143.2 ± 8.11 •# −57.81

STZ + AJE-500 347.8 ± 8.97 • 176.5 ± 8.18 •# −49.25 152.1 ± 7.1 7•# −56.27 118.5 ± 7.92 •# −65.93

STZ + GLB +
AJE-250 345.9 ± 7.66 • 179.6 ± 8.22 •# −48.08 161.3 ± 8.50 •# −53.37 126.7 ± 6.37 •# −63.37

STZ + GLB +
AJE-500 358.5 ± 6.98 • 157.5 ± 6.49 •#Φ −56.07 112.6 ± 8.62 #Φ −68.59 96.62 ± 6.52 #Φ −73.05

Data presented as mean ± SEM (n = 6). • Statistically significant difference from the NC group at p ≤ 0.05. # Statistically significant
difference from the STZ-control group at p ≤ 0.05. Φ Statistically significant difference from GLB group at p ≤ 0.05. Multiple group
comparisons were done by analysis of variance (ANOVA) and Tukey’s multiple comparison post hoc tests.

3.3. Effect on Blood Insulin Levels

As noted in Table 4, the serum levels of insulin in STZ-control group at the end of
the second, fourth, and eighth week of the medication period were significantly reduced
(3.4 ± 0.10, 3.6 ± 0.28, and 3.5 ± 0.27 U/L, respectively), compared with the NC group
(7.3 ± 0.48, 7.4 ± 0.57, and 7.2 ± 0.48 U/L, respectively). However, treatment of diabetic
rats with GLB for 2, 4, and 8 weeks significantly increased serum insulin levels (3.9 ± 0.11,
4.7 ± 0.32 and 5.2 ± 0.36 U/L, respectively) in comparison to the STZ-control group.
Additionally, there were no significant variations in the serum level of insulin between
diabetic animals treated with AJE-250, AJE-500, and GLB + AJE-250 and those treated with
GLB monotherapy. The STZ-diabetic group treated with GLB and AJE-250 together did
not reach statistical significance change in insulin level to enable a comparison with the
GLB-treated group. However, a statistically significant variation was noticed in favor of
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the combination of GLB and AJE-500 by the end of weeks 2, 4, and 8 of treatment. The
obtained results showed the highest serum insulin level in the STZ-diabetic group which
received the combination of GLB and AJE-500 after 4 and 8 weeks of medication. At
these periods, the blood insulin levels of the GLB plus AJE-500 treated group (5.9 ± 0.29
and 6.5 ± 0.41 U/L, respectively) are comparable with those of NC rats (7.4 ± 0.57 and
7.2 ± 0.48 U/L, respectively).

Table 4. Effect of GLB, AJE, and their combination on serum levels of insulin in STZ-diabetic rats.

Treatment
Groups

Insulin (U/L)

0-Time 2 Weeks 4 Weeks 8 Weeks

M ± SEM M ± SEM % M ± SEM % M ± SEM %

NC 7.5 ± 0.34 7.3 ± 0.48 −2.67 7.4 ± 0.57 −1.33 7.2 ± 0.48 −4.00

STZ-control 3.8 ± 0.26 • 3.4 ± 0.10 • −10.53 3.6 ± 0.28 • −5.26 3.5 ± 0.27 • −7.89

STZ + GLB 3.5 ± 0.18 • 3.9 ± 0.11 •# 11.43 4.7 ± 0.32 •# 34.29 5.2 ± 0.36 •# 48.57

STZ + AJE-250 3.5 ± 0.25 • 3.8 ± 0.10 •# 8.57 4.5 ± 0.25 •# 28.57 5.0 ± 0.30 •# 42.86

STZ + AJE-500 3.4 ± 0.20 • 4.2 ± 0.28 •# 23.53 5.3 ± 0.32 •# 55.88 5.9 ± 0.33 •# 73.53

STZ + GLB +
AJE-250 3.6 ± 0.17 • 4.0 ± 0.23 •# 21.21 4.8 ± 0.31 •# 45.45 5.3 ± 0.39 •# 60.61

STZ + GLB +
AJE-500 3.5 ± 0.21 • 4.6 ± 0.25 •#Φ 31.43 5.9 ± 0.29 #Φ 68.57 6.5 ± 0.41 #Φ 85.71

Data presented as mean ± SEM (n = 6). • Statistically significant difference from the NC group at p ≤ 0.05. # Statistically significant
difference from the STZ-control group at p ≤ 0.05. Φ Statistically significant difference from GLB group at p ≤ 0.05. Multiple group
comparisons were done by analysis of variance (ANOVA) and Tukey’s multiple comparison post hoc tests.

3.4. Effect on Total Hemoglobin and Glycosylated Hemoglobin Levels

Table 5 depicts the levels of total hemoglobin and the percentages of HbA1c in blood
of different groups of animals after 8 weeks of the medication period. The level of total
hemoglobin was markedly decreased, while difference percentage of HbA1c was signifi-
cantly increased in STZ-control rats in comparison to difference NC group. Administration
of GLB, AJE-250, AJE-500, and GLB plus AJE-250 blocked the above alterations and signif-
icantly (p ≤ 0.05) improved the level of total hemoglobin and the percentages of HbA1c
towards normal levels. The concomitant administration of GLB and AJE-500 exhibited
significant improvement in the blood level of Hb and percentage of HbA1c, compared to
the GLB-treated group, and almost normalized their values.

Table 5. Effect of GLB, AJE, and their combination on blood levels of total Hb and HbA1c in
STZ-diabetic rats after 8 weeks of the medication period.

Treatment Groups Total Hemoglobin (mg/dL) HbA1c (%)

NC 14.4 ± 0.64 3.9 ± 0.21

STZ-control 9.7 ± 0.36 • 8.5 ± 0.36 •
STZ + GLB 11.1 ± 0.48 •# 6.3 ± 0.48 •#

STZ + AJE-250 11.4 ± 0.57 •# 6.7 ± 0.30 •#
STZ + AJE-500 12.3 ± 0.62 •# 5.0 ± 0.42 •#

STZ + GLB + AJE-250 12.0 ± 0.60 •# 5.5 ± 0.29 •#
STZ + GLB + AJE-500 13.6 ± 0.65 #Φ 4.5 ± 0.32 #Φ

Data presented as mean ± SEM (n = 6). • Statistically significant difference from the NC group at p ≤ 0.05.
# Statistically significant difference from the STZ-control group at p ≤ 0.05. Φ Statistically significant difference
from GLB group at p ≤ 0.05. Multiple group comparisons were done by analysis of variance (ANOVA) and
Tukey’s multiple comparison post hoc tests.
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3.5. Effect on Serum Lipid Profile

Serum lipid profiles in different groups after 8 weeks of the medication period are
described in Table 6. In difference STZ-control group, there were significant elevations
in TGs (49.3 ± 2.55 mg/dL) and TC (66.2 ± 1.32 mg/dL) compared to the non-diabetic
group (27.7 ± 0.97 mg/dL and 46.5 ± 1.27 mg/dL, respectively). Administration of
AJE (250 and 500 mg/kg) to diabetic rats significantly decreased their serum levels of
TGs and TC, compared to the STZ-control group. Furthermore, the GLB plus AJE-250
combination significantly decreased TGs and TC in diabetic rats. The effects of AJ extracts
and GLB plus AJE-250 combination were comparable to those of GLB monotherapy. On
the other hand, serum levels of HDL-C were significantly decreased in difference STZ-
control group in comparison with the NC group. Administration of GLB, AJE-250, and
AJE-500 markedly elevated the serum level of HDL-C, in comparison with the STZ-control
group. The STZ-control rats exhibited marked elevations in LDL-C and VLDL-C levels,
in comparison with NC rats. The diabetic rats treated with GLB, AJE-250, and AJE-500
showed significantly decreased LDL-C and VLDL-C levels, in comparison with the STZ-
control group. Furthermore, marked ameliorations were noticed in the lipid profile in the
diabetic group exposed to the combination of GLB and AJE-500. Administration of the GLB
and AJE-500 combination to diabetic animals tended to improve TG, TC, HDL-C, LDL-C,
and VLDL-C levels to their normal values.

Table 6. Effect of GLB, AJE, and their combination on lipid profile in blood of STZ-diabetic rats after 8 weeks of the
medication period.

Treatment Groups TGs
(mg/dL)

TC
(mg/dL)

HDL-C
(mg/dL)

LDL-C
(mg/dL)

VLDL
(mg/dL)

NC 27.7 ± 0.97 44.5 ± 2.27 24.6 ± 0.74 14.4 ± 1.15 5.5 ± 0.28

STZ-control 49.3 ± 2.55 • 66.2 ± 1.32 • 14.5 ± 0.75 • 41.8 ± 1.26 • 9.9 ± 0.45 •
STZ + GLB 40.2 ± 1.37 •# 59.2 ± 1.72 •# 17.1 ± 0.63 •# 34.1 ± 2.97 •# 8.0 ± 0.41 •#

STZ + AJE-250 42.4 ± 1.42 •# 60.6 ± 2.14 •# 16.9 ± 0.48 •# 35.2 ± 1.58 •# 8.5 ± 0.42 •#
STZ + AJE-500 36.4 ± 1.55 •# 52.6 ± 2.61 •# 19.2 ± 0.75 •# 26.1 ± 2.50 •# 7.3 ± 0.36 •#

STZ + GLB + AJE-250 37.5 ± 1.17 •# 54.1 ± 2.27 •# 18.9 ± 0.76 •# 27.7 ± 1.96 •# 7.5 ± 0.39 •#
STZ + GLB + AJE-500 33.5 ± 2.58 #Φ 49.5 ± 1.65 #Φ 23.7 ± 0.65 #Φ 19.1 ± 1.89 #Φ 6.7 ± 0.30 #Φ

Data presented as mean ± SEM (n = 6). • Statistically significant difference from the NC group at p ≤ 0.05. # Statistically significant
difference from the STZ-control group at p ≤ 0.05. Φ Statistically significant difference from GLB group at p ≤ 0.05. Multiple group
comparisons were done by analysis of variance (ANOVA) and Tukey’s multiple comparison post hoc tests.

3.6. Effect on Oxidative Stress and Lipid Peroxidation Markers

Table 7 explains the impact of GLB and AJE on the oxidative stress and LPO biomarkers
in the pancreatic tissues of control and experimental groups. The pancreatic tissues of the
STZ-control group displayed a significant decrease in SOD, GPx, CAT, and GSH contents
along with an elevation in MDA content when compared against the NC group. Upon oral
dosing of GLB, AJE-250, AJE-500, or GLB plus AJE, there were marked elevations in the
levels of SOD, GPx, CAT, and GSH in pancreatic homogenates of animals in comparison
with STZ-control rats. Additionally, MDA levels were significantly (p ≤ 0.05) reduced in
response to these treatments as compared against the STZ-control group. Interestingly, the
GLB and AJE-500 combination restored the activities of the antioxidant enzymes and the
MDA contents in pancreatic homogenates of diabetic rats compared with GLB-treated rats,
and nearly normalized their levels.
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Table 7. Effect of GLB, AJE, and their combination on oxidative stress and LPO parameters in pancreatic tissues of
STZ-diabetic rats.

Treatment Groups SOD
(U/mg protein)

GPx
(U/mg protein)

CAT
(U/mg protein)

GSH
(µmol/g tissue)

MDA
(nmol/g tissue)

NC 57.6 ± 3.20 6.8 ± 0.55 11.4 ± 0.15 9.7 ± 0.52 26.5 ± 1.76

STZ-control 21.5 ± 1.63 • 2.2 ± 0.14 • 5.1 ± 0.31 • 3.8 ± 0.20 • 47.4 ± 3.17 •
STZ + GLB 30.6 ± 2.87 •# 3.7 ± 0.30 •# 7.0 ± 0.52 •# 5.7 ± 0.47 •# 38.2 ± 2.55 •#

STZ + AJE-250 33.5 ± 2.23 •# 3.8 ± 0.25 •# 7.3 ± 0.41 •# 6.3 ± 0.49 •# 37.3 ± 2.27 •#
STZ + AJE-500 40.6 ± 3.71 •# 4.9 ± 0.47 •# 8.3 ± 0.42 •# 7.4 ± 0.66 •# 32.4 ± 1.57 •#

STZ + GLB + AJE-250 36.2 ± 2.73 •# 4.7 ± 0.38 •# 7.9 ± 0.55 •# 7.0 ± 0.52 •# 35.2 ± 2.61 •#
STZ + GLB + AJE-500 49.5 ± 3.24 #Φ 5.5 ± 0.36 #Φ 10.2 ± 0.72 #Φ 8.5 ± 0.57 #Φ 30.7 ± 2.13 #Φ

Data presented as mean ± SEM (n = 6). • Statistically significant difference from the NC group at p ≤ 0.05. # Statistically significant
difference from the STZ-control group at p ≤ 0.05. Φ Statistically significant difference from GLB group at p ≤ 0.05. Multiple group
comparisons were done by analysis of variance (ANOVA) and Tukey’s multiple comparison post hoc tests.

3.7. Histopathological Investigation of Pancreas

The NC group showed an almost normal pancreatic architecture, as the islets of
Langerhans appeared with a central core of β-cells and peripheral mantle of α- and δ-cells
(Figure 1a). However, the STZ treated group revealed a massive reduction in the number
of β-cells of the islets of Langerhans with the appearance of apoptotic and necrosed cells.
Papillary hyperplasia of the epithelial lining and severe dilatation of pancreatic duct were
also recorded. The STZ + GLB- and STZ + AJE-250-treated groups showed moderate
apoptosis and necrosis of β-cells (Figure 1c,d). The group treated with both STZ + AJE-500
and STZ + GLB + AJE-250 showed moderate improvement in the number of β-cells with
less deterioration in the texture of the islets of Langerhans (Figure 1e,f). The groups treated
with STZ + GLB + AJE-500 revealed a marked hypertrophy of the islets of Langerhans with
an elevation in the β-cell number with the maintenance of the islet morphology. The STZ
+ GLB + AJE-500 treated group was considered the group that was improved the most
(Figure 1g).

3.8. Immunohistochemical Analysis of Insulin, Glucagon, and Somatostatin

Figures 2–4 summarize the results of the content of pancreatic islets for insulin,
glucagon, and somatostatin in the different treated groups. The NC group revealed a
strongly immune-positive insulin reaction which was located in β-cells in most of the pan-
creatic islets (Figure 2a). Glucagon immune-positive reaction was observed in α-cells that
were found in the peripheral area of the pancreatic islet (Figure 3a). Somatostatin immune-
positive reaction was localized in δ-cells forming an incomplete circle in the pancreatic islets
(Figure 4a). The STZ-control group showed a significant reduction in the insulin content of
β-cells (Figure 2b), β-cell/total islet area compared to the NC group, a significant elevation
of both glucagon and somatostatin contents in pancreatic islets (Figures 3b and 4b), as well
as α-cell/total islet area % and δ-cell/total islet area %. On the other hand, the groups
treated with GLB, AJE-250, AJE-500, GLB + AJE-250, and GLB + AJE-500 showed a signif-
icant elevation in the insulin contents of the β-cells, β-cell/total islet area (Figure 2c–h),
a significant reduction of glucagon, somatostatin contents, α-cell/total islet area % and
δ-cell/total islet area % in comparison to the STZ-control group (Figures 3 and 4c–h). No
significance difference was observed between the GLB + AJE-500 group and the NC group.
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tion of the islet. (c) STZ + GLB and (d) STZ + AJE-250 showing increase in the number of β-cells with necrosis (arrow) and 
vacuolation of some cells. (e) STZ + AJE-500 and (f) STZ + GLB + AJE-250 showing moderate improvement of the β-cells 
with individual cell necrosis (arrow). (g) STZ + GLB + AJE-500 group showing single cell necrosis of β-cells (arrow); scale 
bar, 25 µm. 
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Figure 1. The histopathological photomicrographs of the pancreases. (a) NC group showing normal β-cells (arrow) (b) STZ-
control group showing marked decrease in the number (circle), necrosis (arrow) and apoptosis of β-cells, and distortion
of the islet. (c) STZ + GLB and (d) STZ + AJE-250 showing increase in the number of β-cells with necrosis (arrow) and
vacuolation of some cells. (e) STZ + AJE-500 and (f) STZ + GLB + AJE-250 showing moderate improvement of the β-cells
with individual cell necrosis (arrow). (g) STZ + GLB + AJE-500 group showing single cell necrosis of β-cells (arrow); scale
bar, 25 µm.
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500 group, (f) STZ + GLB + AJE-250, and (g) STZ + GLB + AJE-500 group. Scale bar, 25 µm. (h) Bar chart represents the 
insulin content of β-cells %. (i) β-cell/total islet area %. Data are presented as the mean ± SEM (n = 7). ● Statistically signif-
icant difference from the NC group at p ≤ 0.05. # Statistically significant difference from the STZ-control group at p ≤ 0.05. 
Փ Statistically significant difference from the GLB group at p ≤ 0.05. 

Figure 2. Representative insulin immunohistochemistry in β-cells (arrows) of the pancreatic islets of the different experi-
mental groups: (a) NC group, (b) STZ-control group, (c) STZ + GLB-treated group, (d) STZ + AJE-250, (e) STZ + AJE-500
group, (f) STZ + GLB + AJE-250, and (g) STZ + GLB + AJE-500 group. Scale bar, 25 µm. (h) Bar chart represents the insulin
content of β-cells %. (i) β-cell/total islet area %. Data are presented as the mean ± SEM (n = 7). • Statistically significant
difference from the NC group at p ≤ 0.05. # Statistically significant difference from the STZ-control group at p ≤ 0.05.
Φ Statistically significant difference from the GLB group at p ≤ 0.05.
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Figure 3. Represented glucagon immunohistochemistry in α-cells (arrows) of the pancreatic islets of the different experi-
mental groups: (a) NC group, (b) STZ-control group, (c) STZ + GLB-treated group, (d) STZ + AJE-250, (e) STZ + AJE-500 
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Figure 3. Represented glucagon immunohistochemistry in α-cells (arrows) of the pancreatic islets of the different experi-
mental groups: (a) NC group, (b) STZ-control group, (c) STZ + GLB-treated group, (d) STZ + AJE-250, (e) STZ + AJE-500
group, (f) STZ + GLB + AJE-250, and (g) STZ + GLB + AJE-500 group; scale bar, 25 µm. (h) Bar chart represents the glucagon
content of α-cells %. (i) α- cell/total islet area %. Data are presented as the mean ± SEM (n = 7). • Statistically significant
difference from the NC group at p ≤ 0.05. # Statistically significant difference from the STZ-control group at p ≤ 0.05.
Φ Statistically significant difference from the GLB group at p ≤ 0.05.

3.9. Real Time-PCR for Hepatic Gene Expression Analysis

The current work was executed to recognize how GLB and AJE treatments, as either
monotherapy or combined therapy, could regulate hepatic expression of the two transcrip-
tional factors PPARα and Nrf-2 and to explore the possible regulatory link between the
two factors to mediate the antidiabetic, antisteatotic, and antioxidant action of the sug-
gested treatments. Based on the RT-PCR results, a decreased expressional level of PPARα
was observed in the liver tissue of STZ-control rats as compared with the NC group. Fol-
lowing AJE administration at 250 and 500 mg/kg and GLB at 5 mg/kg to rats for 8 weeks,
hepatic PPARα mRNA expression was significantly augmented when compared to the
STZ-control group (Figure 5A). Furthermore, a downregulation of Nrf-2 was shown in the
liver tissues of STZ-control rats compared to that in the NC rats. In contrast, Nrf-2 was
overexpressed by the anti-oxidative effect of two doses of AJE (250 and 500 mg/kg), also in
the GLB-treated group compared to the STZ-control group. Remarkably, a combination
of AJE (250 and 500 mg/kg) with GLB exhibited a more efficient anti-oxidative action
demonstrated by significant upregulation of gene expression of Nrf-2 compared to diabetic
animals and the values in monotherapy groups (Figure 5B).
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Figure 5. Effect of GLB, AJE, and their combination on hepatic mRNA expression of PPARα (A) and Nrf-2 (B) in STZ-diabetic
groups. Data presented as mean ± SEM (n = 6) relative to the mRNA level in the NC and after being normalized to β-actin
mRNA level. Multiple group comparisons were performed by analysis of variance (ANOVA) followed by Tukey’s multiple
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4. Discussion

Diabetes was induced in experimental animals following intraperitoneal injection of
STZ (60 mg/kg) to monitor the possible drug–herb interaction by difference combined
administration of GLB and AJE in STZ-diabetic rats in comparison with GLB monotherapy.

STZ-induced diabetes is usually accompanied by an intense reduction in body
weight [31]. The body weight reduction in diabetic animals might be a result of tissue
protein degeneration and muscle wasting [32]. In our investigation, STZ-control rats gained
less body weight all over the experimental period as compared to non-diabetic animals.
Importantly, the beneficial impact of the GLB plus AJE-500 therapy on body weight of
diabetic animals was more effectual than the GLB monotherapy. This combination therapy
improved the weight of diabetic animals to values that are similar to those of NC animals.
The efficiency of the combination of GLB and AJE-500 to conserve body weight in diabetic
animals might be explained by the high ability to control hyperglycemia.

The blood concentrations of glucose and insulin express the glycemic state of diabetic
patients. In the present investigation, the STZ-control group revealed high concentration
of blood glucose and low level of serum insulin in comparison to the normal animals.
Administration of GLB to diabetic rats lowered the FBG and elevated the serum level of
insulin compared with STZ-control animals. However, FBG and insulin levels have not
returned to normal values. The GLB hypoglycemic effect is produced via the stimulation
of β-cells to release insulin and the suppression of glucagon secretion [33]. Hence, the
presence of a considerable mass of β-cells able to secrete insulin is necessary for GLB to act.
The insulin level in the group of diabetic rats indicated that some β-cells are intact and able
to synthesize and secrete insulin. FBG and serum insulin levels were comparable among the
GLB, AJE-250, AJE-500, and GLB plus AJE-250 groups. Furthermore, the obtained results
indicated the additive effect of the combination between GLB and AJE-500 since the levels
of FBG and insulin in diabetic rats were not normalized by the single treatment of GLB or
AJE-500 alone. The combination of GLB and AJE-500 was the most efficacious in reducing
the elevated blood glucose and restoring the insulin levels all over the experimental period.
Administration of the GLB and AJE-500 combination resulted in stable levels of FBG and
serum insulin within the normal physiological ranges. Interestingly, the advantageous
impact on glycemic control observed for the GLB plus AJE-500 combination occurred
without any observed increase danger of hypoglycemia.

Several studies have reported that the hypoglycemic effects of Artemisia plants were
comparable with those of the standard antidiabetic medications repaglinide, insulin, met-
formin, and GLB [2,34–36]. Confirming the outcomes of previous investigations, the
treatment of diabetic animals with some plants of Artemisia species (A. sieberi, A. pallens
and A. judaica) induced a marked decrease in FBG [15,37,38]. The antidiabetic variations
between GLB and AJE may be due to the presence of active components in the extract. Phy-
tochemical screening of the AJE yielded flavonoids, saponins, terpenes, and tannins [39].
Flavonoids inhibit cAMP phosphodiesterase, which is a modulator of insulin secretion [15].
Furthermore, Nazaruk and Borzym-Kluczyk [40] mentioned that terpenoids from A. turan-
ica exerted an antidiabetic effect via the improvement of insulin release from the β-cells
as well as lowering of the cellular resistance to insulin. Different mechanisms of action
have been mentioned in the literature to describe the potential effect of Artemisia plants as
antidiabetics. Aggarwal et al. [41] proposed that the antidiabetic mechanism of Artemisia
plants might be due to improving the function of β-cells and restoring pancreatic islets.
Another study considered the improvement of the carbohydrate metabolism dysfunction
associated with diabetes as another possible mechanism for antidiabetic action of some
Artemisia plants [42]. Interestingly, Bhat et al. [17] reported that AJE modulates serum
glucose levels by inhibiting the key blood sugar modulating enzymes, namely: α-amylase,
α-glucosidase and dipeptidyl peptidase IV. Vulgarin from AJE reported to have oral hy-
poglycemic effect [19]. Furthermore, the significant anti-hyperglycemic activity of AJE
may be due to the existence of the two isomers of thujone and represents about 3.2% of
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the essential oil collectively [43]. Thujone can increase the free insulin-stimulated glucose
transporter by activation of the adenosine monophosphate-activated protein kinase [36].

Glycated hemoglobin (HbA1c) is considered as a distinguished marker of glycemic
condition of diabetic patients. STZ-control rats showed marked reduction in Hb level and
significant increase in HbA1c percentage as a reflection of poor glycemic control. The rate
of Hb glycosylation gives an indication about the blood glucose level. GLB, AJE-250, AJE-
500, and the combination of GLB and AJE-250 markedly decreased HbA1c percentages in
comparison with the STZ-control group. Furthermore, the Hb level and HbA1c percentage
were successfully controlled in animals treated with the GLB and AJE-500 combination over
that recorded in the GLB-treated group. By the end of the study, both Hb level and HbA1c
percentage were returned to normal values following GLB plus AJE-500 administration.
GLB, AJE, and their combinations versus Hb glycation were, in diminution order, of GLB +
AJE-500 > AJE-500 > GLB + AJE-250 > GLB > AJE-250. This beneficial result reflects the
effectiveness in controlling diabetes by the GLB and AJE-500 combination. Additionally,
the results suggest that the combination might be efficacious for the long-term management
of diabetes.

Diabetes complications include abnormalities in lipid metabolism manifested by in-
creasing levels of blood TC, LDL-C, and VLDL-C as well as decreased HDL-C [44]. In this
respect, Bhowmik et al. [45] demonstrated that diabetic dyslipidemia comprises a triad of
elevated LDL-C/HDL-C ratio in addition to hypertriglyceridemia. Normally, TGs are hy-
drolyzed by lipoprotein lipase enzyme (LLE) that is stimulated by insulin. However, in case
of diabetes, LLE is not stimulated due to an insulin insufficiency that results in increased
synthesis of TGs by the liver and a disproportion in the liberation and rate of clearance of
VLDL-C by LLE [46]. Thus, TGs are usually used as indicators of intracellular aggregation
of lipids [47]. Consistent with this, the results of the present study showed significantly
higher levels of TGs, TC, and VLDL-C and reduced HDL-C levels in the STZ-control group
compared to non-diabetic rats. The elevated level of TGs in the STZ–control group observed
in the present investigation may be due to a shortage of insulin [48]. Furthermore, dosing of
GLB, AJE-250, and AJE-500 to diabetic rats produced significant reductions in their serum
levels of TGs, TC, and VLDL-C, as well as elevated HDL-C levels. The ameliorative effect
of GLB, AJE-250, and AJE-500 on the blood lipoprotein profile of diabetic rats may be due
to a rise in insulin release. The reduced TC and elevated HDL-C levels after AJE treatment
are remarkable, as it has been stated that the majority of drugs used in the management of
hypercholesterolaemia decrease both TC and HDL-C levels [49]. In concurrence with other
studies, plants of Artemisia species exhibited a noticeable hypolipidemic effect and inverted
the lipid profile changes in diabetic animals [50,51]. The antihyperlipidemic activity of
AJE may be attributed to vulgarin, flavonoids, and polyphenols via the stimulation of
pancreatic insulin secretion, augmentation of glucose oxidation, and increase in the lipid
synthesis pathway [51]. Interestingly, the combination of GLB and AJE-500 had a preferable
impact on regulating serum lipids than GLB. This combination was able to reduce the
levels of TGs, TC, LDL-C, and VLDL-C, but elevated the levels of HDL-C in diabetic rats to
normal levels that may be indicative of the powerful antidiabetic activity induced by the
combination of GLB and AJE-500. This effect might be attributed to an increased secretion
of pancreatic insulin that stimulates fatty acid synthesis and accumulation of fatty acids
into hepatic TG and adipose tissue.

In this study, we also examined the role of GLB, AJE, and their combination in the
protection of diabetic rats against oxidative stress. Oxidative stress induced by excess
reactive oxygen species (ROS) and decreased antioxidant capacity is considered a key
agent in the progression of diabetes [52]. ROS are under strict control of the endogenous
antioxidant defense mechanisms that include both enzymatic and non-enzymatic pathways.
Enzymatic antioxidants include superoxide dismutase (SOD), glutathione peroxidase (GPx),
and catalase (CAT) enzymes. GSH is a non-enzymatic antioxidant found in most forms of
aerobic life and plays an important function in keeping cellular antioxidant capacity. Some
reports have proposed that oxidative stress is a usual pathogenic agent for the dysfunction
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of the pancreatic β-cells [53]. Pancreatic β-cells are especially susceptible to ROS, because
they are low in antioxidant enzymes [54,55]. Thus, the capability of the oxidative stress to
injure mitochondria and suppress insulin release is not surprising [56].

In the present study, the reduced activities of the antioxidant enzymes in the pancreatic
tissues of STZ-control animals indicate that their pancreatic tissues were under oxidative
stress. Further, reduced tissue content of GSH has been considered as a marker of oxidative
stress [57]. The present results demonstrated that the pancreatic content of GSH was
significantly reduced in the STZ-control group. However, GLB, AJE-250, and AJE-500
medications markedly elevated SOD, GPx, CAT, and GSH accompanied by reduced MDA
contents in the pancreatic tissue, demonstrating their capability to protect against oxidative
stress in diabetic animals. The significant role of GLB and AJE against decreased antioxidant
enzymes activities and GSH depletion in STZ-diabetic animals may be attributed to their
antihyperglycemic effect.

The protective effect of GLB plus AJE-500 against the pancreatic oxidative stress
of diabetic animals was higher than that recorded in rats that received GLB alone. The
combination enhanced the pancreatic content of the antioxidant enzymes and GSH in
diabetic animals to near-normal values. Further, administration of GLB plus AJE-500 for
8 weeks has markedly normalized the disturbed pancreatic content of MDA in diabetic
animals. These effects indicate that the GLB plus AJE-500 combination has a synergistic
activity against oxidative stress and LPO in pancreatic tissues of STZ-control animals.
Restoring the levels of the antioxidant enzymes and MDA in the pancreatic homogenates
may protect β-cells against ROS and LPO.

Since the GLB plus AJE-500 combination induced further improvement in the antioxi-
dant activity than that induced by GLB or AJE alone, it is proposed that AJE may be acting
by a different mechanism than that of GLB. Phytochemical analysis of AJ demonstrated
that it is a large source of total polyphenols [17]. Other reports have mentioned a potent
correlation between total phenolic contents of the plants and their antioxidant activities [58].
Accordingly, the antioxidant activity of AJ may be attributed to its total polyphenol content.

Accumulating scientific evidence reported that the abnormal accumulation of TG in
the diabetic liver is due to the simultaneous activation of lipogenesis and gluconeogenesis
that lead to excessive lipid production [45]. PPARα, a transcriptional factor predominantly
expressed in the liver, plays key role in maintaining lipid homeostasis through regulation
of various enzymes in the lipid and glucose metabolism [59]. It has been reported that
PPARα expression is downregulated under diabetic stress in both human and animal mod-
els [60,61]. Activation of PPARα has been shown to improve lipid and glucose metabolism
in diabetes by reducing hyperglycemia and increasing insulin sensitivity. Hence, PPARα
activators could alleviate liver injuries during diabetic pathogenesis and other metabolic
dysfunction associated disorders [60,62].

To further elucidate the mechanism underlying the observed antihyperlipidemic effect
of AJE, GLB, and their combination, the current study examined the hepatic expression
levels of PPARα. In line with previous studies, we reported that PPARα expression level
decreased in the liver tissue of STZ-control diabetic animals [60]. Interestingly, the current
study demonstrates that AJE upregulated the mRNA expression of PPARα in the liver of
diabetic rats (Figure 5A), suggesting that AJE directly increased PPARα transcriptional
activity. The improving effects of PPARα on lipid metabolism may explain our finding that
PPARα activation modulated the STZ-induced dyslipidemia.

Activation of β-oxidation of fatty acids is mediated thru PPARα, and further has
the prospect to trigger redox-sensitive pathways involved in cyto-defense such as Nrf2
pathway. Therefore, the crosstalk between PPARα and Nrf2 has been proposed to act
as a vital role in regulating the stress response [63]. The findings of the present study
support this previous evidence. Nrf2 acts as a central regulator of the cellular redox po-
tential by regulating the transcription of various endogenous antioxidant and detoxify
enzymes [64,65]. In normal cells, Nrf2 is kept in the cytoplasm via its binding to Kelch-like
ECH-associated protein 1 (Keap1) which also contributes to Nrf2 degradation by ubiq-
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uitination. Under stressed conditions, the Keap1 system is disrupted by the excessively
produced ROS. This disruption allows Nrf2 translocation to the nucleus, in which Nrf2
binds antioxidant response elements (AREs) in the promoter region of several antioxidant
genes, initiating their transcription [66]. Several studies have showed that uncontrolled
diabetes significantly reduced Nrf2 expression levels in different tissues, where activa-
tion of the Nrf2 signaling pathway prevents the development of diabetes and diabetic
complications [67–69]. In line with previous reports, the obtained results revealed that
Nrf2 transcriptional level was downregulated in the hepatic tissues of rats in response to
STZ-induced diabetes (Figure 5B). AJE administration effectively prevented Nrf2 down-
regulation in the liver compared to STZ-control. We previously reported that AJE exhibited
a protective effect against diabetes-induced testicular dysfunction by activation of the
Nrf2/HO-1 pathway [23]. Upregulation of Nrf2 and its downstream target antioxidant
genes could contribute to the observed improved liver redox status in AJE and GLB
treated groups.

There are some limitations in the present study. One of the limitations is that we used
the Wistar rat of a certain age and sex. Different strains and model organisms such as
non-human primates, mice, or others may elicit different effectiveness or response profile.
Although the beneficial effect of vulgarin [19] and thujone [36] to lower blood glucose level
were reported, in the current study, their interaction with GLB was not explored. Further
phytochemical studies are in progress to isolate, characterize the active compounds, and
evaluate their possible interaction with oral hypoglycemic drugs.

5. Conclusions

In conclusion, the objective of the study was fulfilled as the herb–drug interactions
were found to be evident and most significant in male diabetic Wistar rats exposed to a GLB
plus AJE-500 combination. Moreover, the present investigation showed that the pathway
mediating the synergy between AJE and GLB includes the up-regulation of liver PPARα
and Nrf2 expression. The results suggest that AJE is one of the therapeutic options for the
medication of diabetic patients who have already undergone GLB therapy. In addition, the
dose or frequency of GLB has to be altered when it is concomitantly administered with
AJE, in order to avoid any unexpected serious acute hypoglycemic shock, as GLB and AJE
were reported to lower blood glucose through different mechanisms.
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