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Abstract 

Background:  Small Proteins have received increasing attention in recent years. 
They have in particular been implicated as signals contributing to the coordination 
of bacterial communities. In genome annotations they are often missing or hidden 
among large numbers of hypothetical proteins because genome annotation pipelines 
often exclude short open reading frames or over-predict hypothetical proteins based 
on simple models. The validation of novel proteins, and in particular of small proteins 
(sProteins), therefore requires additional evidence. Proteogenomics is considered the 
gold standard for this purpose. It extends beyond established annotations and includes 
all possible open reading frames (ORFs) as potential sources of peptides, thus allowing 
the discovery of novel, unannotated proteins. Typically this results in large numbers of 
putative novel small proteins fraught with large fractions of false-positive predictions.

Results:  We observe that number and quality of the peptide-spectrum matches 
(PSMs) that map to a candidate ORF can be highly informative for the purpose of 
distinguishing proteins from spurious ORF annotations. We report here on a workflow 
that aggregates PSM quality information and local context into simple descriptors and 
reliably separates likely proteins from the large pool of false-positive, i.e., most likely 
untranslated ORFs. We investigated the artificial gut microbiome model SIHUMIx, com‑
prising eight different species, for which we validate 5114 proteins that have previously 
been annotated only as hypothetical ORFs. In addition, we identified 37 non-annotated 
protein candidates for which we found evidence at the proteomic and transcriptomic 
level. Half (19) of these candidates have close functional homologs in other species. 
Another 12 candidates have homologs designated as hypothetical proteins in other 
species. The remaining six candidates are short (< 100 AA) and are most likely bona fide 
novel proteins.

Conclusions:  The aggregation of PSM quality information for predicted ORFs provides 
a robust and efficient method to identify novel proteins in proteomics data. The work‑
flow is in particular capable of identifying small proteins and frameshift variants. Since 
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PSMs are explicitly mapped to genomic locations, it furthermore facilitates the integra‑
tion of transcriptomics data and other sources of genome-level information.

Keywords:  Small proteins, Metaproteogenomics, Peptide-spectrum matches, 
Microbial communitities

Background
Small proteins (sProteins) with a size below 100 amino acids have received increasing 
attention particularly in prokaryotes. Recent studies have revealed indispensable bio-
logical functions of some sProteins. CydX (37 AA), for instance, regulates the activity 
of cytochrome oxidase and thus ATP production in E. coli [1], and SgrT (43 AA) is an 
inhibitor of the EIICBGlc glucose transporter regulating glucose uptake  [2]. System-
atic surveys have consistently identified large numbers of sProteins in prokaryotes, see 
e.g.  [3, 4], clarifying it has become clear that sProteins are not rare peculiarities. The 
human gut microbiome, for instance, features thousands of sProteins, many of which 
are predicted to function in cell-cell communication  [5]. Nevertheless, the available 
information has remained comparatively sparse due to the technical difficulties associ-
ated with their detection and identification using both computational and experimental 
methods.

The annotation of newly sequenced genomes is primarily based on homology, mak-
ing use of already existing gene annotations from related species. By definition, this 
approach is limited to homologs of genes that already been described already in at least 
one species. The method is also limited by incorrect entries in protein databases. Com-
plementarily, putative coding sequences can be recognized with the help of Markov 
models that classify open reading frames (ORFs). To obtain a reliable signal, usually a 
minimum length of 100 codons is required in genome annotation  [6]. These methods 
become unreliable for shorter ORFs, including those compiled in the BactPepDB  [7], 
which surveys all available complete prokaryotic genomes for peptides with a length 
between 10 and 80 amino acids. Comparative approaches, in particular methods such as 
RNAcode [8] that evaluate sequence alignments rather than single sequences, can reli-
ably recognize even very short coding sequences. They lose their power, however, if only 
few genomes within a suitable genetic distance are available. To-date, the computational 
prediction of sProteins is thus by no means an easy routine task. Ribosome profiling [9] 
also provides information on translated regions and thus constitutes an alternative man-
ner to identify putative novel proteins.

The gold standard for detecting sProteins is their direct identification in bottom-up 
proteomics. This technique relies on proteolytically cleaved proteins and subsequent 
analysis by LC-MS/MS [10]. Classic bottom-up proteomics protocols, however, tend to 
identify few sProteins since the small size implies that sProteins often yield only a sin-
gle proteotypic peptide [11–13]. This issue is aggravated by the fact that peptide iden-
tification itself depends on underlying databases of predicted polypeptides. Tools such 
Mascot  [14], comet  [15], MS-GF+  [16] and many others, therefore cannot identify 
peptides that are not in the set of protein annotations provided a priori. A peptide iden-
tified in this manner is referred to as peptide-spectrum match (PSM).

Proteogenomics approaches typically make use of a conceptual translation of the 
genome into all six reading frames as the basis for peptide identification. This results in 
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much larger 6frame databases and thus a (moderate) reduction of sensitivity, but com-
pletely avoids all annotation-related biases [17–19]. With a focus on sProteins, it is also 
possible to extend annotations with additional predictions of (short) ORFs with high 
coding potential [20]. Already two decades ago expressed sequence tag (EST) data were 
used to predict novel isoforms to allow the identification of proteins arising from splice 
variants [21]. More recently, the same idea has been used with hypothetical splice vari-
ants to identify missense SNPs, short indels, chimeric proteins, and intron retention [18, 
19]. Metaproteomics [22], i.e., the application of proteogenomics to entire communities, 
incurs an additional layer of complexity for data analysis due to the need of to disentan-
gle different, but often closely related species [23, 24].

The focus of this study was the discovery of novel, unannotated proteins, in particular 
those that have not been flagged as likely candidates by homology-based genome anno-
tation. This problem is more difficult than simply verifying an annotated protein candi-
date as the overlooked cases are often short, have no or only poorly described homologs 
in other species, harbor unusual features such as frameshifts, or overlap incorrect anno-
tations. As a consequence, the sensitivity needs to be increased, which necessarily leads 
to a rapidly growing number of false positive predictions. The estimation of protein-level 
false discovery rates (FDR) for proteomics data has received extensive attention in the 
last decade, see e.g.   [25–29]. FDR estimates, however, refer rates estimated across an 
entire genome. The already annotated proteins are thus heavily biased towards true posi-
tives by independent information, and the bulk of the false positives are concentrated in 
the so-far unannotated genomic regions [30]. Nevertheless, FDR estimates are a useful 
tool to determine cutoff-values also helpfull in the context of extending existing annota-
tion. Here we describe a workflow to prioritize unannotated candidate proteins based on 
aggregated quality measures of PSMs mapping to candidate and translational status of 
overlapping annotation items.

Results
Accuracy of identifying candidate proteins

Our goal was to identify novel protein candidates with high sensitivity, meaning that we 
can use the available annotations to exclude already known proteins from further inves-
tigation. To identify novel candidates, we start by mapping all PSMs of sufficient quality 
(see Methods) to the genome and use the genomic map of PSMs to determine candidate 
proteins using a set of rules based on the quality of the PSMs and the number of PSMs 
mapping to a putative ORF (see Methods). A candidate within an ORF extends down-
stream to the closest stop codon, while the upstream end is determined by the first start 
codon upstream of the upstream-most PSM mapped to the ORF.

In order to determine how well true proteins can be discriminated from false candi-
dates on the basis of properties of mapped PSMs, we use an extensive data set [31] for 
E. coli. The E. coli genome is nearly perfectly annotated, meaning unannotated candi-
dates are most likely false positive calls. In addition, we compare candidate calls using 
a 6frame database with calls based on a database of annotated proteins (proteome). 
While we expect that the sensitivity of 6frame is reduced compared to proteome, we 
can use candidates found only with the 6frame but not with the proteome database 
to estimate the false positive rate.
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If only a single PSM is required to identify a protein, we observe in that the major-
ity of the annotated E. coli proteins are called using both the 6frame database and 
annotation-based database. Figure 1a shows that there is nevertheless a noticeable dif-
ferences between the two databases. The consistency increases rapidly if more—not nec-
essarily distinct—PSMs are required, see also Additional file 1: Figure S1. While recovery 
is reduced by about 15% and 20%, respectively, the two methods yield nearly identical 
results when 6 or 10 PSMs are required. In the 6frame-based data, very few unanno-
tated candidates remain. Discrepancies between the databases are related almost exclu-
sively to PSMs with poor scores, Fig. 1b–d. Candidate proteins that are only detected by 
one of the two database show a strong accumulation of poorly scoring PSMs. Therefore 
they can be interpreted as mostly false positives.

FDRs estimated using different approaches from the PSM scores consistently indicate 
that the number of observed non-annotated loci can be explained by the expected num-
ber of false positives (see Methods). We therefore expect most of the unannotated loci to 
be false positives. That does not imply, however, that a small-to-moderate fraction can-
not be true positives. We therefore ask whether the distribution of PSM scores, i.e., the 
confidence with which they are identified from the MS/MS spectra, can be leveraged. 
First, we observe that most PSMs that are mapped by one but not the other database are 
of low confidence. Low confidence PSMs, furthermore, are strongly enriched in proteins 
to which only very few PSMs are mapped, Fig. 1b–d. This matches the observation that 

a

b c d
Fig. 1  Above: comparison of 6frame and proteome databases for peptide identification using the 
comet search algorithm. Three barplots are shown for 1, 6, and 10 PSMs required to call a protein. Each bar 
represents the size of protein sets. Blue shows the cut-off number of proteins which are annotated but not 
called by the use of any database. Green shows the number of proteins, which are called using the NCBI E. 
coli genome annotation as a database. Grey shows the number of proteins indenpendently detected by both 
databases. Red shows the number of proteins called by the 6frame data base. The dotted line shows the 
size of the complete NCBI annotation. Below: The score distributions of the PSMs for different sets of called 
proteins are shown. The score is given as a common logarithm. Red shows the set of proteins which are only 
detected by the 6frame database. The green set are the proteins which are only detected by using the NCBI 
annotation as the search database. Grey is the intersection of proteins that are identified by both databases
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false positive PSMs accumulate among unannotated ORFs  [30]. It is common practise 
in proteomics to aggregate statistics of PSM quality values to produce a score describ-
ing the confidence of protein identification [26–29]. Our observations suggest that such 
aggregate scores will also be useful for the purpose of extending existing annotations.

As a second measure of how well we are able replicate the original annotation using 
a 6frame database, we quantify the differences between start sites predicted with the 
6frame database and start sites reported in the original annotation. Their 3’-ends 
match perfectly as they are determined by the same in-frame stop codons. For most of 
the annotated candidates, we recover the original length of the annotated protein (domi-
nating peak at 0 in Fig. 2). For a fraction of the data we predict shorter candidates than 
those in the original annotation, presumably due to a lack of PSM coverage on the N-ter-
minal part of the candidate. In a small number of cases our candidates begin upstream 
of the given annotation. This concerns 24 proteins with 6 PSMs. Fig. 2 shows one exam-
ple, the fatty acyl-CoA synthetase FadD. Here, PSM evidence clearly shows that the true 
start codon is located upstream of the annotated coding sequence (CDS). Similar argu-
ments can be made for 4 of the 24 cases with extended N-termini, the full list can be 
found on the result web page. That is set up as part of the supplementary material. Indi-
cating that despite the outstanding quality of the annotation of the E. coli K12 reference 

a b

c
Fig. 2  Comparison between the length difference of candidates from 6frame search and the NCBI 
annotation of E. coli, expressed as fraction of the total protein length. A value of 0% (red dotted line) indicates 
that candidate and annotation are identical. Negative values mean that the candidate is shorter than the 
annotated protein due to lack of coverage by PSMs towards the N-terminus. Positive values imply that the 
candidate has a longer N-terminal sequence than that indicated in the annotation. Below, the N-terminus of 
the fatty acyl-CoA synthetase FadD is shown in the UCSC Genome Browser. The first track shows the reading 
frame of the genome on the negative strand. The second track shows the current annotation. After this the 
gene annotation is shown as predicted by RNAcode [8]. The next line shows a bar plot representation of the 
mapped reads per base of the transcriptomic data. At the bottom track the mapped PSMs are depicted. It is 
misannotated and extends to canonical start. Our extension of this reading-frame is supported by evidence 
of conserved coding sequences determined by RNAcode 
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genome, it is still not perfect and proteogenomics data are able to correct some of the 
remaining inaccuracies.

This observation prompted us to also inspect in detail the 11 “false positives” that are 
supported by 10 or more PSMs. It turns out that two of them corresponded to two parts 
of the formate dehydrogenase O subunit alpha, which our pipeline did not recognize 
due to a (presumably erroneous) stop codon in the genomic sequence. Two candidates 
are the two parts of the peptide chain release factor RF2, which has long been known to 
contain an obligatory frameshift [32]. Its peptides thus appear in two distinct predicted 
ORFs, neither of which completely matches the annotation. Several mRNAs in E. coli are 
known to produce minor variants that include a frameshift [33]. Two additional candi-
dates are an IS5 transposase, for which frameshift has also been reported [34], and the 
transcriptional regulator GlpR, which, according to the UniProt annotation also harbors 
a frameshift.

This leaves only 5 ORFs as likely false positives. Surprisingly, these candidates are well 
distinguished by the distribution of PSM scores: while the frameshift proteins harbor 
mostly well-scoring PSMs, the remaining, likely false positives are matched only by 
PSMs with poor scores. This observation further supports the idea to aggregate PSM 
quality statistics as a useful tool for protein prediction. It also advises against simply add-
ing − log(e-value) scores in order to predict proteins and instead suggests to use the best 
observed value, in line with the proposal of the PCM score (Best scoring PSM per pep-
tide charge modification combination) in [29].

Increasing sensitivity through specifying 6 PSMs per candidate moderately increases 
the number of candidate proteins to 29. Using the number of candidates predicted with 
a 6frame proteogenomics approach, that do not match the annotation (or are not 
called using a proteome database) shows that the FDR quickly drops with the number 
of PSMs that are required to call a candidate, Addition file 1: Figure S2.

The proof reader suggested to move the section below to move to the discussion
Our analysis of the E. coli data suggests that a coverage of 6–10 PSMs is sufficient to 

identify likely candidate proteins. Notably, these PSMs may correspond to the same pep-
tide. Combining this minimum coverage with a simple aggregate score derived from the 
− log(e-value) data of the individual PSMs readily allows the distinguish the recognizable 
proteins in E. coli form those that our detailed analysis classified as false positives. The 
detailed inspection of the data also suggested utilizing the average of the − log(e-value) 
score of the three best-scoring PSMs as a more robust measure than simply opting for 
the optimal − log(e-value) . It is unlikely that the E. coli genome harbors many undiscov-
ered candidates. We therefore analyse a larger, much less well annotated data set next.

Metaproteogenomics of SIHUMIx

The proteomics data for SIHUMIx was analyzed using a combined 6frame database for 
the eight species. In order to verify that this approach can properly separate the spectra 
from the different species we determined the number of PSMs mapped to more than 
one species, shown in Table  1. More than 95% of the PSMs are unique, and thus can 
be unambiguously assigned to one of the species of the consortium. The majority of 
the remaining PSMs matches only two positions on the metagenome (multiplicity= 2 ) 
either in the same or in two distinct species. PSMs with high levels of ambiguity are 
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exceedingly rare, reflecting the fact that members of the SIHUMIx are phylogenetically 
quite distant from each other.

For this model system we also analysed extensive RNA-seq data as a means of support-
ing proteogenomics-based predictions. It is not unexpected that there is only moderate 
agreement between protein and RNA abundances in Fig. 3, since RNA/protein ratios are 
known to vary considerably between organisms [35].

The rate of detection of known and hypothetical proteins in the eight SIHUMIx spe-
cies, as expected, correlates with the relative abundance in the mixture, see Table  2. 
There is near perfect congruence between 6frame and proteome databases, see Addi-
tional file 1: Table S1.

The distributions of known and hypothetical proteins differs dramatically across 
the eight SIHUMIx species. In most species, the majority of proteins are annotated as 
hypothetical based on the quality of evidence. Since the confidence levels are unlikely 
to be truly consistent between species due to differences in the efforts that have been 
expended for their annotation, this figure should however be interpreted with caution. 
The proportion of known and hypothetical proteins, however, at least reflect qualitative 
trends.

Novel proteins in SIHUMIx

We discovered a total of 419 unannotated protein candidates supported by at least 6 
PSMs in SIHUMIx. Since these initial candidates also include all those predictions that 
overlap annotated proteins in a different reading frame, we expected a priori that most 

Table 1  Ambiguous mapping of PSMs in the SIHUMIx dataset with proteome and 6frame 
databases

Multiplicity refers to the number of distinct loci in the metagenome to which a PSM maps

Multiplicity Proteome (%) 6frame (%)

1 0.9582 0.9599

2 0.0288 0.0271

3 0.0056 0.0051

4 0.0052 0.0051

5 0.0009 0.0014

6 0.0006 0.0006

Fig. 3  Species composition of SIHUMIx from proteogenomic (red) and transcriptome data (blue). The 
relative frequency is given as the number of PSMs per species divided by the total number of PSMs for the in 
the proteogenomic dataset, respectively the number of reads for transcriptome dataset. Both the mapped 
numbers of reads and the number of PSMs were normalized to complete genomic size and proteogenomic 
(6frame DB) size respectively
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of them would be false positives. While it is manageable to manually evaluate a few hun-
dred candidate proteins in a data set of particular interest, this is not practical for rou-
tine applications and thus requires computational support. In order to better understand 
this candidate set we systematically gathered all information on the protein candidates 
within it that were readily accessible by computational means. This leads to a natural 
workflow for prioritizing and validating.

A homology search against the non redundant NCBI protein database identified 60 
of the 419 candidates with extensive similarity to proteins with a functional annotation 
in related species. These cases are clearly shortcomings in the available annotations of 
the genomes in SIHUMIx and constitute a positive control for our approach and help to 
establish criteria, which can be applied to analysis the remaining candidates. We exclude 
these 60 proteins from further analysis as we are primarily interested in those candidates 
proteins that cannot be found using traditional homology-based methods. In addition to 
these homologs of known proteins, we identified another 47 of the 419 candidates that 
are homologs of hypothetical proteins.

To establish criteria for prioritization and validation, we first considered the distribu-
tion of the e-values of the PSMs that contribute to each candidate protein. The data in 
Fig. 4 already strongly suggest that this is a reliable predictor. We use the average ŝ of the 
scores s := − log(e-value) for the three best PSMs as an aggregate descriptor. Figure 7 
summarizes all candidates with at least 6 supporting PSMs. Figure 6 shows the protein-
level FDRs as a function of ŝ . Almost all candidates with ŝ > 3.5 , corresponding to a 
q-value of about 0.03 for the SIHUMIx data set, have homologous known proteins in 
other species. As an example, the B. producta candidate nov_57 is shown in Additional 
file 1: Figure S4. (top). It has a probable length of 72 amino acids and shows a recogniz-
able homology with adenylate kinase of similar length from Listeria.

In total, 47 of the 419 candidates have ŝ > 3.5 . We first inspect all candidates with 
more than 10 high scoring PSMs. Interspersed among these known genes are three novel 
proteins (B. producta nov_5, B. theta. nov_59 and nov_131). Nov_5 is clearly a complete 
protein, while nov_59 and nov_131 may be associated with frameshifts and constitute 
only parts of a protein. The most prominent candidate, B. producta nov_5 is shown 
in Fig.  5, lower panel. It has a likely length of 62 amino acids, judging from both the 
observed PSMs and the transcriptome data. Most but not all of these high-confidence 

Fig. 4  Score distributions of the PSMs mapping to the unannotated candidate proteins in E. coli. Each 
candidate was manually inpected by checking its genomic context and transcriptomic data. Those identified 
as likely true positives harbour PSMs with excellent scores, while those identified as likely false positives 
harbour only low-scoring PSMs
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candidates show evidence of transcription. Low RNA levels do not necessarily imply that 
the predicted protein is a false positive. In fact detection limits for RNA and protein may 
be vastly different. The typically much longer half-life of proteins may also contribute to 
explaining the presence of protein with low or undetectable RNA levels.

In five cases (B. producta nov_1, E. coli nov_8, B. theta. nov_34, B. theta. nov_131, B. 
theta. nov_61) there are also annotated proteins in the same reading direction. Owing 
to our definition of the candidates, which extends to the nearest in-frame stop- and the 
nearest in-frame start-codon, this kind of overlap indicates either an annotation error 
or a frameshift. Inspection shows that for B. producta nov_1 the available annotation 
of a TetR family transcriptional regulator extends across the stop codon. The remaining 
signals likely pertain to frameshifts. For B. producta nov_126 there is only weak evidence 
for translation of the annotated gene on the opposite strand, and convincing evidence 
for translation of a Cna B-type domain-containing protein corresponding to nov_126 
that has been left unannotated.

Only three candidates with 6-9 PSMs have ŝ ≥ 3.5 : B. producta nov_216, an IS66 fam-
ily transposase, nov_307 a hypothetical protein without functional annotation, and E. 
coli nov_302, the frameshift fragment of peptide chain release factor RF2 already dis-
cussed above.

The analysis of the remaining candidates with ŝ < 3.5 is much less straightforward. 
Although the overwhelming majority of them shows no homology to a known or 
hypothetical protein, this set contains at least a small number of proteins with known 
homologs with convincing proteomics evidence: B. producta nov_174 ŝ = 3.3 , B. pro-
ducta nov_215 ŝ = 2.9 , B. theta. nov_180 ŝ = 2.8 , and possibly E. coli nov_122 ŝ = 2.3 . 
Some others, such as B. producta nov_84 ŝ = 3.0 and nov_28 ŝ = 2.4 , however, are 
almost certainly false positives. A few curious cases, such as E. coli nov_123, ŝ = 2.1 , 
are indicative of incorrect stop-codons or read-through; here the candidate sequence 
matches a GntR family protein from related species whose sequences extend beyond the 
stop codon of the annotated E. coli GntR gene immediately upstream of nov_123.

Protein expression of the opposite strand is a good indication that a candidate is a false 
positive: while overlapping ORFs are not uncommon in bacteria, long overlaps of coding 
regions are very rare  [37, 38]. There are, however, a handful of exceptions. As already 
mentioned above, B. producta nov_126 is much more plausible than the potentially 
expressed ORF on the opposite strand. A few additional cases are supported by many 
good PSMs mapping to two or more distinct peptides. The best example in our data is L. 
plantarum nov_19, ŝ = 3.28 , which would be an interesting candidate for further study.

For moderate values of ŝ < 3.5 , therefore, we need additional criteria to distinguish 
between bona fide protein detections, novel fragments of already known proteins that 
should prompt an update of known protein, and false positives. We therefore inspected 
additional descriptors. First, we considered the number of distinct peptides correspond-
ing to the PSMs belonging to a given candidate. Supporting the use of ŝ as a valuable 
indicator, we found that with few exceptions, the candidates with large ŝ values have 
multiple peptides, while for small ŝ , most candidates are supported only by a single pep-
tide. The few notable exceptions (nov_174, nov_215, nov_180) with more than 3 distinct 
peptides have already been identified above as proteins with known homologs.
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Workflow for identifying and prioritizing candidate proteins

The detailed evaluation of both the E. coli and the SIHUMIx metaproteomics data 
reported above informs the workflow for the identification of novel proteins shown in 
Fig. 8. It primarily relies of the number of PSMs mapped to an ORF and the distribution 
of their e-values, irrespective of whether or not there are multiple distinct peptides. The 
initial decision is based on the number of PSMs, followed by a cut-off on the average 
score of the three best PSMs. Together the two values ensure reproducibility of good 
matches in the data set. For values of ŝ ≥ 3.5 , unlikely candidates are only those with-
out distinct peptide matches and no evidence for transcription. For values 2.5 ≤ ŝ < 3.5 
multiple distinct peptides may rescue an initial negative decision. Here, transcriptom-
ics data are not decisive, since prokaryotic genomes produce diverse non-coding tran-
scripts  [39–41], so that transcription in itself cannot be used as a reliable predictor of 
translation.

Discussion
We have shown here that prokaryotic proteins can be identified with high reliability by 
considering the PSMs that map to their corresponding genomic locations. Using SIHU-
MIx as an example we found that ŝ (the average logarithm of the e-value of the best few 
PSMs that map to a candidate ORF) is an excellent discriminator between bona fide 
proteins and other false positive signals. In conjunction with the number of PSMs, it 
is sufficient to identify nearly all of the ORFs in the SIHUMIx data that have function-
ally annotated homologs in related species and thus are most likely true proteins. In a 
fine-grained analysis, the number of distinct peptides helps to distinguish likely can-
didates from background noise in the case of moderate values of ŝ . Manual inspection 
also revealed that translation products involving frameshifts can be detected even if the 
frame-shifted part contains only a single detectable peptide. Somewhat surprisingly, 
RNA expression data added very little to the task of identifying novel proteins.

The choice of the cut-off values for the minimum number of PSMs and ŝ can be 
grounded more soundly in established statistical procedures by computing FDRprot 
curves as a function of these two parameters. For a fixed minimum number of PSMs this 
allows a translation of ŝ into a q-value. Empirically, we observed that most of the plausi-
ble candidates are found within q-value cut-offs of 0.01 and 0.1. It is important to note, 
however, that this q-value refers to the complete proteome and therefore to the task of 
annotating proteins de novo in a unannotated genome. It does not have a clear quantita-
tive interpretation for the application scenario considered here, namely the extension of 
an a priori given annotation of protein-coding regions. In this setting, the overwhelm-
ing majority of true positives correspond to already annotated proteins, which are typi-
cally supported by multiple sources of independent information, such as homologous 
proteins in other species, codon usage patterns, or independent proteomics studies. As 
a consequence, the false positives are concentrated among the PSMs mapping to unan-
notated regions. This effect also has been discussed previously [30]. Starting from a good 
homology based annotation, which is usually generated with publication of genomes, 
the FDR when restricted to must be expected to be magnitude larger than on the whole, 
genome-wide data set.



Page 11 of 20Anders et al. BMC Bioinformatics          (2021) 22:277 	

The completion of a (good) genome annotation thus is not merely an issue of cut-off 
values but requires a workflow that (a) limits the candidate set, (b) allows prioritisation 
of the candidates, and (c) makes it easy to combine proteomics information with other 
data sources. Our proposal for such a workflow is summarized in Fig. 8. It is designed to 
efficiently identify previously unannotated candidate proteins. It can also be employed 
to validate previously annotated proteins using the same decision criteria, since it accu-
rately reproduces the annotation of known proteins from the PSM data and in some 
cases identify annotation errors such as incorrect start codons. For this latter mode of 
action, cut-off values for ŝ correspond to desired q-values, i.e., thresholds for the protein-
level false discovery rates. Despite the expected accumulation of false positives in the 
unannotated part of the genome, we find empirically that candidates with scores cor-
responding to genome-wide q-values below 0.1 or 0.01 could be validated as bona fide 
proteins using external information. It is also worth noting that candidates with very 
few PSMs are exceedingly rare in this range. For ŝ scores slightly below this cut-off level, 
plausible candidates expectedly become rare. Nevertheless, we found several new candi-
date proteins below this cut-off showing that it is a worthwhile endeavor to inspect them 
in detail.

The fact that our workflow maps PSMs directly to the genomic sequence is very help-
ful for this purpose. It enables the visualization of the data in standard genome brows-
ers and thus greatly facilitates the integration with other data sources, in particular 
transcriptome data and information on sequence conservation. The presentation of the 
data in a genome browser supports the manual evaluation of protein candidates in their 
genomic context, because information of overlapping features, including predicted pro-
teins and PSM data mapping to other reading frames is directly accessible.

Candidates identified as (likely) novel proteins can be further characterised computa-
tionally. Most importantly, a homology search is likely to identify a large fraction of can-
didates as homologs of proteins that have been described already in other species. As in 
the case of the SIHUMIx example, we expect this to leave only a small fraction of novel 
proteins and homologs that so far have appeared only as “hypothetical proteins”.

The workflow of Fig.  8 provides a robust way to identify novel proteins, including 
sProteins, from large mass spectrometry data sets. The method is applicable not only to 
a single species but also to metaproteomics data, provided the species composition of 
the sample is known. In the artificial gut community SIHUMIx we found 37 non-anno-
tated novel proteins, among them six sProteins. Applications to microbial communities, 
however, are likely to be limited to the most abundant species, since the probability to 
identifying a protein depends on its relative abundance in the sample.

Materials and methods
Proteomics data sets

For our analysis we used two different tandem mass spectrometry data sets. One is a 
data set from a single strain E. coli K-12, grown under standard conditions (16h growth 
in LB medium at 37 ◦ C with shaking). The data set consists of seven experimental repli-
cates and is part [31].

The SIHUMIx datasets are described in detail in  [42–44]. They comprise 166 inde-
pendent measurements, of which 90 used a standard protein preparation protocol and 
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the remaining 76 cover different enrichment protocols to elevate the level of small pro-
teins in solution. Over all data sets roughly 9.2 million spectras where measured. For the 
ecoli MS/MS-data set searching against both data bases over 400 thousand PSMs where 
anlaysed with a FDRdecoy cut off at 1%. The search of the SIHUMIx data sets against the 
6frame data base (the main analysis to find new protein candidates) resulted in over 
2,5 million PSMs with a FDRdecoy cut off at 1%. Beside different protein enrichment pro-
tocols, both Trypsin (145 protocols) and Asp-N (21 protocols) were used as different 
cleavage enzymes.

Peptide identification

We used getorf  [45] (Version 6.6) to retrieve all open reading frames between two 
stop codons from the genomic DNA sequence without any length constraints. For each 
ORF we store its amino acid sequence as well as its genomic start and end coordinates. 
The reading frame is defined as that start coordinate k mod 3 in forward direction and 
(k mod 3)− 3 in negative direction. We then used Comet [15, 46] (Version 2019.01 rev. 
4) to search tandem mass spectra against protein sequence databases. Standard search 
parameters were used from both the 6frame and the annotated protein databases, with 
the following exceptions: (i) we allowed semi-digestion at the N-terminus to accommo-
date fragmentation at the start codon, (ii) we conducted a concatenated search against a 
decoy database, and (iii) we minimised the bin size of the scans, to increase the resolu-
tion of the MS/MS spectra.

Estimation of false discovery rates for PSMs

The FDRdecoy is obtained by counting the number of PSMs for a fixed quality score in 
both the decoy and the target database. As it is assumed that a falsely assigned PSM is 
equally likely to happen in the decoy and the target data base. The FDRdecoy can be esti-
mated as #decoyPSMs/#targetPSMs . For the estimation we used the e-value as computed 
by comet. Two alternative approaches to estimate the FDR have been proposed [30, 47]. 
Both make use of the assumption that false positive PSMs are mapped with equal rate to 
a translated and non-translated locus. Ignoring the possibility of overlapping proteins in 
different frames one interprets all n PSMs mapping to one of the five incorrect reading 
frames of an annotated protein as false positives, resulting in an estimated number of 
(6/5)n false positives. Of the N PSMs mapping in the correct reading frame, one there-
fore expects N − (1/5)n to be true positives. We can therefore estimate the false discov-
ery rate as

where n+ N  is the total number of PSMs mapped to an annotated locus irrespective of 
the frame.

Alternatively, we make the assumption that the protein annotation, which covers a 
fraction α of the genome, is complete. All n′ PSMs mapped outside this annotation are 
counted as false positives. This yields the estimate

(1)FDR
ann

=
6

5

n

N + n
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where N ′ = N + n is the total number of mapped spectra. The prefactor extrapolates the 
same FDR to the annotated part of the genomes. In order to account for very short ORFs 
to which no ORFs can be mapped by construction, the factor α can be estimated more 
accurately by estimating the chance that a randomly drawn PSM from the 6-frame 
annotation falls into an annotated region. For E. coli this yields α = 0.293 . We note that 
FDRann is by construction robust against incomplete annotation and also will not change 
substantially if there are some incorrectly annotated genes. In contrast, FDRgenome will 
only produce good estimates for genomes with reasonably complete annotations [30].

We checked consistency of these two FDR estimates for the E. coli data. Among the 
N = 180059 mapped PSMs we observed n = 829 hits to an incorrect reading frames 
obtain FDRann = 0.55% , i.e., a slight improvement over comet’s internal estimate of 1% 
from hits in the decoy database. Alternatively, at least in a well-annotated genome such 
as E. coli we may use PSMs mapped to unannotated regions as an estimator. This yields 
FDRgenome = 0.52% . We also validated that, as expected  [30] the genome-based FDR 
estimates are proportional to the FDRs estimated for the decoy database (Additional 
file 1: Figure S3).

Estimation of false discovery rates for proteins

The most widely used method to predict a FDRprot is to extend the idea of FDRdecoy for 
PSMs to the protein level. To this end, an aggregate score s is computed from the quality 
scores of all PSMs that map to a candidate protein. In the “classical” FDRprot approach, 
for a fixed cut-off of s, the number of decoy proteins n and the number of target proteins 
N are counted, which are identified above a specific score [25, 26]. As an improvement 
the picked target decoy method was proposed in [29], which promises to be more robust 
than the simple FDRprot estimate. In the picked target decoy strategy a protein is only 
counted if its “mirrored” (or otherwise scrambled) counterpart scores worse. Both strat-
egies were used to calculate the FDRprot with a PSM cut-off of 6 for the ŝ-score, defined 
as the average of the three best values of s = − log(e-value) as computed by comet.

The estimates of FDRgenome and FDRann are extended to protein in the same manner. 
Since in this case the definition of a “false positive” depends only on the genomic posi-
tion to which it is mapped, there is of course no analog to the “picked” method. This 
strategy was used to investigate more closely the influence of PSM cut-offs on the false 
positive rate (Additional file 1: Figure S2). We obtained consistent results from the dif-
ferent estimates.

Mapping PSMs to the genome

To map PSMs to the genome, we determine its relative position in the ORF or ORFs of 
the protein or 6frame database. This position is then directly translated to the genomic 
coordinates using the known genomic coordinates of the ORFs/proteins. A given peptide 

(2)FDR
genom

=
1

1− α

n′

N ′
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sequence may map to multiple ORFs/proteins. If this is the case, the multiplicity of the 
mapping is stored and can be accessed in the genome browser.

Construction and annotation of candidate proteins

We start from the collection of ORFs for a genome. For each ORF, we determine all 
PSMs that map within it. The C-terminus of the candidate is determined by the stop 
codon of the ORF. The N-terminus is the closest canonical start codon before the first 
mapped PSM, or if no such start codon exists within the ORF, the first position of the 
ORF.

The candidate proteins are then compared to the protein annotation that is available 
for the genome in question. A candidate is considered annotated if it overlaps an annota-
tion item in the correct reading frame and reading direction. In each case, we record the 
difference between the genomic start positions of annotation and candidate.

Protein contained in the available annotations are classified as known unless they are 
tagged with validation levels 1, protein uncertain or 2, protein predicted in UniProt (i.e., 
lacking evidence from experiment or homology), or carry the annotations frameshifted, 
internal stop, hypothetical, Putative, or pseudogene. All of these are interpreted as hypo-
thetical in Tabel 2.

Table 2  Summary of the number of proteins detected with at least 10 or 6 PSMs in the SIHUMIx 
proteogenomic dataset, using the 6frame translation of the genomes

Novel (nov) proteins are not contained within annotation, hypothetical (hyp) proteins are annotated but tagged with 
low confidence (see “Methods” section for details), known refer to all proteins for which higher levels of confidence are 
associated with the available annotation. The eight species are ordered by decreasing abundance. The last column gives the 
fraction of the annotated proteins that were detected

Species Nov Hyp Known %
At least 10 PSMs per candidate

B. theta. 37 1975 248 45.9

B. producta 52 1138 132 23.2

E. coli 26 150 988 26.8

E. ramosum 10 355 53 13.7

B. longum 16 128 0 7.4

A. caccae 17 549 100 19.3

L. plantarum 31 83 28 3.7

C. butyricum 14 135 32 4.1

Species Nov Hyp Known %
A least 6 PSMs per candidate

B. theta. 72 2118 256 49.0

B. producta 103 1289 143 26.1

E. coli 65 182 1127 30.9

E. ramosum 30 431 65 16.7

B. longum 42 170 0 9.8

A. caccae 39 632 119 22.3

L. plantarum 48 116 36 5.1

C. butyricum 26 176 39 5.3
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Transcriptome data

The transcriptome data were taken from  [31] and mapped with segemehl  [48] 
(Version 0.3.4) to an index comprising the eight SIHUMIx species as separate chro-
mosomes. Default parameters were used. Annotation files were generated with 
samtools (http://​www.​htslib.​org/, Version 1.1). Total expression per species was 
averaged over all replicates.

Visualization

We display the data using the UCSC genome browser  [49], which make it easy to 
integrate them with other data, including transcriptome data, available annota-
tions, as well as custom annotations. See below for the data made available with this 
contribution.

Fig. 5  Protein candidate 5 in Blautia producta, for which no homologs can be found. The top of the figure 
shows a view in the UCSC Genome Browser. The first track show the reading frame of the genome on the 
negative strand. The second track is the protein candidate 5’s predicted ORF. The next track shows a bar 
plot representation the reads per base mapping to protein candidate 5 from the transcriptomic data. At the 
bottom a list of the mapped PSMs can be found. A truncated list of the 168 mapped PSMs is displayed. Below 
three mass spectra with top confidence PSMs and the corresponding peptides are shown

http://www.htslib.org/
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Fig. 6  FDRprot computed from ŝ values for proteins with at least 6 mapped PSMs in the SIHUMIx data set 
(see Methods). Two strategies are used to compute the FDRprot , the “classical” and the “picked” strategy 
(see [29] and the “Methods” section). The regression lines extrapolating to large value of ŝ , for which the 
decoy database produced no hits, is computed from the ŝ-score interval [1.0, 2.5] for SIHUMIx and [0.75, 2] for 
0.75− 2 E. coli. The cutoff-value ŝ = 3.5 for SIHUMIx corresponds to a q-value of 0.03. For the much smaller E. 
coli data set, the same q-value is is obtained for ŝ ≈ 2.7

a b c d
Fig. 7  Distribution of − log(e-value) for the PSMs contributing to each candidate. All candidates with at 
least 6 mapped PSMs are shown. Each dot represents a single PSM. On the Y-Axis the median of the top three 
PSMs ŝ is plotted. Thus the observed horizontal lines of the dots show all PSMs belonging to one candidate. 
For all figures we provided interactive plots which can be found under [36]. There each individual PSM/
dot can be inspected and mapped to its corresponding candidate. a Candidates with known functionally 
annotated homologs (green), homologous hypothetical proteins (blue), and no homologs/ novel (red) in 
the non redundant NCBI protein database are distinguished. b The same data is colored by RNA expression 
level.Given in percent of the ORF, which is elevated above the average of the genome. Ranging from low 
(purple) to high (orange) expression. c Whether translation (number of PSMs) was observed in a different ORF 
of the same or the opposite reading directions, and in d color coding refers to number of distinct peptide 
contributing to a candidate



Page 17 of 20Anders et al. BMC Bioinformatics          (2021) 22:277 	

Abbreviations
AA: Amino acid; EST: Expressed sequence tag; FDR: False discovery rate; ORF: Open reading frame; PSM: Peptide-spec‑
trum match.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04159-8.

Additional file 1. Supplemental Figures andTables.

Acknowledgements
The author would like to thank Dr. Jack Dorling for constructive criticism of the manuscript.

Authors’ contributions
PFS and MvB designed the study, JA wrote the software and analyzed the data, HP, NJ, and SBH produced the MS data 
and contributed to the analysis. PFS and JA drafted the manuscript. All authors contributed to the interpretation and 
writing and approved of the final manuscript. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by German Research Founda‑
tion (Deutsche Forschungs Gemeinschaft, DFG), grants BE 3184/9-1 (to MvB) and STA 850/36-1 (to PFS) as part of SPP 
2002 “Small Proteins in Prokaryotes, an Unexplored World”. Publication costs are supported by the DFG and Leipzig 
University within the program of Open Access Publishing.

Availability of data and materials
The transcriptomics data is available under the bioproject PRJNA655119 [50]. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium via the PRIDE [51] partner repository with the dataset 
identifier PXD023243. The genomes and corresponding annotations used for the project are all publicly available by The 
NCBI Assembly database [52] a full list can be found in Additional file 1: Table S2. The following material is available for 
download from [53]: • SIHUMIx track hub (track hub for the UCSC genome browser) • Result web page (full list of candi‑
dates, ecoli annotation errors and interactive plots) • Validation hash map (Maps each annotated protein in SIHUMIx to a 
validation level as of the time of the publication) All scripts which are used to generated the data for this publication are 
available under [54].

Fig. 8  Rules to prioritize candidate proteins for further investigation. A candidate is classified as transcribed 
if more than 70% of its length is above the median RNA expression level of the organism. Annotated genes 
which overlap a candidate are classified as translated if they are identified by more than 6 unique PSMs. The ŝ 
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