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A B S T R A C T   

Background and purpose: Treatment planning of radiotherapy is a time-consuming and planner dependent process 
that can be automated by dose prediction models. The purpose of this study was to evaluate the performance of 
two machine learning models for breast cancer radiotherapy before possible clinical implementation. 
Materials and methods: An in-house developed model, based on U-net architecture, and a contextual atlas 
regression forest (cARF) model integrated in the treatment planning software were trained. Obtained dose dis
tributions were mimicked to create clinically deliverable plans. For training and validation, 90 patients were 
used, 15 patients were used for testing. Treatment plans were scored on predefined evaluation criteria and 
percent errors with respect to clinical dose were calculated for doses to planning target volume (PTV) and organs 
at risk (OARs). 
Results: The U-net plans before mimicking met all criteria for all patients, both models failed one evaluation 
criterion in three patients after mimicking. No significant differences (p < 0.05) were found between clinical and 
predicted U-net plans before mimicking. Doses to OARs in plans of both models differed significantly from 
clinical plans, but no clinically relevant differences were found. After mimicking, both models had a mean 
percent error within 1.5% for the average dose to PTV and OARs. The mean errors for maximum doses were 
higher, within 6.6%. 
Conclusions: Differences between predicted doses to OARs of the models were small when compared to clinical 
plans, and not found to be clinically relevant. Both models show potential in automated treatment planning for 
breast cancer.   

1. Introduction 

Breast cancer is the most common type of cancer in women in 
Europe, with 523,000 new cases diagnosed in 2018 [1]. Depending on 
the stage of the disease, different treatments are recommended. Breast- 
conserving surgery (BCS) followed by radiotherapy (RT) to the breast is 
a widely accepted local treatment for early breast cancer. RT after BCS 
for node-negative cancer compared to BCS only, halves the risk on 
recurrence after 10 years, while the breast cancer death rate is reduced 
by about a sixth [2]. However, this needs to be balanced against the dose 
delivered to healthy tissue which can lead to different side effects. For 
major coronary events, Darby et al. found an excess relative risk (ERR) of 
7.4% per Gy mean heart dose (MHD) [3], whereas Taylor et al. found an 
ERR of 4.1% per Gy MHD for cardiac mortality alone and an ERR of 11% 
per Gy mean lung dose (MLD) for mortality resulting from RT induced 

lung cancer [4]. In order to minimise side effects as much as possible, 
low doses to the heart and lung should be pursued. 

To create a treatment plan with acceptable doses to organs at risk 
(OARs) while still achieving adequate coverage of the target tissue, 
planners go through an iterative plan optimisation process. This process 
can be time-consuming, and the plan quality is dependent on the 
experience of the planner [5,6]. Recent years, several studies have been 
conducted on the development of dose prediction methods to automate 
this process, by using convolutional neural networks (CNNs) [7–11]. 
The treatment planning system (TPS) used in this study also imple
mented machine learning (ML) to offer automated planning. This 
module was already tested for head and neck RT and showed promising 
results [12]. However, most of the aforementioned studies on dose 
prediction focus on the treatment sites prostate or head and neck, and 
little is known about the performance of these models for breast cancer. 
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Therefore, the purpose of this study was to evaluate the performance of 
two ML models for whole breast RT with regard to plan quality. The first 
model was an in-house developed model using CNNs, based on the often 
used U-net structure [13]. The second model was the implemented 
model of the TPS. Results of these methods were compared with clinical 
deliverable plans. The potential of these models for future clinical 
implementation was thereby explored, aiming to reduce planner 
dependence and time. 

2. Materials and methods 

2.1. Patient database 

Treatment plans for 105 patients diagnosed with left-sided node- 
negative breast cancer were included. Ethical approval was granted by 
the local ethics committee. This research is conducted on anonymised 
patient data and according to Dutch law this falls under the so-called 
non-WMO legislation (medical research law waiver). The patients 
were treated in 15 fractions with a prescribed total dose of 40.05 Gy, 
with a beam energy of either 6 or 10 MV. A tangential Intensity- 
modulated radiation therapy (IMRT) technique was used with one 
open segment for each tangential beam and a maximum of eight total 
segments, which should be at least 9 cm2. On average, 336 monitor units 
(MU) (range 304–409) were needed to deliver one fraction. Computed 
Tomography (CT) data and clinical treatment plans were available for 
all patients. The resolution of the CT data was 2.5 × 2.5 × 2.5 mm3. 
RayStation TPS was used to create new clinically deliverable plans using 
the standard approach, described below. Version 9B was used to 
generate new plans with the ML module. Furthermore, predicted dose 
distributions resulting from the in-house developed method were loaded 
into RayStation 9B and dose mimicking was applied to generate clini
cally deliverable plans. A dose calculation grid spacing of 3 mm was 
used for all plans. 

The breast planning target volume (PTV) was generated by 
expanding the clinical target volume (CTV) by 5 mm and then cropping 
it 5 mm under the skin. During optimisation, beam segments were 
opened outside the skin region to account for setup errors, intra-fraction 
movements and possible increase of breast volume during treatment. For 
this study, a distance of 1–2 cm from the skin was used. Opening of the 
segments was executed in the last part of optimisation. The automatic 
beam angle function available in the 3D-CRT module of RayStation was 
used to determine the optimal beam angles. 

Predefined clinical goals were used to evaluate the quality of a 
treatment plan, assuring an adequate dose coverage of the PTV and 
sparing of the OARs. These evaluation criteria were based on the Dutch 
national consensus criteria for breast treatment planning from October 
2019 and summarized in Supplementary Table S1. 

2.2. Machine learning models and model training 

Two ML models were used for dose prediction. The first model was 
in-house developed, based on the U-net architecture, a widely used 
method in biomedical image processing [13]. For this study, the adapted 
U-net architecture of Nguyen et al. [8] was used. See the Supplementary 
material for a more in depth overview of the model. 

The second model was developed and integrated by RaySearch, 
based on a contextual atlas regression forest (cARF) [12], consisting of 
two phases. In the atlas-to-image mapping phase, atlas regression forests 
(ARFs) are trained to model the relationship between image features and 
the dose distribution. In the atlas-selection phase, density estimation 
over observed image features is used to train a model to select the most 
relevant ARF for a new patient. After these phases, a conditional random 
field model is used to find the most probable dose distribution. The full 
method was described by McIntosh and Purdie [14,15]. 

For training of both models, treatment plans of 90 patients were 
used, with a training set containing plans of 72 patients and a validation 

set with plans of 18 patients. To independently test the model after 
training, 15 additional patients were used. The composition of these 
datasets can be found in Table 1. 

The in-house developed U-net model was trained for 800 epochs, and 
no cross-validation was performed. Each batch contained three patients, 
of which eight slices were re-selected at each epoch using a sampling 
scheme. Central slices are more important for dose prediction as they 
always contain the PTV, so a Gaussian scheme was used with a standard 
deviation equal to one-third of the distance from the central to the end 
slice. 

2.3. Dose mimicking 

The two models both result in a dose prediction per voxel, which are 
not directly clinical applicable. To obtain clinically deliverable plans, 
dose mimicking can be used. In this study, mimicking was realized by 
direct machine parameter optimization to approximate the predicted 
dose distribution, based on the method of Petersson et al. [16]. Three 
intermediate collapsed cone convolution dose calculations were per
formed over the course of multiple dose mimicking iterations, ending 
with a final collapsed cone convolution dose calculation resulting in the 
final dose distribution. The beam energy and gantry angles were copied 
from the clinical plan of the corresponding patient. The same segmen
tation settings, mentioned in Section 2.1, were used for all plans. In 
addition, for all patients the same set of objectives and weights was used. 
After mimicking, created segments were visually inspected. If needed, 
leafs were opened manually outside the skin region, at similar distances 
from the skin as the clinical plans. 

2.4. Model evaluation 

For the U-net model, the predicted dose distributions before and after 
mimicking were evaluated. Of the cARF model predictions, only 
mimicked dose distributions were available. To compare the pre
dictions, dose distributions of the clinical, predicted and mimicked plans 
were scaled such that 98% of the PTV volume receives 95% of the dose 
(38.05 Gy). The voxel-wise predictions were evaluated with the clinical 
goals, based on the national consensus aforementioned. As all plans 
were scaled to have a dose of 38.05 Gy at 98% volume, this goal was not 
scored. In addition to the average and maximum doses of the regions of 
interest (ROIs), the differences of the mean average dose and maximum 
dose to the PTV with respect to the prescribed dose (40.05 Gy) were 
calculated. The average dose and maximum dose (D2%) to the ROIs 
were then further investigated. 

The performance of the models was further evaluated by a percent 
error relative to the prescribed dose, calculated as predicted dose− clinical dose

prescribed dose ×

100%, with a prescribed dose of 40.05 Gy. Significance between the 
average and maximum doses of the clinical plan and the predicted and 
mimicked plans of each of the models were investigated with the Wil
coxon signed rank test. A p-value <0.05 was considered significant. 

3. Results 

The clinical plans and the U-net predicted plans met all clinical goals 

Table 1 
Characteristics of the patient sets used for training and testing of the two models.  

Model 
Stage 

Patient 
Set 

Number of 
Patients 

Beam Energy 
(number of 
patients) 

PTV Volume (mean 
and range; cm3)    

6 
MV 

10 
MV  

Training Training 72 62 10 818 (196–2864) 
Validation 18 11 7 879 (299–1168) 

Testing Test 15 10 5 831 (458–1811)  
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(Table 2). However, after mimicking, three patient plans exceeded the 
allowed volume of 2% receiving >42.85 Gy, with volumes of 2.6%, 2.9% 
and 3.0%. For the cARF model, three different patient cases also failed to 
meet all clinical goals. The first patient case failing a clinical goal had an 
average PTV dose of 39.96 Gy. This dose was still within 1% of the 
prescribed dose, which is clinical acceptable according to the guidelines 
of the national consensus. The second case had a volume of 12.6 cm3 of 
the external receiving >107% of the prescribed dose. The last case had 
an average heart dose of 2.15 Gy, thereby exceeding the desired limit of 
an average dose of 2 Gy, but still achieving an average dose below 3 Gy. 

Average and maximum doses of the ROIs in all plans are summarized 
in Table 3. For the U-net model, both average and maximum doses 
increased after mimicking for all ROIs, thereby significantly exceeding 
the clinical doses. The average PTV dose of the cARF was lower than the 
clinical dose, but both heart and lung doses significantly exceeded the 
clinical doses. 

Furthermore, the average doses for all models fell within 2.0% of the 
prescribed dose. For the maximum dose, the means of the different plans 
differed between 5.0% and 6.0% from the prescribed dose. 

The percent errors on the average and maximum dose are shown in 
Fig. 1. The U-net model predicted a dose distribution which did not 
differ significantly from the clinical dose distribution, but after 
mimicking it did for all ROIs. The cARF model predicted a significantly 
different dose for the heart and lungs, compared to the clinical plans. In 
addition, the differences between the mimicked U-net predictions and 
cARF predictions were also significant for all ROIs, except for the 
maximum dose to the heart. cARF predicted lower average and 
maximum doses to the PTV, while the U-net predicted lower average and 
maximum doses to the OARs. Overall, the percent error was lower for 
the average doses compared to the maximum doses. In addition, the 
spread of the error was decreased after mimicking. Both models tend to 
over-predict the doses for the OARs, while predicting a lower dose to 
PTV, although this dose increases after mimicking. 

The percent errors on average doses (mean ± SD) to PTV, heart and 
lungs, were 0.7 ± 0.2%, 0.1 ± 0.1% and 0.2 ± 0.5% for the mimicked U- 
net model predictions. For the cARF model, these errors were − 0.3 ±

0.6%, 0.3 ± 0.3% and 0.5 ± 0.2%. For the maximum doses to PTV, heart 
and lungs, errors of 0.9 ± 0.5%, 1.2 ± 1.6% and 3.3 ± 2.0% were found 
for the mimicked U-net predictions. The cARF model resulted in errors to 
these ROIs of 0.04% ± 1.0, 3.8% ± 6.0 and 6.6% ± 3.3. 

Fig. 2 shows two axial slices of two typical patient cases. For both 
patients, the U-net predicted a higher dose for PTV, resulting in more 
high dose regions than the clinical and cARF plans. 

4. Discussion 

Two ML models to predict dose distributions were evaluated and 
compared to clinical plans. Both models resulted in average doses to 
ROIs within a range of 1.0% to 1.5% deviation compared to clinical 
plans. Maximum doses to heart and lungs deviated more, with range of 
6.6% and 3.3% error. In our opinion, the found differences between the 
models were not clinically relevant, since the clinical accepted average 
doses were not exceeded. Furthermore, the plans were also physically 
acceptable, with similar segment shape and MU per fraction. These re
sults indicate comparable performance of both models, showing the 
capability of creating clinically acceptable plans. 

There are a few studies which used other models than CNN models 
for dose prediction in breast cancer patients. Fan et al. [17] predicted 
dose volume histograms (DVHs) using kernel density estimation, which 
were then transferred to objectives. With these objectives, treatment 
plans were created with the auto-planning module of the TPS Pinnacle. 
No significant differences were found when comparing the automatic 
generated plans with manually generated plans by experienced plan
ners. In another study, van Duren-Koopman et al. [18] created an 
automatic workflow, using the RapidPlan knowledge-based planning of 
the Eclipse TPS to generate treatment plans for breast irradiation, 
including locoregional lymph nodes. For 14 out of the 15 test patients, 
the automated plans were preferred or equal to the manually generated 
plans. 

This is to our knowledge the first study focusing on dose prediction 
for breast cancer, with the use of CNNs. The study of Nguyen et al. [8], 
where the U-net model architecture was based on, applied it to treat
ment plans for prostate cancer. They report mean absolute percent er
rors on average doses of 1.1% for PTV to a maximum of 4.2% for an 
OAR. The mean absolute percent errors for maximum doses range from 
1.8% for PTV to 5.1% for an OAR. The dose distributions in the study of 
Nguyen et al. were not mimicked, meaning that comparison to the U-net 
predictions would be more fair. The results in this study showed no 
significant different errors. So although direct comparison is not possible 
due to different treatment sites, it can be stated that the model from this 
study is comparable in performance or even outperforms the model of 
Nguyen et al. The study of McIntosh et al. [12] is the only one evaluating 
the cARF model. They predicted head and neck dose distributions, but 
no predicted average and maximum dose values were reported, so no 
comparisons can be made. 

Furthermore, several studies used a three dimensional (3D) U-net 
architecture for predicting dose distributions, sometimes combined with 

Table 2 
Number of patients of the test set (n = 15) achieving the clinical goals, for the 
clinical plans, predicted (pred) and mimicked (mim) plans of the U-net model 
and conditional Atlas Regression Forest (cARF) plans. Numbers printed in italic 
indicate which goals are not achieved for all patients.  

Clinical Goal Clinical U-net cARF   

Predicted Mimicked  

PTV: Davg ≥ 40.05 Gy 15 15 15 14 
PTV: D2% ≤ 42.85 Gy 15 15 12 15 
Heart: Davg ≤ 3 Gy 15 15 15 15 
Lungs: Davg ≤ 6 Gy 15 15 15 15 
External – PTV: V107% ≤ 10.00 cm3 15 15 15 14 
Heart: Davg ≤ 2 Gy 15 15 15 14 
Lungs: Davg ≤ 4 Gy 15 15 15 15  

Table 3 
Average and maximum doses in Gy to ROIs for the clinical plans, predicted and mimicked plans of the U-net model and mimicked plans generated by the cARF model 
(mean ± standard deviation). For PTV, the difference between mean average and maximum dose with respect to the prescribed dose (40.05 Gy) is shown. Doses 
differing significantly from clinical doses are indicated with an asterisk.    

PTV Heart Lungs   

Dose [Gy] Difference with respect to prescribed dose [%] Dose [Gy] Dose [Gy] 

Clinical Average 40.5 ± 0.2 +1.2 1.0 ± 0.4 1.9 ± 0.5 
Maximum 42.1 ± 0.3 +5.0 4.4 ± 3.4 26.2 ± 4.7 

U-net-predicted Average 40.5 ± 0.1 +1.1 1.0 ± 0.3 2.0 ± 0.4  
Maximum 42.2 ± 0.2 +5.4 4.9 ± 3.1 36.8 ± 3.9 

U-net-mimicked Average 40.8 ± 0.3* +1.9 1.0 ± 0.4* 2.0 ± 0.5*  
Maximum 42.4 ± 0.4* +5.9 4.9 ± 3.8* 27.5 ± 4.3* 

cARF Average 40.4 ± 0.2 +1.0 1.1 ± 0.5* 2.1 ± 0.5*  
Maximum 42.1 ± 0.4 +5.0 5.9 ± 6.1* 28.8 ± 3.7*  
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other well-known CNN architectures such as DenseNet [7], or extended 
with beam configuration information [9,19]. Both studies that included 
beam configuration, report an improvement in prediction compared to 
only using anatomical information. Barragán et al. [9] predicted dose 
distributions for lung IMRT patients and reported a decrease of the error 
of the mean dose, averaged over all ROIs, from 2.3% ± 2.0 to 1.4% ±
1.3, for a model without and with beam configuration information, 
respectively. The error of the maximum dose decreased from 4.0% ± 4.7 
to 2.9% ± 3.1. Similar to the 2D U-net study, dose distributions in these 
studies were not mimicked to clinical deliverable plans. Although direct 
comparison is again difficult, the prediction errors of the in-house 
developed 2D U-net were in the same range or even better as the 3D 
U-net without any beam information. The 3D U-net including beam 
configuration seemed to outperform the mimicked U-net and cARF 
predictions with regard to maximum doses. 

The patient set used in this study contains patients treated with a 
beam energy of 6 or 10 MV, where the latter is used for patients with 
larger target volumes. By using a large dataset with a variety of patient 
anatomies and target volumes, it was assumed that there would be no 
difference in the results of 6 or 10 MV predictions. During evaluation, 
small differences between predictions for 6 and 10 MV plans were 
observed in the percent errors on the average dose to PTV of 0.23% and 
0.12% for the mimicked U-net and cARF models, respectively. However, 

due to a small test set and no proof of significance, these differences 
were assumed to be negligible. 

For dose mimicking, initial set-up settings were used for the two 
models. No adjustments to further improve mimicking were made. In 
addition, the scaling could result in more hot dose regions and could also 
be prevented by specific mimicking settings. Future research could 
involve improving these settings. 

During mimicking several settings were copied from clinical plans, 
such as the beam angle. To further automate the planning process and be 
less planner dependent, a method could be developed to automatically 
determine beam angles, fitting the predicted dose distribution. 

The biggest limitation of the U-net model used in this study was its 
2D nature. Due to a lack of computational power and time, a 3D U-net 
was not feasible in this study. In the 2D U-net, slices were predicted 
independent of each other, disregarding any spatial information in the 
slice direction. Nevertheless, this spatial information was restored with 
dose mimicking, leading to deliverable plans. However, mimicking lead 
in almost all cases to higher average and maximum doses to the ROIs, 
while the dose without mimicking did not differ significantly from the 
clinical dose. Future research could include a 3D U-net to test its ability 
to predict dose distributions, compared to the 2D U-net. 

Resulting plans from both models did not show clinically relevant 
differences for studied dose parameters. To further investigate potential 

Fig. 1. Percent error of predicted and mimicked dose distributions of the U-net model and mimicked does distribution of the cARF model, when compared to clinical 
plans, with respect to the prescribed doses. Average (upper row) and maximum (lower row) doses of different ROIs are evaluated. Horizontal lines in boxes are 
medians, crosses are means, dots are outliers. Statistically significant differences with respect to clinical dose are marked with a red asterisk (p < 0.05). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

N. Bakx et al.                                                                                                                                                                                                                                    



Physics and Imaging in Radiation Oncology 17 (2021) 65–70

69

of clinical implementation, a new study will be performed which in
cludes scoring by radiation oncologists of plans generated in clinic and 
by the models. 

In this study, a U-net model was tested to predict dose distributions 
for whole breast RT. These dose predictions were mimicked to create 
clinical deliverable plans and evaluated together with the predictions of 
an already existing commercially available cARF model and compared 
with corresponding clinical plans. Differences between the two models 
in predicted doses to OARs compared to the clinical plans were small 
and not found to be clinically relevant. Results of both models are 
promising for automatic plan generation. 
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We would like to thank Fredrik Löfman, Mats Holmström and Hanna 
Gruselius from the machine learning department of RaySearch for their 

contribution in preparing the data, training of the cARF model and 
integration of different steps into RayStation. Furthermore, we would 
like to thank Josien Pluim from the Technical University of Eindhoven 
for providing capacity to train the models. Lastly we would like to thank 
Anke Habraken, Fanny van Aarle, Jorien van der Leer, Simone van 
Barneveld and Therese van Nunen for assisting in creating the clinical 
treatment plans. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.phro.2021.01.006. 

References 

[1] Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer 
incidence and mortality patterns in Europe: Estimates for 40 countries and 25 
major cancers in 2018. Eur J Cancer 2018;103:356–87. https://doi.org/10.1002/ 
mp.13597. 

[2] Early Breast Cancer Trialists’ Collaborative Group. Effect of radiotherapy after 
breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: 
meta-analysis of individual patient data for 10 801 women in 17 randomised trials. 
Lancet 2011;378:1707–16. https://doi.org/10.1016/S0140-6736(11)61629-2. 

[3] Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. 
Risk of ischemic heart disease in women after radiotherapy for breast cancer. 
N Engl J Med 2013;368:987–98. https://doi.org/10.1056/NEJMoa1209825. 

[4] Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ, Bergh J, et al. Estimating 
the risks of breast cancer radiotherapy: evidence from modern radiation doses to 
the lungs and heart and from previous randomized trials. J Clin Oncol 2017;35: 
1641–9. https://doi.org/10.1200/JCO.2016.72.0722. 

[5] Batumalai V, Jameson MG, Forstner DF, Vial P, Holloway LC. How important is 
dosimetrist experience for intensity modulated radiation therapy? A comparative 
analysis of a head and neck case. Pract Radiat Oncol 2013;3:99–106. https://doi. 
org/10.1016/j.prro.2012.06.009. 

[6] Berry SL, Boczkowski A, Ma R, Mechalakos J, Hunt M. Interobserver variability in 
radiation therapy plan output: results of a single-institution study. Pract Radiat 
Oncol 2016;6:442–9. https://doi.org/10.1016/j.prro.2016.04.005. 

[7] Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H, Jiang S. 3D radiotherapy dose 
prediction on head and neck cancer patients with a hierarchically densely 
connected u-net deep learning architecture. Phys Med Biol 2018;64:065020. 
https://doi.org/10.1088/1361-6560/ab039b. 

[8] Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, Jiang S. A feasibility study for 
predicting optimal radiation therapy dose distributions of prostate cancer patients 
from patient anatomy using deep learning. Sci Rep 2019;9:1–10. https://doi.org/ 
10.1038/s41598-018-37741-x. 

[9] Barragán-Montero AM, Nguyen D, Lu W, Lin M-H, Norouzi-Kandalan R, Geets X, 
et al. Three-dimensional dose prediction for lung IMRT patients with deep neural 
networks: robust learning from heterogeneous beam configurations. Med Phys 
2019;46:3679–91. https://doi.org/10.1002/mp.13597. 

[10] Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD. DoseNet: a volumetric dose 
prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol 
2018;63:235022. https://doi.org/10.1088/1361-6560/aaef74. 

[11] Kajikawa T, Kadoya N, Ito K, Takayama Y, Chiba T, Tomori S, et al. 
A convolutional neural network approach for IMRT dose distribution prediction in 
prostate cancer patients. J Radiat Res 2019;60:685–93. https://doi.org/10.1093/ 
jrr/rrz051. 

[12] McIntosh C, Welch M, McNiven A, Jaffray DA, Purdie TG. Fully automated 
treatment planning for head and neck radiotherapy using a voxel-based dose 
prediction and dose mimicking method. Phys Med Biol 2017;62:5926–44. https:// 
doi.org/10.1088/1361-6560/aa71f8. 

[13] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical 
image segmentation. MICCAI 2015:234–41. https://doi.org/10.1007/978-3-319- 
24574-4_28. 

[14] McIntosh C, Purdie TG. Contextual atlas regression forests: multiple-atlas-based 
automated dose prediction in radiation therapy. IEEE Trans Med Imaging 2016;35: 
1000–12. https://doi.org/10.1109/TMI.2015.2505188. 

[15] McIntosh C, Purdie TG. Voxel-based dose prediction with multi-patient atlas 
selection for automated radiotherapy treatment planning. Phys Med Biol 2017;62: 
415–31. https://doi.org/10.1088/1361-6560/62/2/415. 

[16] Petersson K, Nilsson P, Engström P, Knöös T, Ceberg C. Evaluation of dual-arc 
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