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Background: Coronary artery disease (CAD) exerts a global challenge to public health.
Genetic heritability is one of the most vital contributing factors in the pathophysiology of
CAD. Co-expression network analysis is an applicable and robust method for the
interpretation of biological interaction from microarray data. Previous CAD studies have
focused on peripheral blood samples since the processes of CAD may vary from tissue to
blood. It is therefore necessary to find biomarkers for CAD in heart tissues; their association
also requires further illustration.

Materials and Methods: To filter for causal genes, an analysis of microarray expression
profiles, GSE12504 and GSE22253, was performed with weighted gene co-expression
network analysis (WGCNA). Co-expression modules were constructed after batch effect
removal and data normalization. The results showed that 7 co-expression modules with
8,525 genes and 1,210 differentially expressed genes (DEGs) were identified. Furthermore,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were conducted. Four major pathways in CAD tissue and hub genes were
addressed in the Hybrid Mouse Diversity Panel (HMDP) and Human Protein Atlas (HPA),
and isoproterenol (ISO)/doxycycline (DOX)-induced heart toxicity models were used to
validate the hub genes. Lastly, the hub genes and risk variants were verified in the CAD
cohort and in genome-wide association studies (GWAS).

Results: The results showed that RNF181 and eight other hub genes are perturbed during
CAD in heart tissues. Additionally, the expression of RNF181 was validated using RT-PCR
and immunohistochemistry (IHC) staining in two cardiotoxicity mouse models. The
association was further verified in the CAD patient cohort and in GWAS.

Conclusion: Our findings illustrated for the first time that the E3 ubiquitination ligase
protein RNF181 may serve as a potential biomarker in CAD, but further in vivo validation is
warranted.
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INTRODUCTION

Coronary artery disease (CAD) has been noted as a challenge to
public health faced by most industrialized and developing
countries (Naghavi et al., 2017). Cardiovascular diseases
(CVDs) contribute to one-third of the total deaths in the
overall population (Joseph et al., 2017). According to the
American Heart Association (AHA), in 2021, about 18.2
million (approx. 6.7%) adults (20 years or older) suffered from
CAD; meanwhile, the threat has reached middle-aged patients,
with about 2 in 10 deaths from CAD occurring in adults younger
than 65 years (Virani et al., 2021). The immeasurable cost and
huge burden of fatality are detrimental to the economy and
society.

Vast endeavors have been put into understanding the
pathology of CAD and its therapeutic strategies. For the past
two decades, the discovery of novel targets, effective diagnostics,
and new treatments for CAD has led to an over 50% decrease in
mortality rate in the United States (Yahagi et al., 2016). CAD is a
progressive cardiovascular disease that develops following
atherosclerotic plaque formation or atherosclerotic occlusion
of major arteries in the heart (Fuster et al., 1992). In this
pathological process, fatty acid metabolism, glucose oxidation,
mitochondrial fission, and oxidative stress largely impact the
prognosis of the disease. Strategic treatments in clinical practice
include carnitine palmitoyltransferase-1 (CPT-1) inhibitors
(etomoxir, oxfenicine, etc.), malonyl-CoA inhibitors
(trimetazidine), β-blockers, anti-ischemic agents, and the novel
mitochondrial dynamic modulators, such as the Drp1 inhibitor.
Nevertheless, these drugs have various disadvantages: inhibition
of CPT-1 causes lipotoxicity in the pathological heart, leading to
cardiac exacerbation; malonyl CoA inhibitor impedes the
synthesis of fatty acid, but causes neuronal and cognition side
effects to the brain; Drp1 is able to inhibit mitochondrial fission
under oxidative stress conditions—however, its long-term
effectiveness and safety remain to be discussed. For most
treatments with a β-blocker or an anti-ischemic agent, they
were only symptomatic; thus, further insight into identifying
the risk factor for CAD is required.

The risk of CAD is a mixed consequence of genetic and
lifestyle factors (Khera et al., 2016), such as smoking, physical
inactivity, and a high-lipid diet, and hypertension, diabetes and
obesity, or a family history (Joseph et al., 2017). In addition, the
transcriptional and epigenetic regulation of macrophages and
posttranslational modifications have been reported to be
correlated with this complex disease (Kuznetsova et al., 2020).
For example, the discovery of an abnormality in the
hypermethylated region at HIF3A or the expression level of
JCAD/KIAA1462 was reported to promote CAD (Xu et al.,
2019). So far, the causative relationship of the perturbed genes
in CAD has not been fully illustrated.

One significant contributing factor to CAD is genetic
heritability. About 50% of genetic heritability was reported to
be influential in the progression of CAD (Marenberg et al., 1994;
Won et al., 2015). Advanced microarray and high-throughput
sequencing technology have changed the research of CAD
genetics. Large biobanks or shared data sources now provide

huge amounts of genetic and clinical information to facilitate the
discovery of risk genes. Recently, numerous genome-wide
association study (GWAS) meta-analyses have identified the
risk variant or mutation associated with CAD. In 2015,
Nikpay et al. reported 58 susceptible loci, including rs180803
and rs12976411, that were involved in 185,000 CAD and control
cases (p < 5 × 10−8) (Nikpay et al., 2015). Braenne et al. reported
159 loci, including rs1137524 and rs1060407, that may be single
nucleotide polymorphisms (SNPs) with genome-wide
significance in CAD (Brænne et al., 2015). The GWAS
conducted by the CARDIoGRAMplusC4D Consortium
reported 15 genome-wide significant loci out of 63,746 CAD
cases and 130,681 controls (Deloukas et al., 2013). However, this
only accounted for 10.6% of the total CAD heritability. Given that
most of the locations of the loci or SNP variants identified from
GWAS were outside the protein-coding regions, 40% of the risk
variants were suspected to correlate with CAD, while robust
associations for coding variants were only shown in four
(Genetics et al., 2016). To this end, GWAS linked the
associated locus or SNP to CAD pathogenesis, but further
understanding of CAD heart tissue is needed to interpret the
underlying mechanisms and associated genetic heredity.

Apart from GWAS, there are several other methods for the
interpretation of significant genes and their associations with
clinical traits. Many genetic-based prediction tools with
computation scoring functions, such as the genetic risk score
(GRS), gene set enrichment analysis (GSEA), differential
expression analysis (DEA) and weighted gene co-expression
network analysis (WGCNA), have been developed to facilitate
the analysis of the genetics of CAD, either to estimate the
probability of CAD or prioritize novel risk genes (Ntalla et al.,
2019) based on the gene expression profiles.

WGCNA is a widely used computational method based on the
gene expression profiles and clinical traits. WGCNA outperforms
other analysis methods in detecting correlated gene modules. The
hierarchy clustering function entails module finding, which
consists of highly correlated genes, and identifies gene
module–trait relationship, extracting significant genes from
biologically meaningful modules (Goh et al., 2007; Horvath
and Dong, 2008). WGCNA has been applied to identify
modules and hub genes associated with clinical traits (Zhang
and Horvath, 2005) and then to explore causal genes of diseases
(Zheng et al., 2015; Wang et al., 2017; Jiao et al., 2020). WGCNA
not only avoids the problems of multi-testing inherent in
microarray data analysis but also provides means to bridge the
gap from individual genes to systems oncology. Giulietti et al.
(2018) reported the expression of two long non-coding RNAs
(lncRNAs), LINC00675 and LINC01133, associated with the
development and progression of pancreatic cancer using
WGCNA. Zhou et al. (2018) found that hsa-miR-125b-5p,
hsa-miR-145-5p, hsa-let-7c-5p, hsa-miR-218-5p, and hsa-miR-
125b-2-3p were hub microRNAs (miRNAs) related to the
prognosis of colon cancer. Yet, so far, the causative
relationship between risk genes and CAD has not been fully
illustrated.

This result further concluded the correlation between the
ubiquitin–proteasome system (UPS) molecules and CAD. The

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 8188132

Dang et al. A Systembiology Study

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


significance of UPS molecules, especially E3 ligases, has not been
overwhelmingly discussed. Recent studies have emphasized E3
ligases and their contribution to cardiac diseases in CVD
physiology. Chen et al. (2012) illustrated that the loss of E3
ligase activity promoted the impaired protein degradation in
hypertrophic cardiomyopathy. Xu et al. (2020) reported that
the ubiquitin-conjugating enzyme E2 variant 1 (Ube2v1)
positively regulated protein aggregation by modulating UPS in
cardiomyocytes, partially by enhancing K63 ubiquitination
during a proteotoxic stimulus, supporting the hypothesis that
UPS-mediated proteotoxic intracellular protein aggregation and
degradation may lead to the progression of cardiac disease. From
this point of view, targeting the association between UPS and
CAD may be important in facilitating the understanding of the
underlying mechanism and causal gene identification in CAD.

In this study, WGCNA was conducted in order to identify
causal genes associated with CAD. With module clustering,
pathway enrichment analysis, and cardiotoxicity mouse models,
one E3 ubiquitin ligase gene, RNF181, was identified as the causal
gene for CAD in the genome, messenger RNA (mRNA) and
protein levels. Furthermore, by GWAS meta-analysis, two risk
variants located at the RNF181 locus were identified as associated
with coronary heart disease. Our results revealed for the first time
that RNF181 may be a causal gene for CAD, possibly through
decreasing the degradation of VEGF2mediated by the NEDD4 and
ERK/MAPK signaling pathways. Thus, targeting RNF181might be
beneficial for the treatment of CAD.

MATERIALS AND METHODS

Microarray Data Resources and
Preprocessing
The general workflow chart for this study is shown in
Supplementary Figure S1. A total of 5 expression profiles
from the Gene Expression Omnibus (GEO) database of NCBI,
namely, GSE12504 (Ghorbel et al., 2010), GSE22253, GSE77263,
GSE20681 (Beineke et al., 2012), and GSE49925 (Kim et al.,
2014), were acquired, including expression profiles from CAD
and control heart tissue and peripheral whole blood samples from
human CAD cases. These datasets included the mRNA
expression matrix, probe annotation table, and corresponding
clinical features. Annotation and normalization for gene symbol
and expression values were performed, respectively. The genetic
profiles from the CAD cohort of the PREDICT trial (GSE20681)
were collected to examine the association between causal genes in
patients.

Removal of Batch Effect
Normalization and batch effect removal were done for the
combined dataset with the R package sva (Leek et al., 2012).
The gene expression levels of both datasets were log2
transformed. Normalization was performed to obtain clean
data by removing the background variance between samples.
The proportions of males in both healthy control and CAD
groups were calculated and compared with the pairwise
proportion test in R. Furthermore, genes with an expression
level of the lowest 25% proportion were pruned.

Identification of DEGs
The differentially expressed genes (DEGs) between the groups of
healthy controls and CAD cases were calculated with the limma
package (v3.42.2) (Smyth, 2005). The p-value was adjusted with
the Benjamini–Hochberg (BH) method, and the fold change of all
genes was log2 transformed for normalization of the expression
level. Moreover, the DEGs are shown in a volcano plot
(Supplementary Figure S3A). A total of 1,210 DEGs with
absolute log2FoldChange over 1 and p < 0.05 were identified.

Construction of the Weighted Gene
Co-Expression Network
A co-expression network is a widely used concept in biological
interactions. It allows the interpretation of biological
functionality in a system level. The conception of network
construction is intuitive: some nodes (genes) are connected
and co-expressed as a network across samples.

The most popular analysis pipeline for the construction of a
co-expression network is WGCNA. WGCNA finds clusters of
highly correlated genes (with hierarchical clustering) and
summarizes these clusters by module eigengene (ME) or hub
gene, in a way to liaise with external sample traits and assign
module membership (MM) to genes. The branches of the
hierarchical clustering dendrogram represent the modules and
are refined with the dynamic tree cut method. The resulting gene
clusters are often biologically meaningful. One of the advantages
is that WGCNA losses less information on gene correlations and
avoids the problem of multiple testing.

In WGCNA, a beta parameter is selected as a soft threshold
power (SFT) to construct a co-expression network that achieves a
scale-free connectivity. By adjusting the SFT, a Pearson’s
correlation matrix is established for calculating the pairwise
correlation matrix between genes. Then, to reach a scale-free
connectivity between genes (R2 > 0.85), the Pearson’s correlation
matrix is subsequently transformed to a weighted adjacency

TABLE 1 | Primer sequences for qRT-PCR analysis

Gene Sense Antisense

Mus DKK3 CTCGGGGGTATTTTGCTGTGT TCCTCCTGAGGGTAGTTGAGA
Mus HP GCTATGTGGAGCACTTGGTTC CACCCATTGCTTCTCGTCGTT
Mus NME7 AGATTCGCTTTCATTGCAGAGT GATCCGTCTGTGGGGTAAAAC
Mus OXSM GGGTTATGGACTCTCGGGTGAT TGGAAGTGGCATGTGCGTTGAC
Mus PIGF TCCTTCTTCGTGGACAACTTCT AGAGGACACATTCGGTTTCACTA
Mus RNF181 TTTGAGGACCTGGGATTGGTA TTGGCGCTACTGATGACTGTT
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matrix by setting a series of beta values (Ponsuksili et al., 2013).
Next, a conversion of the weighted adjacency matrix to the
topological overlapping matrix (TOM) is made using the
block-wise module function of WGCNA. Based on the TOM,
gene modules with similar expression patterns are identified with
the hierarchy average lineage clustering in response to the
dissimilarity of genes. For any module, module significance
(MS) is defined as the Pearson’s correlation coefficient
between the ME and CAD traits. The module with the highest
MS is selected as the causal gene module with high association
with the disease condition. Then, the relationship between the
ME of the module and the CAD trait is established to reveal its
significance in CAD (Langfelder and Horvath, 2014).

Pathway Enrichment Analysis With Gene
Ontology and Kyoto Encyclopedia of Gene
and Genomes
For the purpose of exploring the biological function of the
module and hub genes correlated with the CAD phenotype,
we performed Gene Ontology (GO) (Consortium, 2015) and
Kyoto Encyclopedia of Gene and Genomes (KEGG) (Kanehisa
et al., 2016) analyses with the R package clusterProfiler (Yu et al.,
2012). To describe gene functions, the enriched terms were
assigned into three GO categories: biological process (BP),
cellular component (CC), and molecular function (MF).
KEGG pathway enrichment analysis was performed to
determine the significant KEGG pathway terms enriched by
genes (Kanehisa and Goto, 2000). Each term was calculated
with a p-value using Fisher’s exact test, with a significance
level of p < 0.05.

PPI and Hub Gene Identification
In the study, the turquoise module was analyzed. Furthermore,
the protein–protein interactions (PPIs) between the hub genes
were queried from the STRING database and a cutoff threshold of
the combined score >0.4 (as default) was set. Genes with
intramodular gene significance (GS) over 0.3 and MM over 0.8
were defined as having robust correlation. For hub gene
identification, overlapping genes with GO/KEGG enriched
pathways or DEGs for the significant module were often
considered as hub genes.

Animals
The Animal Ethics Committee of Nankai University approved
the protocol of in vivo studies. C57BL/6J wild-type mice were
purchased from Vital River Laboratory Animal Technology Co.,
Ltd. (Beijing, China). These animals were placed in the animal
center of Nankai University in Tianjin, China, under specific
pathogen-free conditions and had free access to water and food.
All animal experiments were conducted in accordance with the
ARRIVE guidelines and in accordance with the National
Institutes of Health Guidelines for the Care and Use of
Laboratory Animals (NIH publication no. 8023, revised in
1978).

DOX/ISO-Induced Cardiotoxicity Mouse
Experiment
Eight-week-old male C57BL/6 mice were assigned into a control
group and a doxycycline (DOX) group (3 per group). The
following treatments were given: mice in the control group
were fed with normal diet and injected with normal saline
once a week, a total of 4 times; mice in the DOX group were
fed with normal diet, and DOX was injected intraperitoneally at
5 mg/kg per body weight, once a week for four times in total. Four
weeks after treatment initiation, mice in both groups were
sacrificed and heart tissue samples were collected.

For the isoproterenol (ISO) group, 8-week-old male C57BL/6
mice in both control and ISO group (3 mice/group) received
similar procedures, except for the subcutaneous (s.c.) injection
with saline or ISO at 3 mg/kg per body weight daily for 18 days.

Echocardiography and Electrocardiogram
Tests
The operation procedures for the echocardiography and
electrocardiogram (ECG) have been described in a previous
study (Feng et al., 2021).

Real-Time Quantitative Polymerase Chain
Reaction
Heart tissue total RNA of the sacrificed mice was collected from
the control, DOX, and ISO groups using the RNA extraction and
purification kit as per the manufacturer’s protocol.
Complementary DNA (cDNA) was synthesized by reverse
transcription with the same amount of total RNA in each
group (Ma et al., 2018), followed by quantitative real-time
PCR (qRT-PCR) with the SYBR green PCR master mix
purchased from Vazyme (Nanjing, China). The sequences of
the primer templates are listed inTable 1. The expression levels of
mRNAs, such as DKK3, HP, NME7, OSXM, PIGF, and RNF181,
were normalized with the level of GAPDH.

Hematoxylin–Eosin and
Immunohistochemistry Staining
Heart tissues were collected from sacrificed mice of the control,
DOX, and ISO groups, fixed in 4% paraformaldehyde for 24 h,
and embedded in paraffin. After preparation, hematoxylin–eosin
(HE) and immunohistochemistry (IHC) stainings were
performed on paraffin-embedded 5-µm heart sections. The
epitopes of the slices were extracted in 10 mmol/L citric acid
buffer and heated at pH 7.2 in a microwave. The slides were then
incubated with mouse rnf181 primary antibody overnight at 4 C
and incubation performed with a horseradish peroxidase (HRP)
binding secondary antibody for 1 h at room temperature. The
substrate diaminophenyl guanidine (DAB) was used to detect the
antibody, and the slides were counterstained with hematoxylin.
Immunostained areas of the IHC stains were evaluated and
positive ratios were used for statistical analysis.
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GWAS Meta-Analysis
A total of 9 GWAS results were included. Results from the large
CAD population-wise studies CARDIoGRAMplusC4D (Nikpay
et al., 2015; Schunkert et al., 2011; Peden et al., 2011; Deloukas
et al., 2013; Nelson et al., 2017), the Framingham Heart Study
100K Project (Larson et al., 2007), Bivariate Genome-Wide
Association Scan (Siewert and Voight, 2018), and the CAD
data in the UK Biobank (Fall et al., 2018) were included in
our study. SNP variants located near the chromosome region of
RNF181were analyzed. The prognostic value of each SNP in CAD
groups was quantified using inverse variance weighted effect size
(meta-analysis method implemented in METASOFT software,
http://genetics.cs.ucla.edu/meta/) (Han and Eskin, 2011).

Statistical Analysis
Values are represented as the mean ± SEM. All assays were done in
triplicate independently. Initially, all data were analyzed with the
software GraphPad Prism. The workflow of the bioinformatics
analyses, including WGCNA and DEGs, was performed with R
version 3.6.0. The default statistics tests and cutoff values were
specified in the corresponding sections in Materials and Methods.
The statistical significance between the two groups of experimental
data was assessed with the Student’s t-test. The linear relationship
between the gene expression levels was evaluated with Pearson’s
correlation coefficient. A significant difference was considered at the
following levels of p-values: *p < 0.05; **p < 0.01; ***p < 0.001 (n ≥ 3).

RESULTS

Defining of a List of Marker Genes
Associated With CAD Implicated by GWAS
and the Literature
In this study, we focused on the hub genes and the risk factors for
CAD in heart tissue with in-depth insight. We began by
generating a list of marker genes located within the CAD risk
loci from GWAS and the literature. The keywords “coronary
artery disease” and “risk gene” were searched in the literature and
158 risk gene loci were collected (Supplementary Table S1-1). As
another source of risk genes, 182 independent associations with a
cutoff threshold of p < 5.0 × 10−8 for CAD identified by GWAS
meta-analysis were used from the 1000 Genomes Project
(discovery and replication cohort with an enrolled population
of ~185,000; Supplementary Table S1-2) (Nikpay et al., 2015).
For each of the 15 non-redundant lead GWAS SNPs, all RefSeq
genes located within or overlapped with the region of the risk loci
defined by linkage disequilibrium (LD) (r2 ≥ 0.7) were included.
The resulting CAD marker gene list contained 231 genes
(Supplementary Table S1-3). Each association contained
reported gene loci ranging from 1 to 16, with an average of
4.5 ± 4.7. The CAD marker gene list was enriched for GO terms
such as “triglyceride homeostasis” (p = 1.7 × 10−5), “lipoprotein
metabolic process” (p = 4.3 × 10−7), “vascular endothelial growth
factor receptor signaling pathway” (p = 3.5 × 10−5), and
“angiogenesis” (p = 5.7 × 10−4) (list shown in Supplementary

Table S1-4), suggesting that it may actually contain causal genes
associated with CAD.

WGCNA Identifying Gene Modules From the
Expression Profiles of Heart Tissues From
CAD Patients
Firstly, a total of 50 heart tissue samples, including 20 CAD cases
and 30 healthy controls from GSE12504 and GSE22253,
respectively, were used to perform WGCNA. Implementation of
quality controls is essential to prevent batch effects in different
sequencing datasets. Thus, batch effect was removed with the
package sva, as shown in Supplementary Figure S2. The batch
effect variation analysis results showed that the sample-wise mean
and p-value of variance were 0.472 and 0.7246, respectively.
Sample-wise skewness p-values were also calculated, with a
value of 0.3656 suggesting batch effect has been removed.

After data preprocessing, the expression profiles of 13,081
genes were gathered from the 50 samples. The DEGs between the
CAD cases and healthy controls were analyzed with the limma
package; the result showed that 1,210 DEGs were identified
(Supplementary Figure S3A). Subsequently, WGCNA was
performed for cluster analysis, and the quality of the dataset
was evaluated with the flashClust function by sample clustering.
A hierarchal clustering tree for all 50 samples in both groups was
included (Figure 1A), based on which, all samples were included
from the current study. With sample clustering, the 50 samples
were assigned into two clusters: one containing 20 CAD samples
and another containing 30 healthy controls.

After pruning low expression genes, a total of 8,525 genes in
the 50 samples were included to construct the co-expression
network using WGCNA. An appropriate soft thresholding power
of 12 was set for the balance between the scale independence and
mean connectivity between genes. Thus, a scale independence
equal to 0.85 was achieved (Supplementary Figure S3B). As a
result, the hierarchical clustering tree showed 7 co-expressed gene
modules identified for further analysis (Figure 1B, genes not
assigned to any module are shown in gray).

A TOM was built, based on which the independence among
the 7 co-expression modules was analyzed. The results showed no
significant overlap between module genes (Figure 1C), which
suggested that a higher content of MM was achieved. The
modules with the highest coefficient of correlation emerged as
having the most significance in CAD. Eachmodule was ranked by
the correlation coefficient values to the CAD status.

Measurement of Module–CAD Associations
and Functional Enrichment Analysis for the
Causal Gene Module
To quantify the module–clinical feature associations, the
eigengene expression dendrogram and eigengene versus clinical
feature adjacency heatmap were constructed (Figure 1D). Seven
co-expression modules with gene number ranging from 29 to
2,599 were identified (Figure 2A). Firstly, for the 7 co-expression
modules, connectivity and cluster analysis was performed. The
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degree of association was assessed between the eigengene and
CAD traits, and the corresponding GS was deemed as the
correlation between each gene and traits. The arithmetical
mean GS of all genes in a module was regarded as MS. For

each module, the MS represents the association between its genes
and CAD. The module–trait correlation heatmap showed the
turquoise module as the most associated with the features of
CAD, with a correlation coefficient of 0.732 (Figure 2B). Thus,

FIGURE 1 | Identification of significant modules in coronary artery disease (CAD) heart tissue with weighted gene co-expression network analysis (WGCNA). (A)
Sample dendrogram and clinical trait heatmap. Fifty samples were clustered according to clinical traits, such as gender, batch, age, and CAD status. Gender: red
denotes male;white, female. Age and batch: discrete values are representedwith color depth positively correlated with each sample. CAD condition: red represents CAD
patients; white represents healthy controls. (B) Cluster dendrogram and gene–trait association heatmap obtained from the transcriptome data of GSE12504 and
GSE22253 with average hierarchical linkage clustering. The color row below the dendrogram denotes the assigned modules allocated by dynamic tree cutting and
merged module function. Blue and red colors represent a negative and a positive correlation between a gene and clinical features, respectively. (C) Eigengene adjacency
heatmap showing extramodular connectivity among all the modules. In the heatmap, each row and column correspond to amodule.Cyan to blue denotes lower module
connection (<0.5); progressively darker red denotes higher connection (≥0.5). Colored squares along the vertical and horizontal sides correspond to modules. (D)
Heatmap showing themodule–trait correlation. Hierarchical clustering of eigengenes represents themodules. Each row denotes the module, while each column denotes
the feature of CAD. Values in the box represent the correlations and corresponding p-values.
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FIGURE 2 | Genes from the turquoise module mainly enriched in metabolic pathways, oxidative phosphorylation, cardiac muscle contraction, and protein
ubiquitination. (A) Gene numbers in all modules. Detailed gene symbols are listed in Supplementary Table S1. (B) Scatter plot showing the gene significance for
coronary artery disease (CAD) versus module membership in the turquoise module (correlation coefficient = 0.732, p = 1.6e−9). (C–E) Histogram showing the Gene
Ontology (GO) enrichment analysis for the genes in the turquoise module. The terms enriched in the category of molecular function (MF), biological process (BP),
and cellular component (CC) are presented. The corresponding terms and adjusted p-values in each category are listed in Supplementary Table S1. (F) Bubble chart

(Continued )
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the turquoise module, including a total of 2,599 genes, was
identified as a causal module that positively correlated with
CAD (R2 = 0.732, p = 1.6E−09) (Supplementary Table S2-6).

To interpret the biological content of the genes in the
turquoise module, GO and KEGG enrichment analyses were
performed. In the turquoise module, 258 GO terms were
enriched. The GO terms enriched in the BP category included
translation (p = 2.80E−40), oxidation–reduction process
(p = 9.50E−06), apoptotic process (p = 3.90E−02), and protein
ubiquitination (p = 4.60E−02). Other important biological
processes reported to be associated with CAD, such as MAPK
cascade (p = 3.30E−02), Wnt signaling pathway (p = 2.76E−07),
and NF-kB signaling pathway (p = 1.10E−02), were also enriched
in the BP terms (Figure 2C and Supplementary Table S2-2). The
GO terms of the turquoise module were enriched in the CC
category of cytoplasm (n = 899, p = 9.2E−21), extracellular
exosome (n = 524, p = 1.40E−17), and membrane (n = 384,
p = 1.20E−08) (Figure 2D and Supplementary Table S2-3).
The GO terms in the MF category were enriched in protein
binding (p = 3E−31), cell–cell adhesion (p = 3.50E−03), ligase
activity (p = 1.80E−02), and ubiquitin protein ligase binding
(p = 9.10E−02) (Figure 2E and Supplementary Table S2-4).
Referring to the KEGG database, the noted pathways enriched
in genes of the turquoise module included metabolic pathways
(p = 4.5E−6), oxidative phosphorylation (p = 3.7E−15), and
cardiac muscle contraction (p = 8.0E−5) (Figure 2F and
Supplementary Table S2-1).

The significance of the biological functions of the causal gene
modules from CAD were implicated from the GO and KEGG
analyses. The first subset was enriched in metabolic pathways
such as metabolic disturbances, involving the biosynthesis and
degradation of cholesterol, triglycerides, and lipoproteins, which
influences the presence of CAD. The second was enriched in
oxidative phosphorylation, mainly including PIGF, PIGP, and
PIGT, which are associated with CAD due to mitigating the
increased production of reactive oxygen species in the
mitochondria, accumulation of mitochondrial DNA damage,
and progressive respiratory chain dysfunction. The third
subset was cardiac muscle contraction, impairing
mitochondrial integrity predisposed by vascular cell growth in
CAD. The last subset was enriched in protein ubiquitination,
whereas the dysfunction of the UPS deteriorates foam cell
maintenance and mitigates low-density lipoprotein (LDL)
aggregation via mediating the ubiquitination and degradation
of p53.

In summary, we identified the turquoise module as a causal
module for CAD. GO and KEGG enrichment analyses revealed
that the modular genes shared a high association with biological
functions such as metabolic pathways, oxidative phosphorylation,
cardiac muscle contraction, and protein ubiquitination.

Identification of Hub Genes From the CAD
Casual Module With DEGs and PPI
Inferred from the above-mentioned results, the turquoise gene
module was identified as a casual module associated with CAD.
To filter for hub genes, genes in the turquoise module were
compared with 1,210 DEGs (Supplementary Table S2-5), and
441 overlapping genes were deemed as significant genes
(Figure 2G and Supplementary Table S2-7). Further analysis
of pathways, including metabolic pathways, oxidative
phosphorylation, cardiac muscle contraction, and protein
ubiquitination (a total of 1,545 genes), yielded 58 genes
(Supplementary Table S2-8). Moreover, the list of 57 causal
CAD genes was queried in the STRING for PPI network
(Figure 2H and Supplementary Table S2-9) and to further
distinguish subnetworks. Genes were divided into 4 main
subnets of biological functions based on the degree of
connection. Subnetwork analysis indicated that most of the
genes participated in metabolic pathways, oxidative
phosphorylation, cardiac muscle contraction, and protein
ubiquitination.

Validation of the Hub Genes With Gene and
Protein Expressions in HMDP and HPA
To improve the performance of the gene co-expression analysis,
we incorporated prior knowledge for the purpose of extracting
modules with biological meanings. Thus, further validation of the
expression of hub genes was performed on the mouse heart tissue
samples from the Hybrid Mouse Diversity Panel (HMDP).
Another analysis framework with WGCNA to discover the
intrinsic differences between similar tissues (Abbassi-Daloii
et al., 2020) was performed on the murine heart profiling of
HMDP (GSE77263). To select an optimal set of WGCNA
parameters, a total of 270 combinations of parameters,
including power, minimum cluster size, deep split value, and
tree cutting height, were tested for co-expression network
construction. The selection of the best parameters considered
prior knowledge of gene–gene interactions, including the
enrichment terms of pathway databases and the minimum size
of the gray module (genes not assigned with any module)
(Supplementary Figure S3C). The soft thresholding power
was set as 6 and the minimum cluster size as 15; the deepSplit
parameter was set as 3 and the tree cutoff height as 0.15
(Supplementary Figure S3C). With the optimal parameters,
WGCNA generated 57 modules, which included 7,211 genes
(5,186 non-redundant gene symbols), including the gray module
with a total of 675 genes. Of which, 12 significant modules were
identified with a threshold of false discovery rate (FDR) < 0.05.99
of the 231 marker genes that were assigned to at least one module,
suggesting that most of the CAD-related genes were enriched

FIGURE 2 | showing the enriched pathway terms referring to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database for the genes of the turquoise module.
(G) Venn diagram representing the intersection between the differentially expressed genes (DEGs), the turquoise module genes, and the genes of 4 CAD-related
pathways. The intersecting 58 hub gene symbols in these three groups are listed in Supplementary Table S1. (H)) Subnetworks constructed by 58 CAD causal genes
with protein–protein interaction. Genes were divided into 4 main subnets of biological functions based on the degree of connection.
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(Supplementary Figure S3D, 4A). Of the 58 hub genes, 35 were
assigned to at least one module.

To verify the heart tissue specificity, we further investigated
the 58 hub genes based on the protein and mRNA expression
levels in the Human Protein Atlas (HPA). The following criteria
were applied for screening CAD causal genes from the 58 genes:
1) mRNA expression was detectable in heart tissue; 2) the protein
expression of the genes was reported in human heart tissues; and
3) medium to high levels of IHC staining in the left ventricle heart
slices in HPA. The genes meeting these criteria included DKK3,
HP, BDH2,NME7, PIGF,OXSM, PSMD10, RNF181, and TRIM69

(Supplementary Figure S3E). Therefore, these 9 hub genes were
speculated to possibly play critical roles during the pathogenesis
of CAD.

Determination of Hub Gene Perturbation in
the DOX- and ISO-Induced CAD Mouse
Model
To verify the expression of the hub genes derived from the
WGCNA microarray in CAD heart tissue, DOX- and ISO-
induced cardiotoxicity mouse models were introduced.

FIGURE 3 | Identification and validation of the coronary artery disease (CAD) causal genes. (A,B) Diagram representing mouse ECG (A) and echocardiography (B)
at the endpoint of doxycycline (DOX) or isoproterenol (ISO) treatment. (C)Representative pictures of the heart morphology and HE staining. (D)Heatmap generated from
the DNA-seq expression profiles showing the Log2FoldChange of the expression of 9 CAD causal genes from the control and ISO- and DOX-treated cardiotoxicity
mouse models. (D,E) Heart sections and immunohistochemistry (IHC) staining of RNF181 in the control and DOX- and ISO-treated mice. (F) Statistical analysis
results of the immunostained area of RNF181 (percentage). (G) CAD causal genes substantially perturbed by DOX were further confirmed by qRT-PCR. Significant
threshold of p = 0.05.
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DOX and ISO are two typical agents that can cause myocardial
damage by mitigating oxidative stress, necrosis, and cardiac-
related metabolic disorders. To investigate the disturbance of
the CAD causal genes during the myocardial damage induced by
ISO or DOX, mice were treated with s.c. injection of both agents,
as previously described (Feng et al., 2021). Both ECG and
echocardiography tests were conducted at the end of the
treatment. Compared with the control group, an increased ST
segment in the ECG was observed in both DOX and ISO
treatment groups (Figure 3A), which was related to the
decrease of the ejection fraction (EF) and fractional shortening
(FS) (Figure 3B), indicating that DOX and ISO caused heart
dysfunction.

Subsequently, to determine the heart morphology affected by
DOX or ISO treatment, HE staining was conducted on the heart
sections. The results showed that DOX or ISO caused disordered
arrangement of myocardial cells, and the myocardial structure of
lysed muscle fibers was unclear (Figure 3C). Taken together, the
results demonstrate that DOX or ISO can significantly induce
heart atrophy and its related cardiac morphology in mice,
suggesting the cardiac dysfunction in DOX- or ISO-induced
heart injury.

To validate the change of the CAD causal genes in DOX- or
ISO-induced heart injury, an RNA sequencing (RNA-seq) assay
was performed on RNA extracted from mouse heart. The results
indicated that the expression of several CAD causal genes
associated with heart function were changed by DOX or ISO
(Figure 3D). For instance, the gene expression levels of RNF181
and DKK3 were significantly decreased in both DOX- and ISO-
induced cardiotoxicity models. Dickkopf-3 is a key vascular
progenitor of the atherosclerotic plaque phenotype that
mitigates the differentiation of fibroblasts into functional

endothelial cells and is encoded by DKK3 (Karamariti et al.,
2018). Circulating Dickkopf-3 (He et al., 2016) and the
fibroblast–endothelial cell transition are associated with CAD
development. Besides, the expression levels of several other causal
genes identified were also changed in heart function or cardiac
diseases, such as HP, BDH2, NME7, PIGF, OXSM, PSMD10, and
TRIM69. DOX decreased the expression of most hub genes;
particularly, the decrease of RNF181 expression in both DOX
and ISO cardiotoxicity models followed a similar manner.

Subsequently, an IHC staining experiment for RNF181 was
conducted (Figure 3E). The RNF181 immunostained area in
both heart toxicity models showed a decrease of RNF181
protein expression appearing in areas of CAD heart
compared with the control heart tissue, suggesting that, at
the protein level, the downregulation of RNF181 may be
correlated with CAD progression (Figure 3F). The effect
of DOX on the expression of some CAD causal genes was
further verified at the mRNA level by qRT-PCR. Consistent
with the results of the RNA-seq assay, the mRNA levels of
OXSM, NME7, and DKK3 were also inhibited by DOX
(Figure 3G). These results also demonstrate that RNF181,
as well as OXSM, NME7, and DKK3, deteriorated during the
heart failure process by mitigating multiple pathways.

Furthermore, to understand the causal relationship between
RNF181 and CAD, genes with a PPI with RNF181 were identified
in the STRING and INTACT databases. In both databases, the E3
ubiquitination ligase protein family members UBE2N, UBC,
UBE2D2, UBB, UBE2D1, UBE2D3, UBA52, BCL10, UBE2E1,
and RPS27A were shown to directly interact with RNF181.
Moreover, 9 of the 10 aforementioned E3 ubiquitination
proteins interacting with RNF181 were reported to be related
with heart-associated diseases (Supplementary Figure S4B).

FIGURE 3 | Continued
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FIGURE 4 | Identification of risk variants at the RNF181 locus in the cohort and in genome-wide association studies (GWAS). The SNP locus rs6738645 in the
RNF181 chromosome region was related to coronary artery disease (CAD). (A) Scattered dot plot displaying Pearson’s correlation between the expression of RNF181
and the CAD risk gene ADAMST7 in the CAD cohort from the PREDICT trail (R2 = 0.66, p < 9.6E−15). (B) Manhattan plot showing the top 20 SNPs in the
CARDIoGRAMplusC4DGWAS results by p-value. (C)Color-coded forest plot showing the normalized effect sizes of heart tissue expression for rs6738645 and the
corresponding 95% confidence intervals presented for CARDIoGRAMplusC4D and 8 other CAD meta-analyses. (D) m-values representing the posterior probability of
heart tissue-specific expression and their respective p-values. (E) Dot plot of phenome-wide association studies (PheWAS) showing the expression data from GWAS
ATLAS for the lead SNP (rs6738645) associated with clinical traits. Genome-wide significant expression p-values are shown for the indicated SNPs. p < 0.05 (Bonferroni
corrected).
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To further verify the function of RNF181, the expression
data from GSE143947 with selective knockdown of RNF181
in MCF-7 cells were analyzed. The results showed that
siRNF181 induced the downregulation of CDK4, as well as
MAPK and NEDD4 (Supplementary Figure S4C).

Recent pieces of evidence have shown that the E3 ubiquitin
ligase Skp2/fbxl1 might regulate the proliferation of vascular
smooth muscle cells (Wu et al., 2006) and cardiomyocytes
(Tamamori-Adachi et al., 2004), which suggests that impaired
UPS-mediated degradation may impede cardiomyocyte
proliferation, while the silencing of RNF181 reduced the cell
proliferation induced by the expression of CDK4 and
worsened proliferation and deteriorated cardiac efficiency
post-ischemia in vivo.

Wang et al. reported that RNF181 exhibits an inhibitory role in
the ERK/MAPK signaling pathway, the mechanism of which was
through the control of the activity of the cyclin D1–CDK4
signaling cascade. Its consequent regulatory role on the cell
fate from the G1 to the S phase in gastric cancer led to a
deteriorated prognosis (Wang et al., 2019). In our results, the
silencing of RNF181 was associated with the downregulation of
the expressions of MAPK8 and MAPK14.

In addition, vital signaling pathways in the cardiovascular
system, such as the vascular endothelial growth factor (VEGF)
pathway, are also regulated by UPS. The VEGF signaling pathway
mitigates angiogenesis, as well as multiple cellular activities such
as cell permeability, proliferation, and survival (Pagan et al.,
2013). Selective silencing of RNF181 resulted to a significant
downregulation of the expression of NEDD4, suggesting a
hypothesis that the silencing of RNF181 may increase the
degradation of VEGFR2 via NEDD4 in CAD.

Correlation Between RNF181 Expression
and CAD Progression in the Cohort and
GWAS Studies
To further verify the causal relationship between RNF181 and
CAD heredity, we investigated the cohort and GWAS in the CAD
population. The PREDICT trial (GSE20681) is a prospective
multicenter coronary artery catheterization laboratory study
conducted in the United States to identify biomarkers related
to CAD (Baim et al., 2001). Pearson’s correlation was performed
for the CAD cohort to investigate the expression of RNF181 and
CAD marker genes. The results showed that RNF181 correlated
with the expression levels of ADAMTS7 and S100A6 (Figure 4A

and Supplementary Figure S5A), two well-established variant
genes associated with CAD (Bauer et al., 2015; Chan et al., 2017;
Cai et al., 2011; Mofid et al., 2017).

Large-scale GWAS such as the 1000 Genomes Project have
identified 46 independent genome-wide significant SNPs for
CAD. These SNPs included rs3918226 in NOS3 on 7q36.1,
rs10455872 and rs3798220 in LPA (p = 5.7 × 10−39, 4.7 ×
10−9), and rs7412 in APOE (p = 8.2 × 10−11) (Nikpay et al.,
2015) (Figure 4B). To identify risk variants in the RNF181 locus
related to CAD, a random-effects meta-analysis was conducted as
a sensitivity analysis using the Han and Eskin method in
METASOFT. To avoid significant heterogeneity, a function
that mitigates power loss was utilized in the Han–Eskin
method (Han and Eskin, 2011). The meta-analysis results
showed that the fixed effects of gene polymorphisms on
RNF181 outcomes across CAD cohorts yielded a single SNP,
rs6738645, which was therefore considered significant (with a
p-value of 2.28 × 10−36). rs6738645 was considered as
significantly related to CAD across the four treatment cohorts
(RNF181: meta-analysis hazard ratio = 1.26, p = 3.03E−105,
FDR = 1.13E−73). This effect was likely driven by the results
of the Biovarstats study, where variant alleles were associated with
high-density lipoprotein (HDL), LDL, and changes in total
cholesterol (DTC) and triglyceride (DTG) (Figure 4C).
Additionally, we also identified another association for gene
variance, rs1562322, with CAD (RNF181: OR = 0.76,
p = 0.290648, FDR = 0.168875) (Supplementary Figure
S5B–E), suggesting that risk variants rs6738645 and rs1562322
in the RNF181 locus may be associated with coronary heart
disease.

PM analysis from the variant–trait association map of
rs6738645 showed that the 4 studies had an effect on the
association between rs6738645 and CAD by the m-value,
suggesting the probability of a causal relationship (Figure 4D).
Analysis of phenome-wide association studies (PheWAS)
suggested that genetic variation rs6738645 is significantly
associated with coronary heart disease (Pearson’s
r = 2.437e−32, p = 1.19E−06) in several large GWAS. These
results can be explained by the associations involving the
variant rs6738645 of RNF181, which showed genome-wide
significance in the meta-analysis for all these studies (p < 0.05)
(Figure 4E). RNF181 is located on chromosome 2 at chr2:
85722848–85924831. In the GWAS ATLAS, the mutation of T
to G at chr2:85783128 was reported in two independent studies as
associated with the increase in the incidence of CAD, with

TABLE 2 | Lead genome-wide association studies from GWASATLAS for the SNP rs6738645 associated with CAD clinical traits

PMID Year Domain Trait p-value N EA NEA

3925 28714975 2017 Cardiovascular Coronary artery disease (SOFT definition including angina) 3.14E−13 148,815 G T
4043 30124842 2018 Skeletal Height 1.2E−11 693,529 G T
108 26343387 2015 Cardiovascular Coronary artery disease 5.6E−10 184,305 G T
3668 31427789 2019 Cardiovascular Chronic ischemic heart disease 3.102E−09 300,791 G T
3692 31427789 2019 Cardiovascular Angina pectoris 6.244E−09 244,890 G T
3470 31427789 2019 Metabolic Trunk fat-free mass 2.666E−08 379,507 G T
3471 31427789 2019 Metabolic Trunk fat-free mass 3.528E−08 379,507 G T

EA, effect allele; NEA, non-effect allele
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enrolled populations of 148,815 and 184,305 (p = 3.14E−13 and
5.6E−10, respectively) (Table 2).

Taken together, RNF181 may serve as a causal gene of
prognostic or therapeutic value targeting coronary heart disease.

DISCUSSION

The current study indicated 7 co-expression modules, one of which
was significantly associated with CAD. From the causal gene module,
the significance of 4 pathways, including protein ubiquitination
during CAD pathogenesis, was revealed. RNF181 and 8 other
CAD causal genes were further identified from the causal gene
module. The protein expression of RNF181 was verified in both
human and mouse heart toxicity samples. The gene expression of
RNF181 correlated with the expressions of ADMAST7 and S100A6 in
the CAD cohort study. Further evidence in GWAS indicated that the
SNP variants rs6738645 and rs1562322 in the RNF181 locus were
related to the risk of CAD. These results confirm the association
between the causal gene RNF181 and CAD progression.

Complex diseases such as CAD may be the results not only of
the accumulative effects of individual genetic factors but also of
gene interaction via biological pathway/networks. Using WGCNA
on the tissue-level expression data, we found that RNF181 was co-
expressed with 7 other genes and that many of themwere validated
in previous studies to be associated with CAD.

Integration with the computational-based method for the
discovery of novel targets in complicated diseases has been
applied successfully. WGCNA and GWAS are two
representative methods for identifying risk genes from genetic
data. They are different in that one is based on the gene
module–disease trait correlations while the other provides
mutation–phenotype information from a population cohort.

A standard WGCNA workflow includes finding modules of
highly correlated genes, summarizing the modules with ME or
intramodular hub genes, and utilizing the eigengene network
methodology to liaise modules to external traits, finally
calculating MM.

One of the major shortcomings of WGCNA is that Pearson’s
correlation conveys only the linear dependencies in a theoretical
network. However, the true relationships observed in a biological
system are sophisticated, involving both linear and nonlinear
dependencies. Another is that the function of hierarchical
clustering is irreversible; thus, it is impossible to readjust or
relocate the uncategorized genes during module identification.
Several attempts have been made in improving WGCNA.
Greenfest-Allen et al. (2017) sought to improve robustness by a
process of pruning uncategorized genes and performed a re-
clustering step to obtain a precise module. Dai et al. (2018)
introduced a modified method called cusWGCNA, which
combined both the signed and unsigned network functions. Botía
et al. (2017) proposed an additional k-means clustering step to
improve the performance of WGCNA. Abbassi-Daloii et al. (2020)
suggested another analysis framework with WGCNA to discover the
intrinsic differences between similar tissues, which incorporated
pathway knowledge and a combination of parameter selection to
acquire refined gene modules with bio-meaningful content.

GWAS has been the predominant approach to the genetic
analysis of complex diseases in the last decade and had
demonstrated its usefulness in prioritizing over 150 novel risk
loci associated with CAD. The most prominent example was
PCSK9. Early GWAS identified that the locus rs11591147 on
PCSK9 was significantly associated with CVD (p = 7.5 × 10−6),
which suggested that the Arg46Leu substitution is associated with
the cholesterol levels of LDL and has favorable prognosis in
cardiology. Thus far, two PCSK9 inhibitors approved by the US
Food and Drug Administration (FDA) were immediately proven
as effective, which decreased the risk of cardiovascular events by
decreasing ~50% of circulating LDL cholesterol in clinical trials
(Robinson et al., 2015; Sabatine et al., 2015). Thus, an integrated
method of WGCNA and GWAS summary analysis was used to
prioritize novel causal genes associated with CAD. The results
may be suggestive in that a certain analogy could be a paradigm in
prioritizing causal genes in cardiovascular diseases.

Moreover, we further discussed the association between the UPS
moleculeRNF181 andCAD. As amember of the RING finger protein
family, RNF181 is a novel type of E3 ubiquitin ligase that regulates
biological activities such as protein dimerization, PPI, and ubiquitin
ligase activities. Thus, RNF181 and its role in the regulation of
phenotypic change, proliferation, migration, and apoptosis have
been discussed in several types of malignances. RNF181 exhibits its
E3 ubiquitin ligase activity via binding to the integrin alpha-IIb
(ITGA2B)/beta-3 (ITGB3) complex (Allen, 2015). The interaction
between RNF181 and CARD11 may enhance the NF-kB signaling
pathway in lymphoma (Bedsaul et al., 2018). Besides, RNF181 also
facilitates cell viability and angiogenesis in colon carcinoma (Xiong,
2017). In breast cancer, RNF181 prolongs the stability of ERa
associated with AF1 via its RING domain binding to the domain
of ERa, and enhancement of the gene expression of ERa promotes
breast cancer progression (Zhu et al., 2020). In the uncurable triple-
negative breast cancer (TNBC), RNF181 inhibits the K48-linked poly-
ubiquitination of YAP, thus promoting YAP stability. In this process,
it mediates the activation of Hippo/YAP signaling in a positive way
that prohibits the treatment of TNBC (Zhou et al., 2020). As discussed
in previous studies, the UPS molecule RNF181 played an important
role in tumor biology. Our results further support the idea of RNF181
and its association with CAD progression.

We are aware that certain limitations are present in our study.
Initially, in the preprocessed CAD data, only 8,525 genes were
incorporated in this study. It is likely that the coverage of related
genes is incomplete and sparse, which led to only 8 positive
findings with WGCNA. Certain low expressed genes that may
have a causal relationship with CADmay not have been included.
Also, for RNF181 and other causal genes, bioactivity and function
tests, including silencing or overexpression experiments on
cardiomyocytes or assessments on druggability and
pharmacology, were not performed. Even it is evolved in the
DOX/ISO-induced heart toxicity model, GWAS, and the cohort
study, there is no sufficient supporting evidence for clinical
practice. Despite this, our results support RNF181 being
another putative novel causal gene for CAD. Subsequently, the
cell origin of the RNA-seq profiles from GEO contained only
tissues from the left ventricle and did not collect sorted subtypes
of cells with various biological functions, including muscular
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cells, endothelial cells, or macrophages. Thus, we cannot
immediately conclude in which specific type of cell the
RNF181-mediated phenotype change may have functions.
Lastly, WGCNA may lose power compared to the standard
gene-based analysis in circumstances where the true biological
mechanism is independent of gene expression.

In summary, for the first time, our findings illustrate that the
E3 ubiquitination ligase RNF181 may serve as a causal gene
affecting CAD through its downregulation. RNF181may play an
important role in CAD progression. Further efforts are required
to verify the potent interactions and the regulatory mechanism
of RNF181 in CAD and other cardiovascular diseases.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by CardioDx. The patients/participants provided
written informed consent to participate in this study. The
animal study was reviewed and approved by The Animal
Ethics Committee of Nankai University.

AUTHOR CONTRIBUTIONS

RD contributed to the methodology, software, manuscript
drafting, project administration and manuscript revision. BQ
performed the investigation, data analysis, software, and
manuscript revision. KG performed the formal analysis,
validation and manuscript revision. SZ contributed to the data
interpretation, manuscript revision, final approval and integrity
Check. HS and WW conducted the investigation. JH and KF
helped with validation. JL contributed to conceptualization,
Validation and Final approval. YH helped with the
methodology, validation, manuscript revision, and final approval.

FUNDING

This study was supported by the National Key Research and
Development Program of China (2017YFC1104400 to JL).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.818813/
full#supplementary-material

Supplementary Figure S1 | The General Flowchart showing the analysis
process of the study: Data collection, Batch effect correction, data
analysis, and validation. Expression data of CAD samples from GSE12504
and normal samples from GSE22253 were analyzed after batch effect removal
and preprocessing. Then, 1,210 differentially expression genes (DEGs) were
screened, and the turquoise module was identified through WGCNA. GO
functional and KEGG pathway enrichment analyses were performed the
significant modules. CAD causal genes were identified from the module
with PPI and verified with HMDP and HPA. The RNF181 and other 8 hub
genes were recognized and validated using IHC, RT-PCR and gene
expression in two heart toxicity mouse models. Two risk variants
rs6738645 and rs1562322 at the RNF181 locus identified in GWAS meta-
analysis

Supplementary Figure S2 | Batch effect removal for the expression profile of CAD
and healthy control heart tissue. Hierarchy clustering tree showing samples before
(A) and after (B) batch effect removal with sva, each branch represents a sample,
Red, CAD, and blue, healthy Control. Principle component analysis for the
expression data of samples before (C) and after (D) batch effect removal. Red,
CAD, blue, healthy Control. (E, F) Batch effect variation analysis results for the
expression data of GSE12504(CAD) and GSE22253(Control).

Supplementary Figure S3 | Validation of the hub genes with gene and protein
expressions from HMDP and HPA. (A) Volcano plot showing the DEGs between
CAD and Control. (B) Network topology analysis for adjacency matrix with a set of
soft-thresholding powers. The red numbers in the drawing indicate soft-thresholding
power in keeping with the correlation coefficient value. (C) Scattered dot plot
showing the selection of parameter combinations of power, minClustersize,
deepsplit and cutoff height; (D) Heatmap showing the gene module-traits
correlation, FDR are represented as depth of color; (E) Cluster heatmap
generated from expression profiles and clinical information of these 57 genes
from the HMDP and HPA database. Gene expression (Log2FoldChange), >3,
red <-2, blue. LV tissue expression, 0, white; >3.5, blue; HPA protein
expression, 0, white; >3.5, purple. mRNA expression, 0, white; >3, green.

Supplementary Figure S4 | siRNF181 is closely related to multiple biological
processes in CAD. RNF181 PPI profiles from (A) STRING and (B) INTACT network.
(C) Chord diagram constructed from siRNF181 data on the correlation between
RNF181 downregulation and some cardiovascular process mediators or UPS
molecules. Red denotes positive correlations, while the green, negative.

Supplementary Figure S5 | Identification of CAD-associated risk variants
rs1562322 at RNF181 locus in cohort and GWAS studies. (A) Scattered dot
plot displaying the Pearson’s correlation between the genes expression of
RNF181 and the CAD-causal gene S100A6 in the CAD cohort from the CAD
cohort of predict trail. N=99, R2 = 0.78, p-value < 2.2E-16; (B) Identification of
lead SNP rs1562322 in the CARDIoGRAMplusC4D and other 9 meta-analysis.
(C) Color-coded forest plot showing the heart-tissue expression normalized
effect sizes for rs1562322 and corresponding 95% confidence intervals are
presented for CARDIoGRAMplusC4D and other 8 CAD meta-analysis. (D)
m-values representing the posterior probability of heart tissue-specific
expression and their respective expression P-values are also shown. (E)
PheWAS showing the expression data from GWASATLAS for the lead GWA
studies SNP rs1562322 associated with clinical traits. Genome-wide significant
expression P-values are shown for indicated SNPs. P-value,Bonferroni
corrected < 0.05.
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