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ABSTRACT: Despite substantial advances in early diagnosis, breast cancer (BC) still remains a clinical challenge. Most BC models use complex in vivo 
models and two-dimensional monolayer cultures that do not fully mimic the tumor microenvironment. The integration of cancer biology and engineering can 
lead to the development of novel in vitro approaches to study BC behavior and quantitatively assess different features of the tumor microenvironment that may 
influence cell behavior. In this review, we present tissue engineering approaches to model BC in vitro. Recent advances in the use of three-dimensional cell 
culture models to study various aspects of BC disease in vitro are described. The emerging area of studying BC dormancy using these models is also reviewed.
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Introduction
Despite significant improvements in research and development 
in the cancer field, about 95% of oncology drugs in clinical 
trials fail to receive Food and Drug Administration approval.1 
Part of the issue is the lack of suitable preclinical models that 
take into account the complexity of the disease and accurately 
represent disease progression. A growing need exists for tech-
nologies in research that can accurately recapitulate the in vivo 
environment. These models can represent the biological, physi-
cal, and biochemical environment of the natural extracellu-
lar matrix (ECM). Several innovations in tissue engineering 
have led to the design of scaffold- or matrix-based culture 
systems that more closely mimic the native ECM. For many 
years, cancer researchers have relied on two-dimensional (2D) 
monolayer culture studies and small animal models to study 
the complex tumorigenic mechanisms of angiogenesis, inva-
sion, and metastasis. However, 2D cell culture models lack 
the structure for proper cell–cell and cell–matrix interactions 
and are not able to replicate an in vivo phenotype.2–5 Multiple 
studies have used small animal models for conducting can-
cer research. However, there exist major differences between 
cancer progression in humans and animals.3,6 Also, using ani-
mals can be very costly, laborious, and requires animal facili-
ties as well as Institutional Animal Care and Use Committee 
approval.7 Moreover, understanding specific factors such as 
chemical, cellular, and mechanical cues in animal models can 
be difficult to discern due to their complexity.8,9 Recently, there 
has been promising published work on three-dimensional (3D) 
cell culture models developed to study breast cancer (BC) 

tumor progression in vitro. Results show that these models 
have the capability of re-establishing the cellular morphologies 
and phenotypes present during in vivo tumor development.10–15 
The 3D cell culture has been shown to impact cell morphology, 
gene/protein expression, signal transduction, proliferation, 
migration, polarization, and drug tolerance.16–19 As shown 
in Figure 1, cancer biology combined with tissue engineering 
strategies (scaffolds, microfabrication, and biologically inspired 
culture models) enable studies of various aspects of disease 
dynamics across different scales.20,21 For instance, at the tis-
sue level, factors such as cell–cell and cell–ECM interactions, 
culture dimensionality, and soluble factor transport and sig-
naling can be explored using biomaterials, scaffold fabrica-
tion techniques, and bioreactors. Moreover, at the cellular 
level, features such as topography and mechanical properties 
can be tailored using microfluidic channels.22,23 In addition, 
with the integration of cancer biology and engineering, novel 
in vitro approaches can be used to quantitatively assess dif-
ferent features of the tumor microenvironment.24–26 In this 
review, we discuss the recent literature using tissue engineering 
approaches in developing in vitro models for BC research and 
drug discovery. The 3D in vitro models and their applications 
with an emphasis on studying dormancy are described.

Three-dimensional Culture Systems
The 3D culture models are important tools in the advance-
ment of basic cancer research. Nelson and Bissell11 have 
been one of the pioneers to use 3D to model the murine 
mammary gland in both its normal and diseased state. They 
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also showed that the design criteria to model BC in vitro in 
3D are similar to those used in tissue engineering. Other 
groups have also been able to adopt their techniques to 
study cancer in 3D and further develop matrices to sustain 
organoid growth in vitro. Based on the current literature, 
next steps are to utilize them as predictive models in mas-
sive drug screening processes, shifting from academia to the 
pharmaceutical industry.

As shown in Figure 2, 3D in vitro culture systems to 
model tumors can be mainly categorized into cells cultured 
as multicellular aggregates (spheroids) and cells embedded in 
constructs made of natural or synthetic matrices.27 In addition, 
in vitro systems have been developed to model tumors and 
the influence of the microenvironment using high-throughput 

technologies such as microfluidic devices. These systems are 
described in more detail in the following sections.

Spheroids. Despite advances in the treatment of BC, mor-
tality rates of this disease still remain very high, primarily due 
to metastases in other organs such as bone, brain, and lungs.1 
As depicted by Talmadge,28 these metastases start as single 
cell that detaches from the primary breast tumor and travel 
through the bloodstream or the lymphatic system to a second-
ary site, where at first they form micrometastases that stay 
undetected. Current therapies using cytotoxic drugs are deliv-
ered systemically causing serious side effects for patients and 
frequently do not offer prevention of long-term metastases.29,30 
Spheroids have been widely used in the cancer field as a model 
system in several studies involving 3D cell culture for drug 

Figure 1. Tissue engineering concepts offer a powerful toolbox for cancer research areas. Modified from Hutmacher et al.63 reused with permission from 
elsevier.

Figure 2. schematic picture of (A) a tumor and (B) different tumor models. Modified from Ricci et al.27 reused under the terms of a CC-BY license. 
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screening predominantly for high-throughput applications 
(Fig.  3).31 Spheroids are 20–1000  μm diameter clusters of 
cells that self-aggregate when cultured in rotary wall vessels or 
spinner flasks. Spheroid cultures have been described to gen-
erate heterogeneous cell populations that vary in response to 
diffusion limitations similar to the in vivo environment and 
unlike cells seeded on 2D monolayers.32,33 Spheroids have 
been shown to preserve the physiological shape of the tumor, 
respond to chemotherapy and radiation therapy,17,20,34 and 
maintain tissue-specific properties of the primary tissue.33,35,36 
Moreover, the 3D arrangements of the spheroids facilitate dif-
ferentiation to support expansion of heterogeneous subpopula-
tions similar to that observed in vivo.18,37 Several techniques 

have been presented in the literature for culturing spheroids. 
The most widely used techniques involve growing cells on 
plates coated with low attachment substrates to prevent cell–
substrate interaction,38,39 in hanging drops,31 or in a continu-
ally rotated suspension such as a spinner flask.40 As shown in 
Figures 4 and 5, Markovitz-Bishitz et al41 also were able to 
grow mature spheroids in microchambers as a drug screen-
ing tool. However, these techniques are time consuming and 
hard to standardize because they often produce spheroids with 
a nonuniform range of shapes and sizes with the lack of control 
in the cell aggregation process. To address some limitations of 
traditional spheroids, recent reports in the field have shown 
controlled 3D culture in Matrigel microbeads to analyze clonal 

Figure 3. spheroids of various cell lines generated by the hanging drop method (bar = 100 μm). (A) MCF-7 (mammary gland adenocarcinoma); (B) WW; (C) 
MM483 (human multiple myeloma); (D) MM239 (human multiple myeloma); (E) Me1402 (human melanoma); (F) MCF-10a (mammary gland fibrocystic disease –  
nontumorigenic); (G) dU-145 (human prostate carcinoma); (H) HT-1080 (fibrosarcoma); (I) hela (human cervical carcinoma); and (J) Caco-2 (human colon 
adenocarcinoma). reused from Kelm JM et al31 with permission from the publisher, John Wiley and sons. Copyright 2003 Wiley Periodicals, inc.
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Figure 4. spheroids cultured in microchambers. (A) scanning electron microscopy (seM) micrograph of the microstructure array embossed on a glass 
surface. Note the dense honeycomb structure, the sharp edges between the microchambers and the filled microchambers that form built-in points 
of origin on the array. scale bar: 500 μm. (B) seM micrograph of one spheroid in the microchamber. scale bar: 50 μm. (C) structured illumination 
images of live dead staining of spheroids after 72 hours, overlapped with transmission images. Green staining (Fda) indicates live cells, while red (Pi) 
indicates dead cells. note that dead cells are rarely observed. scale bar: 200 μm. (D) Fluorescence image of hoechst 33342-stained spheroids in the 
microchamber array. scale bar: 200 μm. reused from Markovitz-Bishitz Y et al,41 with permission from elsevier.

acinar development.42 For instance, Dolega et al have estab-
lished and optimized a technique for microfluidic Matrigel 
droplet formation where epithelial cells are encapsulated, so 
that on an average a single acinus is formed per single Matrigel 
bead. The group also mentions that with their approach acini 
culture homogeneity is conserved, and 3D structures are reca-
pitulated for further analysis such as fundamental genomics 
and flow-based high-throughput analysis.42

Microfluidics. Recent advances in microfluidic technol-
ogy have made it possible to develop innovative assays that 
enable accurate control of the cellular microenvironment,43 
thus addressing limitations of several assays that fail to allow 
user-defined microenvironments where chemical, physical, 
and mechanical stimuli can be accurately controlled. Micro-
fluidic assays are highly beneficial toward clinical applications 
since they are high throughput and automated, thus requir-
ing minimal manual operations during measurements.44 Cell 
seeding in microfluidic systems is usually done by loading cells 

suspended in fluid or hydrogel solution, with cell movement 
being monitored after establishment of chemokine gradient or 
flow conditions.45–48 For instance, Polacheck et al48 established 
a microfluidic cell culture system to investigate the effects 
of interstitial flow on tumor cell migration (Figs. 6 and 7)  
and found that breast cancer cells (BCCs) migrated in an 
organized fashion with interstitial flow as compared to control 
devices without flow where cells migrated randomly. Similar 
to spheroid cultures, several 3D models have been established 
using microfluidic devices49,50 to study metastasis initiation 
and progression. Some of the leading fabrication techniques 
have been proposed by Stroock and Fischbach51 to address 
the drawbacks of conventional in vitro technologies lack-
ing variation of soluble chemicals or a representative model 
of in vivo mass transport. Moreover, more recently, several 
investigators have applied microfabrication technologies to 
obtain engineered biomimetic vasculature in order to simulate 
physiological transport phenomena within these microfluidic 
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conduits.23,52,53 The main objective of these studies is to 
characterize the processes activated by cancer cells under shear 
stress conditions: adhesion with endothelial cells (ECs) and 
degradation of the basement membrane to undergo metastatic 
growth. Furthermore, in these devices, 3D cultures made with 
Matrigel54,55 or collagen48,56–58 scaffolds are subjected to a 
continuous flow (shear stress, interstitial fluid flow). The main 
goals are to allow for the analysis of epithelial–mesenchymal 
transition (EMT) processes as a function of fluid forces during 
tumorigenesis. However, a major disadvantage of these high-
throughput microfluidic assays is that the information content 
is too simplistic and does not fully depict the complexity of a 
biological phenomenon. For instance, microfluidic culture sys-
tems are constrained to very small artificial environments in 
the order of few hundreds of microns, which fail to mimic the 
heterogeneous complexity of breast metastatic niches. In addi-
tion, these small environments with relatively low seeding den-
sities can be challenging for some biochemical assays.38,59–62

Scaffolds. The 3D culture techniques usually include 
adding cell suspension to matrices such as type I collagen or 

Matrigel or culturing cells on biomaterial scaffolds that can 
be fabricated into various desired architectures from different 
materials.20,25,63–65 Hydrogel matrices, such as type I collagen 
and Matrigel, and synthetic matrices have been widely used 
to investigate how the physical properties of ECM modulates 
tumor cell invasion.66,67 Generally, in these studies, tumor 
cells are uniformly seeded inside a homogeneous 3D ECM 
and their phenotypic characteristics are monitored in real time 
or after a given time period.67,68 Many groups have shown the 
benefits of using 3D scaffolds over 2D tissue culture polysty-
rene (TCP) for obtaining an in vivo phenotype.2–5,26 In gen-
eral, studies comparing 3D models using biomaterials to 2D 
monolayer cultures using cell lines across a range of cancer 
types have demonstrated in vitro proliferation rates closer to 
those found in vivo,10,69 increased gene expression, especially 
upregulation of angiogenic factors,10,69–71 and enhanced drug 
resistance (Fig. 8).5,10,69,72

Natural biomaterials. Matrigel is a basement membrane 
formulation derived from the Engelbreth–Holm–Swarm 
mouse sarcoma. The major ECM components of Matrigel 

Figure 5. assembly process of the individual cells on the microstructure. (A) initial distribution immediately after seeding. (B) six hours after seeding. 
(C) eighteen hours after seeding (note that by this time most cells in each microchamber are already arranged in one amorphous cluster). (D) Mature 
spheroids, 48 hours after seeding. reused from Markovitz-Bishitz Y et al,41 with permission from elsevier.
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Figure 6. Microfluidic cell culture system for investigating the effects of interstitial flow on tumor cell migration. (A) Schematic of the microfluidic device. 
the device consists of two channels (P1 and P0) separated by a region in which cells are suspended in collagen type i gel. By applying a pressure 
gradient across the gel, a consistent flow field is generated. To validate the flow field, fluorescent microspheres were introduced into the bulk media 
and time-lapse images were taken to track the beads. (B) Velocity vectors observed by tracking the fluorescent microspheres (green) superimposed on 
streamline vectors for a computation model (blue) and on a composite phase contrast image of the region of the device indicated by the dashed line in a. 
the composite phase contrast image is comprised of subregions that were imaged sequentially to measure velocity throughout the whole gel region. 
reused from Polacheck WJ et al.48 Copyright is retained by the authors of the original work.

Figure 7. Interstitial flow influences direction of cell migration. (A) Sample time-lapse images of a cell migrating in an interstitial flow field. Flow is 3.0 μm/s 
from top to bottom in the image. (B) sample data from one control device. the polar histogram demonstrates distribution of angles of net migration vectors 
for cells in a population in one device. Cells in control devices without flow migrate randomly. (C) Flow changes the distribution of migration vector angles. 
reused from Polacheck WJ et al.48 Copyright is retained by the authors of the original work.
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include laminin-1 (α1β1γ1), collagen IV, enactin (nidogen-1), 
and perlecan (heparin sulfate proteoglycan). Moreover, type I  
collagen is used as a substrate for cell culture and tissue engi-
neering applications since it contains the tripeptide RGD 
(Arg–Gly–Asp), a short amino acid sequence that binds to 
receptors on cell surfaces.73 Type I collagen hydrogels possess 
3D architecture and biocompatibility that are ideal properties 
to mimic some of the conditions of the tumor microenviron-
ment such as cell-mediated degradation of collagen allowing 
for remodeling of the matrix during proliferation, migration, 
and infiltration.74 Type I collagen-based hydrogels can pro-
mote cell adhesion, proliferation, and the formation of large 
cell clusters.2,26

Matrigel and type I collagen isolated from animal tissues75  
possess unique characteristics that can be modulated by adjust-
ing gelling conditions such as gel thickness, temperature, 

and concentration.76–78 However, when using Matrigel with 
cells, several studies have also identified batch-to-batch varia-
tions that cannot be controlled and can be problematic when 
interpreting results from these studies,79–81 suggesting that 
improved 3D systems are still needed.

Synthetic biomaterials. To address the shortcomings of 
natural biomaterials, synthetic materials have been widely used 
by cancer biologists and engineers. Synthetic biomaterials can 
be fabricated in a reproducible manner and in large quantities. 
Some of the commonly used synthetic biomaterials to gen-
erate BC models include poly(lactide-co-glycolide) (PLG),10 
poly(lactic acid) (PLA),5,82 and poly(ethylene glycol).83 Paszek 
et al84 found that combining polyacrylamide gels with ECM 
components and changing the elastic moduli can disrupt epi-
thelial tissue homeostasis, potentially leading to malignant 
behavior. Recently, Ghajar and Bissell20 have described tumor 

Figure 8. Breast cancer cells cultured on collagen I hydrogels. MDA-MB-231 cells were cultured in collagen I hydrogels for one, three, five, and 
seven days (A–D, respectively), exhibiting the typical cell–matrix and cell–cell interactions observed in vivo. Cells developed an elongated morphology 
over seven days with visible processes, demonstrating cell–matrix interactions. as the cells began to proliferate, they aggregated into 3d clusters, 
demonstrating cell–cell interactions. scale bars are (A, B) 10 μm and (C, D) 20 μm. reused from szot Cs et al,71 with permission from elsevier.
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engineering as “the construction of complex in vitro culture 
models that mimic aspects of the in vivo tumor microenviron-
ment to study the dynamics of tumor development, progres-
sion, and therapy happening in multiple scales.”  Fischbach 
et al,10 Cross et al,13 and Szot71 have engineered 3D in  
vitro tumor models using both natural and synthetic poly-
meric scaffolds, respectively, showing that ECs can remodel 
dense type I collagen matrices in response to angiogenic fac-
tors from cancer cells (Fig. 9) and the different effects of these 
angiogenic factors on drug responsiveness. Embedding cancer 
cells in 3D hydrogels may induce stress, such as limited oxygen 
and nutrient transport, as compared to 2D cultures and may 
induce the expression of responsive genes, such as hypoxia-
inducible factor and vascular endothelial growth  factor. Find-
ings, therefore, demonstrating cancer cells  cultured in 3D 
better recapitulate in vivo behaviors than 2D  cultures.2,85  
Synthetic biomaterial scaffolds offer better outcomes for 
 studies that require tailoring of the tumor microenvironment 
(eg, mechanical properties and surface chemistry).4

Other Cancer Models
Despite advances in drug development, one of the main issues 
that still remains is the lack of correlation between preclinical 
findings and clinical trial results.86 Thus, over recent years, 
several groups have established BC patient-derived xenograft 
(PDXs) models as main tools for translational research.87–95 
For these PDX models, the tumors of the patient, acquired 
via biopsy or surgical resection, are sliced and transplanted in 
immunodeficient mice and left to grow without any in vitro 
manipulation. Consequently, generations of mice are used for 
drug-testing purposes in an effort to advance patient therapy.96 
These models are also known as personalized mouse models 

or patient-derived tumor xenografts models to acquire further 
understanding on tumor progression, metastasis, and eradica-
tion via key targets. PDXs generated from BC tumor samples 
have been shown to mimic several tumor behaviors and char-
acteristics of the original tumor.87,89,95 Moreover, in the past 
20 years, there have been several improvements in BC PDXs. 
For instance, DeRose et al89 incorporated the addition of mes-
enchymal stem cells (MSCs) to modify the microenviron-
ment, while other groups such as Kabos et al97 incorporated 
Matrigel with the PDXs models. Additionally, studies by Liu 
et al98 were able to show that CD44+ cancer stem cells (CSCs) 
directly metastasize to the lungs and lymph nodes using PDXs 
indicating that breast cancer stem cells (BCSCs) characteriza-
tion could be performed using PDXs models.

Unfortunately, PDXs have several limitations. One issue 
is the rapid loss of human stroma that becomes replaced by 
murine stroma following engraftment,89 potentially leading to 
change in the tumor biology.99 Considering the importance 
of immune cells during tumorigenesis and BC metastasis, 
another main issue with PDXs is the need to use immuno-
compromised mice. Moreover, even with the immunocom-
promised mice, PDXs models have low engraftment rates and 
require a long time (several months) to be established. Addi-
tionally, in comparison to regular tissue culture techniques, 
PDX models are significantly more costly since they require 
production of genetically engineered mice and their mainte-
nance. Thus, overall PDXs have not led to major enhancement 
in the survival rate of patients with cancer and needs further 
improvements.100

Applications
Many cancers have been shown to metastasize to bone, and 
this topic has been intensely raised in the current research 
leading to novel models to establish the multiple stages of 
metastasis.101,102 It is now well known and accepted that in the 
primary stages of metastasis, disseminated tumor cells in the 
bone undergo a prolonged period of growth arrest in response 
to cues from the bone marrow (BM) microenvironment, fol-
lowing the successful removal of the primary tumor, this is also 
known as “dormancy”.28 Dormancy has been implicated with 
cell cycle arrest and drug resistance, and engineering of dor-
mant stage has emerged as a novel clinical approach to tackle 
BC. This clinical behavior is frequently observed in cancers of 
the breast,103 along with other cancers (skin104 and prostate105) 
with relapse time varying from years to decades. In the case of 
BC, bone is the most common site of metastasis, affecting up 
to 70% of women with advanced disease.106 The progression 
of this disease results in severe skeletal complications with an 
average 5-year survival of only 20% of the patients.107

Despite several improvements, the mechanisms underly-
ing BC homing to bone remains poorly understood. Primary 
breast tumors can transform to invasive BC. This transforma-
tion of the cells is also known as EMT.108,109 During EMT, 
the BCCs lose their epithelial phenotypes including their 

Figure 9. hypoxia-inducible factor-1 alpha (hiF-1α) and vascular 
endothelial growth factor-a (VeGF-a) gene expression of Mda-MB-231 
cells cultured in 3d type i collagen hydrogels in comparison to cells 
cultured on 2d tissue culture polystyrene. Gene expressions were 
significantly upregulated when MDA-MB-231 cells were cultured in 3D 
type i collagen hydrogels as compared to cells cultured in a monolayer on 
2d tissue culture polystyrene. Gene expression was compared on day 0 to 
determine the specific effect of 3D culture without the contribution of cell 
proliferation or the development of hypoxia. *P  0.05 and ***P  0.001, 
respectively. reused from szot Cs et al,71 with permission from elsevier.
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polarity and specialized E-cadherin-based cell–cell contacts, 
and they acquire a migratory phenotype, which is associated 
with an increase in metastatic potential.110,111 Recently, CSCs 
have been described as inducers of EMT in tumor cells.112 
Furthermore, Phillips et al113 have demonstrated that cells 
undergoing EMT may be chemoresistant and have linked 
this resistance to the presence of CSCs within this popula-
tion of transformed cells. Additionally, the EMT process 
allows CSCs to maintain their self-renewal abilities leading 
to a more invasive phenotype capable of initiating second-
ary tumors at distant sites.114 Studies by Louie et al115 have 
linked BC with EMT by using BCSCs conferring enhanced 
invasiveness, conserved EMT properties, and stem-like prop-
erties in an immune-deficient mouse model. It is generally 
established that dormant tumor cells can stay in a nondividing 
phase for many years as single cells with chemoresistance and 
radiation resistance characteristics.116–119 Hence, BC resur-
gence is believed to be a result of BCSCs remaining dormant 
within the bone microenvironment. BCSCs, as described by 
Al-Hajj et al,87 possess several other characteristics such as 
long-term self-renewal, chemoresistance, and ability to initi-
ate distant metastatic disease.120 There is a growing need to 
understand this mechanism of dormancy in order to develop 
therapies to target these dormant cells.3,63,87,117,121–137 In the 
literature, there are two categories of dormancy. First is cel-
lular dormancy, where single cells enter into a nonproliferative 
state. Cells are described to be quiescent and can show G0/G1  
cell cycle arrest in response to microenvironmental signals 
or stresses.102 Second is tumor mass dormancy in which the 
growth of the tumor mass is limited by a state of matched 

turnover between proliferative and apoptotic cells.138 BC bone 
dormancy in vitro models have fundamental limitations with 
regard to reproducibility and flexibility of design. To date, 
many 2D in vitro models and in vivo models have been used 
to investigate the tumor microenvironment;139,140 however, 
the complexity of human bone is difficult to recapitulate.141,142

Although 2D models present easy and powerful methods 
for investigating BCC behavior in vitro, a 2D cancer postme-
tastasis model oversimplifies the native 3D microenvironment 
due to the lack of spatial cues.50 In addition, a 2D cell–cell 
in vitro model often fails to mimic cellular interaction with 
native ECM. This lack of cell–matrix interactions can affect 
gene expression of both normal and cancerous cells.143 Some 
groups have demonstrated 3D models of cancer cell dormancy 
(Table 1). For instance, Weaver et al144 showed that block-
ing β1 integrins can lead to BCCs entering a nonproliferative 
phase. Similarly, to represent the premetastatic niche, Ghajar 
et al145 have recently fabricated microvascular constructs made 
of stromal cells derived from the BM and ECs in order to have 
a variety of cell populations present in their model to represent 
the metastatic niche. Their findings suggest that the presence 
of the ECs reduced proliferation of cancer cells by fivefold. 
Moreover, dormant cells versus active cells were found to have 
different proliferation potential with active cells being able to 
proliferate more. Moreover, progress has been made in fabricat-
ing bioreactors with the potential of mimicking the architec-
ture observed in the bone.20,146,147 In these studies, BCCs were 
cultured and observed to form a “single cell file” that is known 
to be characteristic of metastatic cancer in vivo. Findings also 
showed that the growth rate of BCCs was reduced in this 3D 

Table 1. a summary of models studying breast cancer dormancy.

MODELS FOR BREAST CANCER DORMANCY SIGNIFICANT FINDINGS AND LIMITATIONS REFERENCE

investigated dormancy of BCCs in cocultures with 
bone marrow cells on 3d collagen porous scaffold 
(Gelfoam) both in vitro and in vivo.

Identified bone marrow stromal cells in co-culture 
with BCCs supported proliferation whereas other 
bone marrow cell lines were inhibitory. Validated 
findings in vivo. Bone marrow cell lines were derived 
from other sources—hUVeC, immortalized fetal 
osteoblasts and stromal cells, which may not be 
representative of the cells in the native adult bone 
marrow microenvironment.

149

Fabricated 3d scaffolds consisting of micron-sized 
random and aligned fibers to mimic the orientation 
and size of collagen fibers in the native ECM.

investigated proliferation, viability and cell cycle 
analysis of BCCs on electrospun fibrous scaffold 
and determined the aggressive BCCs adopt a 
dormant phenotype, while chemoresistant BCCs 
retained their dormant phenotype. Co-cultures with 
other cells types were not examined.

150

Examined the influence of β1- and β4-integrins 
on BCC behavior in a 3d basement membrane 
(Matrigel).

demonstrated that integrins regulated the level of 
the acini organization and reverted the malignant 
phenotype to a normal phenotype. Matrigel is 
derived from tumor basement membrane and can 
vary in protein/growth factor content.

144

investigated BCC behavior in metastasis assay in 
mice and in an organotypic microvascular culture.

determined dormant BCCs reside upon microvas-
culature of lung, bone marrow and brain in vivo and 
endothelial cells via thrombospondin-1 induces 
sustained BCC quiescence. hUVeC cells used 
in in vitro model may not represent native adult 
endothelium.
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Figure 10. Bone marrow (BM) metastatic niche models: primary bone marrow mesenchymal stem cell (BMsC) supported proliferation of breast cancer 
cells (supportive niche), whereas a mix of osteoblasts, mesenchymal, and endothelial cell lines (BMCls) did not support proliferation of breast cancer 
cells (inhibitory niche). (A) diagram of bone marrow niche model setup. the 3d biomatrix is seeded with GFP+ BMCl or BMsC when bone marrow cells 
reach subconfluency; dsRED+ BCCs are seeded in low numbers. (B) representative images of dsred+ MCF7 cells grown into GFP+ BMCl (bottom) or 
BMsC (top) over six days. scale, 50 μm. (C–G) Total fluorescence of BCCs (MCF7, SUM159, MDA-MB-231, SUM149, and BT474) was monitored. BCCs 
seeded in 3d biomatrix without stromal cells (3d monoculture, 3d) and BCCs plated in standard 2d conditions (2d) were used as controls. Fluorescence 
is expressed as the fold increase from 24 hours after seeding (n = 6 experiments, five replicates in each experiment). Error bars, standard error of the 
mean. *P  0.05; **P  0.01; ***P  0.001; two-way analysis of variance with Bonferroni posttest. (H) Proliferation rates of cell lines in 3d coculture. 
Only BCCs were found to be growth arrested in the inhibitory niche (BMCl). er+ BCCs are indicated in bold. the fetal kidney cell line, 293t, and the 
osteosarcoma cell lines, U2Os and MG63, proliferate in the BMCl coculture. the subline of Mda-MB-231 1833 BoM proliferates in BMCl coculture, the 
parental and the 4175 lM2 lines do not.149

environment, while osteoblasts in the coculture altered the 
phenotype in response to the metastatic invasion, adopting a 
more cuboidal morphology.148 As a model of cancer dormancy, 
Marlow et al fabricated a 3D coculture model by culturing 
MSCs together with ECs and BCCs in a 3D collagen matrix. 
BCCs in cocultures proliferated less than in monocultures and 
appeared to be cell cycle arrested (Fig. 10).149

Recently, others and we have shown that 3D in vitro 
models using synthetic scaffolds can overcome the limitations 
of 2D models.150,151 Our studies using MDA-MB-231 BCCs 
seeded on the 3D scaffolds showed changes in cell morphol-
ogy, adherence, and growth. Unlike cells on fibrous scaffolds, 
cells seeded on TCP surfaces displayed confluency by day 7  
(Fig. 11A). Furthermore, the aggressive MDA-MB-231 
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Figure 11. BCCs morphology and growth on polycaprolactone (PCl) random and aligned scaffolds. (A) Confocal fluorescent microscope images of 
MDA-MB-231 cells on the PCL random and aligned fibrous scaffolds and TCP control. Volume view of MDA-MB-231 BCCs, green indicates F-actin. On 
random fibers, nontreated cells at (a) day 1 and (b) day 7 and treated cells at (e) day 1 and (f) day 7. On aligned fibers, nontreated cells at (c) day 1 and 
(d) day 7 and treated cells at (g) day 1 and (h) day 7. 60× objective. scale bar is 25 μm. The arrows show the cell body orientation along the fibers. (B) BCC 
growth on random and aligned fibrous scaffolds in comparison to TCP. (a) TCP. aP  0.05, significant increase in growth of nontreated BCCs at day 4 as 
compared to day 1. bP  0.05, significant increase in growth of nontreated BCCs at day 7 as compared to day 1 and day 4. (b) Random fibers. aP  0.05, 
significant increase in growth of nontreated BCCs at day 4 as compared to day 1 and day 7. (c) Aligned fibers. Values are mean ± standard deviation.150

cells showed little to no change in cell number over time on 
the scaffolds, whereas on TCP, they displayed a significant 
increase in cell number at days 4 and 7 as compared to day 1 
(P  0.05) (Fig. 11B), indicating that the scaffolds may sup-
port dormancy. Pathi et al152 fabricated a 3D PLG scaffold 
and illustrated that hydroxyapatite nanoparticles play a crucial 
role in regulating BC bone metastasis. Moreover, the ability of 
malignant cells to grow and home to the BM in vivo depends 
upon specific cell–cell and cell–ECM interactions, many of 
which are absent when cells are cultured on conventional 
2D tissue culture plastic.153 Currently, the cell-based 2D 
monolayer cultures used as in vitro models present several 
limitations that 3D tissue engineering scaffolds/models can 
address.17,34,154,155

Conclusion
A growing need exists for the development of novel in vitro 
systems to facilitate the discovery of innovative therapies for 
BC. In order to realistically mimic the tumor microenviron-
ment, 3D systems can be designed to allow for complex inter-
actions between multiple cells and cell–ECM. As mentioned 
in this review, current animal models have several limitations 

that 3D tissue engineered scaffold models can potentially 
address. It is feasible to develop 3D culture systems that can 
be specifically designed to recapitulate key characteristics of 
the tumor tissue to model specific disease stages of BC (EMT, 
metastasis, invasion, dormancy) and important BC hall-
marks including several layers of complexities (coculture with 
immune cells, bone cells, growth factors, etc). The 3D scaf-
folds can also be used in conjunction with high-tech microflu-
idic system devices to acquire highly effective models to screen 
and target CSCs within different milieu. These efforts would 
most likely be less expensive than the cost of animal studies. 
The 3D culture systems have been established and shown to 
be an improvement over 2D monolayer cultures in several 
aspects (ie, drug response, model of invasion and metastasis, 
model of EMT, and recently model of dormancy). Thus, tissue 
engineering can advance the development of relevant in vitro 
models for BC research.
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