
Vol:.(1234567890)

Biochemical Genetics (2022) 60:1274–1297
https://doi.org/10.1007/s10528-021-10178-0

1 3

ORIGINAL ARTICLE

Comprehensive Analysis of Aldehyde Dehydrogenases 
(ALDHs) and Its Significant Role in Hepatocellular 
Carcinoma

Senbang Yao1,2 · Wenjun Chen1,2 · He Zuo1,2 · Ziran Bi1,2 · Xiuqing Zhang1,2 · 
Lulian Pang1,2 · Yanyan Jing1,2 · Xiangxiang Yin1,2 · Huaidong Cheng1,2 

Received: 8 April 2021 / Accepted: 6 December 2021 / Published online: 20 December 2021 
© The Author(s) 2021

Abstract
Oxidative DNA damage is closely related to the occurrence and progression of can-
cer. Oxidative stress plays an important role in alcohol-induced hepatocellular car-
cinoma (HCC). Aldehyde dehydrogenase (ALDH) is a family of enzymes that plays 
an essential role in the reducing oxidative damage. However, how ALDHs family 
affects alcohol-related HCC remains obscure. We aimed to explore the correlation 
between the differential expression of ALDHs in patients with HCC and pathologi-
cal features, as well as the relationship between ALDHs and prognosis, and finally 
analyze the possible mechanism of ALDHs in targeted therapy of HCC. The data 
of HCC were downloaded from The Cancer Genome Atlas (TCGA) database. This 
research explored the expression and prognostic values of ALDHs in HCC using 
Oncomine, UALCAN, Human Protein Atlas, cBioPortal, Kaplan–Meier plotter, 
GeneMANIA, Tumor Immune Estimation Resource, GEPIA databases, and Web-
Gestalt. Low mRNA and protein expressions of ALDHs were found to be signifi-
cantly associated with tumor grade and clinical cancer stages in HCC patients. In 
particular, the loss of ALDH expression is more obvious in Asians, and its effect on 
prognosis is far more significant than that in the White race. Our findings play an 
important role in the study of prognostic markers and anti-liver cancer therapeutic 
targets for the members of the ALDHs family, especially in patients with liver can-
cer in Asia.
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Introduction

Hepatocellular carcinoma (HCC) is a malignant tumor that can extremely affect 
human health. The most common reason for HCC includes hepatitis virus and alco-
hol drinking (Siegel et al. 2021). HCC is the sixth most common reason of cancer 
mortality in female patients and the second leading reason of cancer mortality in 
male patients (Zhu et al. 2015). As an area with high incidence of liver cancer, the 
prevention and treatment of HCC in China are facing a severe situation (Zhang et al. 
2020). Despite remarkable advances in the progress for HCC, the overall survival 
and progression-free survival of HCC patients remain pessimistic. Early detection 
and treatment of HCC are very important to improve the prognosis of patients with 
HCC, so it is important to explore the predictive indexes related to the progress and 
prognosis of HCC (Song et  al. 2020; Zeng et  al. 2021). However, up to now, the 
biomarkers used to predict the prognosis of liver cancer are still very limited, which 
is extremely disadvantageous to patients in areas with high incidence of liver cancer 
such as Asia.

A family of detoxifying enzymes called acetaldehyde dehydrogenase (ALDHs) 
has been a hot topic in toxicology and cancer biology because its role in detoxi-
fying aldehydes accumulated through metabolism has been elucidated and we are 
exposed to these aldehydes in the environment (Chen et  al. 2014). The 19 genes 
of the ALDHs family play important roles in aldehyde detoxification, amino acid 
metabolism, embryogenesis and development, neurotransmission, oxidative stress, 
and cancer progression (Singh et  al. 2013). Acetaldehyde is the main pathogenic 
factor of HCC, and there are abundant studies on the relationship between alcohol 
metabolic pathway and HCC. The aldehyde dehydrogenases (ALDHs) family has 
attracted wide attention as a key factor in ethanol metabolism (Wang et al. 2021). 
ALDHs play an important role in the progression of alcoholic liver disease (Seitz 
et al. 2018). Its role in liver fibrosis has also been explored by many scholars (Gao 
et al. 2018). However, there are few reports on the relationship between ALDHs and 
HCC.

In this research, we explored this problem by identifying the transcriptional and 
protein expression patterns of the ALDHs family through The Cancer Genome 
Atlas (TCGA), Oncomine, and Human Protein Atlas (HPA) databases. Then we 
used multi-dimensional analysis, evaluated functional networks and genomic altera-
tions related to ALDHs in HCC, and explored its effect in tumor immunity. In addi-
tion, we also analyzed the clinical features and prognostic value of ALDHs family 
members in HCC. Our study shows the biological function and prognostic value of 
ALDHs in HCC, which will be beneficial to the diagnosis and treatment of HCC.
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Materials and Methods

Differential Expression of ALDHs at Transcriptional Level

The Cancer Genome Atlas (TCGA) is a well-known cancer genomics project. It 
collects genomic information of more than 20,000 primary cancers and matches 33 
normal samples of cancer types (Tomczak et al. 2015). The Gene Expression Profil-
ing Interactive Analysis (GEPIA) is a database that includes 9736 tumors and 8587 
normal samples from TCGA and the GTEx projects. We used GEPIA to explore 
the difference of ALDHs expression between cancer tissues and corresponding nor-
mal tissues in TCGA data (Tang et al. 2017). UALCAN is an extensive, usable web 
resource for analyzing cancer genomic information. It provides easy access to pub-
licly available oncology data, such as TCGA, MET500, and CPTAC (Chandrashekar 
et al. 2017). We used UALCAN to explore the different tumor stages, tumor grades, 
or other clinicopathological features of ALDHs in HCC and classified them into dif-
ferent tumor subgroups.

Oncomine was born in October 2003, with 40 microarray data sets and nearly 
100 differential expression analyses, allowing users to query differential expression 
results for a gene of interest across collected data sets (Rhodes et al. 2007). We ana-
lyzed the mRNA expression of ALDHs family members in HCC tissues and their 
adjacent normal control samples by Oncomine database. The specific parameters are 
as follows: p-value < 0.001, gene rank = 10%, fold change = 2.

Differential Expression of ALDHs at Protein Level

In order to study the expression of ALDHs in HCC at the protein level, the HPA 
was used to directly observe the immunohistochemical images of ALDHs family 
proteins in normal and HCC specimens (Thul et al. 2017). The protein expression of 
ALDHs in normal liver tissue exists in the tissue module, which contains 44 kinds 
of normal human tissue protein expression data derived from the antibody-based 
protein profiling using immunohistochemistry.

Functional Clustering and Molecular Network Construction of ALDHs in HCC

GeneMANIA is a web interface for generating hypotheses about gene function, ana-
lyzing gene lists, and prioritizing genes for functional assays (Warde-Farley et  al. 
2010). In our study, we submitted members of the ALDHs family to GeneMANIA 
to clarify the functional association network between ALDHs and its related genes. 
Specific network categories include shared protein domains, co-expression, physical 
interactions, predicted, co-localization, and genetic interactions.

WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) is a functional enrich-
ment analysis tool. GO functions and pathways of ALDHs and their related genes 
were enriched by WebGestalt. The GO functional enrichment was performed in 
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the biological process no Redundant (BP), cellular component no Redundant 
(CC), and molecular function no Redundant (MF), and the KEGG pathway was 
performed by pathway analysis.

Tumor Immunology Analysis

Tumor immunology was estimated using TIMER (Tumor Immune Estimation 
Resource) (Li et al. 2017), which is a web server for comprehensive analysis of 
tumor-infiltrating immune cells. The immune infiltration estimation of ALDHs 
was performed in LIHC (liver hepatocellular carcinoma) by TIMER. We explored 
ALDHs expression in LIHC and the correlation of ALDHs expression with the 
abundance of immune infiltrates, including B cells, CD4+T cells, CD8+T cells, 
neutrophils, macrophages, and dendritic cells, as well as the tumor purity. And 
we showed the purity-corrected partial Spearman’s rho value and statistical sig-
nificance by drawing the scatter plots of ALDHs.

Mutation and Survival Analysis of ALDHs in LIHC

The cBioPortal is an open network platform based on TCGA database that inte-
grates data mining, data integration, and visualization (Cerami et  al. 2012). An 
overview of genetic alterations per sample in ALDHs was displayed in Onco-
Print. It was used to analyze ALDHs alterations in the TCGA LIHC patients. The 
search parameters included mutation, CNVs, mRNA expression, and survival.

In this research, the prognostic value of mRNA expression of ALDHs in HCC 
was analyzed by The Kaplan–Meier plotter, which is used to assess the effect of 
54 k genes (mRNA, miRNA, and protein) on survival in 21 cancer types. Sources 
from the databases include GEO, EGA, and TCGA. The two patient cohorts are 
compared by a Kaplan–Meier survival plot, and the hazard ratio with 95% confi-
dence intervals and log-rank P value are calculated. Databases and clinical data 
are supervised and extended regularly (Nagy et al. 2021).

Statistical Analysis

The expression of ALDHs was analyzed by using independent samples t-test or 
a paired sample Student’s t-test as appropriate. Kaplan–Meier curves were used 
to compare the survival time differences. The log-rank test p < 0.05 indicates 
the significance of survival time differences. We used Wilcoxon signed-rank 
test, one-way ANOVA test, and logistic regression to explore the relationships 
between clinicopathologic features and the expression of ALDHs. The correla-
tion between ALDHs and immune signature score or gene expression levels was 
calculated by using the Spearman method. Statistical analysis and plots were pro-
duced by R (v.3.5.1).
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Results

Basic Information of ALDHs

In order to have a full grasp of the ALDHs family gene function, the substrates 
and products of ALDHs family were summarized (Table  1). Literature resources 
are as follows: ALDH4A1 (Pemberton and Tanner 2013), ALDH7A1 (Bok et  al. 
2007), ALDH1A1 (Verma et al. 2021), ALDH1A2 (Verma et al. 2021), ALDH1A3 
(Verma et al. 2021), ALDH2 (Amanuma et al. 2015), ALDH1L1 (Krupenko et al. 
2019), ALDH1B1 (Stagos et al. 2010), ALDH3B2 (Yin 2017), ALDH8A1 (Singh 
et  al. 2015), ALDH6A1 (Kedishvili et  al. 1992), ALDH16A1 (Vasiliou et  al. 
2013), ALDH3A1, ALDH3A2, ALDH3B1, ALDH5A1, ALDH7A1, ALDH9A1, 
ALDH18A1 (Koppaka et  al. 2012). In addition, the phylogenetic tree of ALDHs 
family was structured (Fig.  1). Since several members of the ALDHs family are 
involved in the metabolism of different aldehydes. The results in Table 1 imply func-
tional redundancy among the ALDHs family. Part of the downregulated ALDHs 
gene function may be accomplished by normally expressed genes. The evolutionary 
distance of ALDHs gene family members was demonstrated in the phylogenetic tree. 
It can be seen from Table 1 that ALDH2 and ALDH1A1, ALDH1A2, ALDH1A3, 
and ALDH1B1 have similar substrates and products. Interestingly, their evolution-
ary distances were relatively close (Fig. 1). But the expression of them was differ-
ent. This expression difference may have a mutual regulatory effect with functional 
redundancy.

The Low mRNA Expression of Different ALDHs Family Members in Patients 
with HCC

The analysis process of this study is shown in the flow chart of Fig. 2. For the pur-
pose of study the expression of ALDHs family members in patients with HCC, we 
used Oncomine database to analyze the expression differences between various can-
cers and corresponding normal tissues. The result shows that mRNA expressions of 
ALDH1B1, ALDH1L1, ALDH2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, 
ALDH8A1, and ALDH9A1 were significantly lower in HCC tissues (Fig. 3). In the 
Roessler Liver 2 dataset, the mRNA expression of ALDH1B1, ALDH2, ALDH5A1, 
ALDH6A1, ALDH7A1, and ALDH9A1 was lower in HCC tissues compared with 
normal tissues with fold changes of 2.714, 2.185, 1.582, 3.481, 1.651, and 1.520 
(p = 4.66E-52, 5.01E-61, 6.52E-21, 7.34E-57, 1.09E-18, 2.81E-29), respectively. 
Chen found a 2.638-fold decrease in mRNA expression of ALDH1B1 in HCC tis-
sues. Mas and Wurmbach observed significant downexpression in ALDH4A1 
mRNA in HCC tissues. Downregulation of mRNA expression of ALDH7A1 
was also found in HCC tissues. Wurmbach also found that mRNA expression of 
ALDH8A1 in HCC was downexpression compared to normal tissues (Table 2).

Then we further explored the mRNA expression of ALDHs family members 
through the TCGA database. The mRNA expression of most ALDHs members was 
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Fig. 1  The phylogenetic tree of 
ALDHs family

Fig. 2  Design flow chart of the whole analysis process of this study
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downregulated in HCC tissues compared with normal samples, and there were sig-
nificant differences in ALDH2, ALDH6A1 and ALDH8A1 among these groups, 
which was similar to the results of Oncomine analysis (Fig. 4).

Roessler Liver means the liver cancer-related microarray dataset uploaded by 
Roessler based on Human Genome U133A 2.0 Array platform. Roessler Liver 2 
means the second liver cancer-related microarray dataset uploaded by Roessler 
based on Affymetrix Human Genome HT U133A Array platform. Chen Liver means 
the liver cancer-related microarray dataset uploaded by Chen based on Affymetrix 
Human Genome HT U133A Array platform.

Difference of Protein Expression of ALDHs Family Members in Patients with HCC

We investigated the protein expression of ALDHs family members in HCC by 
HPA. Similar to the results of mRNA analysis, the expression of ALDHs pro-
tein was lower in HCC tissues detected by HPA (Fig.  5). Low protein expres-
sions of ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, ALDH1L1, ALDH3A2, 
ALDH3B1, ALDH3B2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, 
ALDH8A1, ALDH9A1, and ALDH16A1 were found in HCC tissues, while their 
medium and high protein expressions were observed in normal liver tissues. Nega-
tive protein expressions of ALDH1L2, ALDH2, ALDH3A1, and ALDH18A1 were 
observed both in normal liver tissues and in HCC tissues (Fig. 5). Because HPA con-
tains immunohistochemical results of liver cancer and normal tissue from different 
patients, then we quantified the stainings from different patients. The results showed 
that ALDH1A1, ALDH1L1, ALDH1L2, ALDH3A1, ALDH3A2, ALDH5A1, and 
ALDH8A1 gene expressions were significantly different between liver cancer and 
normal tissues (Additional file 1). Overall, our results showed that the expression of 

Fig. 3  Transcriptional expressions of ALDHs family members in 20 types of cancers (Oncomine data-
base). The data were compared by the t-test, cutoff p-value, and fold change as follows p-value < 0.001, 
gene rank = 10%, fold change = 2. Blue indicates downexpression, and red indicates overexpression 
(Color figure online)
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ALDHs family members was lower in patients with HCC, and ALDH2, ALDH6A1,  
and ALDH18A1 are significantly downregulated in HCC patients.

On the whole, the above results showed that the transcriptional and protein 
expression levels of ALDHs in HCC were low.

Functional Enrichment Analysis of ALDHs Family Members in HCC

The network of ALDHs family members and their related genes was constructed by 
PINA (Fig. 6A) and GeneMANIA (Fig. 6B). Through the functional network dia-
gram, we can grasp the information of positive and negative related genes that inter-
act with the ALDHs family, and the specific information is indicated in the diagram.

We used WebGestalt to analyze the GO function and pathway of ALDHs and its 
related genes.

Table 2  Transcription expression of ALDHs family members between HCC and normal liver tissues 
(Oncomine)

Types of HCC VS liver Fold change p-value t-test References

ALDH1B1
Hepatocellular Carcinoma − 2.714 4.66E− 52 − 17.357 Roessler Liver 2
Hepatocellular Carcinoma − 2.638 1.61E− 16 − 9.061 Chen Liver

ALDH1L1
Hepatocellular Carcinoma − 5.249 3.25E− 6 − 5.682 Roessler Liver
Hepatocellular Carcinoma − 2.835 6.62E− 10 − 6.442 Chen Liver

ALDH2
Hepatocellular Carcinoma − 2.815 5.01E− 61 − 20.816 Roessler Liver 2
Hepatocellular Carcinoma − 2.378 2.69E− 5 − 5.132 Wurmbach Liver

ALDH4A1
Hepatocellular Carcinoma − 1.681 2.57E− 7 − 5.719 Mas Liver
Hepatocellular Carcinoma − 1.714 1.40E− 5 − 5.066 Wurmbach Liver

ALDH5A1
Hepatocellular Carcinoma − 1.507 1.28E− 5 − 4.750 Roessler Liver
Hepatocellular Carcinoma − 1.582 6.52E− 21 − 9.857 Roessler Liver 2

ALDH6A1
Hepatocellular Carcinoma − 3.053 2.52E− 21 − 11.013 Chen Liver
Hepatocellular Carcinoma − 3.481 7.34E− 57 − 19.760 Roessler Liver 2

ALDH7A1
Hepatocellular Carcinoma − 1.935 7.58E− 6 − 5.026 Roessler Liver
Hepatocellular Carcinoma − 1.651 1.09E− 18 − 9.256 Roessler Liver 2

ALDH8A1
Hepatocellular Carcinoma − 3.861 6.28E− 20 − 10.357 Chen Liver
Hepatocellular Carcinoma − 4.448 7.24E− 8 − 6.355 Wurmbach Liver

ALDH9A1
Hepatocellular Carcinoma − 1.520 2.81E− 29 − 12.186 Roessler Liver 2
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Benjamini and Hochberg method was used for multiple-testing correction 
p-value, which also means FDR (false discovery rate). FDR reflects the probability 
of false positive rate in the test. By default, FDR < 0.05 was established at the sta-
tistically significant level. The biological processes such as ethanol metabolic pro-
cess, cellular aldehyde metabolic process, and primary alcohol metabolic process 
were remarkably regulated by the ALDHs in HCC (Fig. 6C). Cellular components, 

Fig. 4  Low mRNA expressions of ALDHs family members in patients with HCC and normal liver tis-
sues (TCGA database). The mRNA expressions of most ALDHs family members were significantly 
downregulated in patients with HCC from the TCGA database (A-S). ***p < 0.001
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including mitochondrial matrix, mitochondrial part, and mitochondrion (Fig.  6D). 
Besides, ALDHs also prominently affected the molecular functions (Fig. 6E), such 
as glyceraldehyde-3-phosphate dehydrogenase (NAD +) (non-phosphorylating) 
activity, 3-chloroallyl aldehyde dehydrogenase activity, and aldehyde dehydrogenase 
(NAD) activity.

Through KEGG analysis, we found that the pathways involved in ALDHs include 
histidine metabolism, beta-alanine metabolism, ascorbate and aldarate metabolism, 
and glycolysis/ gluconeogenesis (Fig. 6F).

Analysis of Correlation Between mRNA Expression of ALDHs Family Members 
and HCC Immune Infiltration Level

TIMER database was used to explore the relationship between ALDHs family mem-
bers and HCC immune infiltration. The results showed that the mRNA expressions 
of ALDH1A3, ALDH1L2, ALDH2, and ALDH3A2 were obviously related to tumor 
purity. The correlation of mRNA expression of ALDH1A2, ALDH1L1, ALDH1L2, 
ALDH3B1, ALDH16A1, and ALDH18A1 with B cell was statistically significant, 

Fig. 5  Immunohistochemistry images of different ALDHs in HCC tissues and normal liver tissues (HPA 
database)
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Fig. 6  Function enrichment of ALDHs family members in HCC. A Network of ALDHs family members 
and their related genes was analyzed by GeneMANIA. B Interaction network analysis of ALDHs family 
members from PINA platform; C Cellular component; D Biological processes; E Molecular functions; F 
KEGG pathway analysis
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while mRNA expression of ALDH1L2, ALDH2, ALDH3B1, ALDH4A1, and 
ALDH18A1 was obviously related to CD8+T cell. In addition, mRNA expression 
of ALDH1A3, ALDH1L1, ALDH1L2, ALDH3B1, ALDH3B2, ALDH16A1, and 
ALDH18A1 had significant correlations with infiltrating levels of CD4+T cells 
in HCC. The mRNA expressions of ALDH1L1, ALDH1L2, ALDH2, ALDH3B1, 
ALDH3B2, and ALDH18A1 were obviously related to macrophage. Since the 
M1-M2 macrophage polarization system was widely used in macrophage research. 
The correlation between subpopulation of macrophages and these genes was fur-
ther explored (Additional file  2). Interestingly, the results showed that ALDH1L1 
was negatively correlated with M1 macrophages and M2 macrophages. As we know, 
M1 macrophages have tumoricidal function, but M2 macrophages have been linked 
to tumor progression in tumor biology (Gerner et  al. 2018). Therefore, this result 
has certain enlightening significance for exploring the regulation mechanism of 
ALDH1L1 in HCC in future. The mRNA expressions of ALDH1A2, ALDH1L2, 

Fig. 7  Association of mRNA expression of ALDHs family members with immune infiltration level in 
HCC. The mRNA expression of ALDHs family members was significantly related to the immune infil-
tration level in HCC (A–S)
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ALDH3B1, ALDH3B2, ALDH16A1, and ALDH18A1 were obviously related 
to neutrophil infiltration. The mRNA expressions of ALDH1A2, ALDH1L1, 
ALDH1L2, ALDH2, ALDH4A1, ALDH16A1, and ALDH18A1 were obviously 
related to dendritic cell infiltration (Fig. 7).

Correlation Between mRNA and Protein Expression of ALDHs Family Members 
and Clinicopathological Features of HCC Patients

We downloaded TCGA data through UALCAN, GEPIA, and Linkedomics and 
analyzed the relationship between mRNA expression of ALDHs family members 
and clinicopathological parameters (including tumor pathological grade, individ-
ual stage, and race) in patients with HCC. The mRNA expression level of ALDHs 

Fig. 8  Association of mRNA expression of ALDHs family members with tumor grade of HCC patients. 
Boxplot showing the mRNA expression of ALDHs family members in normal individuals or in HCC 
patients in grades 1, 2, 3, or 4 (A–S). *p < 0.05; **p < 0.01; ***p < 0.001
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family members was significantly correlated with cancer stage. The more advanced 
the tumor stage, the lower the mRNA expression level of ALDHs. Similarly, the 
higher the malignant degree of the tumor grade, the lower the mRNA expression 
level of ALDHs (Figs. 8–9).

Then, we analyzed the relationship between race and mRNA expression level of 
ALDHs family members. The expression of ALDHs family members in Asian is 
lower than that in White as a whole, and the expression of ALDH1A3, ALDH1L2, 
ALDH2, ALDH4A1, ALDH6A1, ALDH8A1, ALDH9A1, and ALDH18A1 in 
Asian is significantly lower than that in White (Fig. 10).

In general, the expression of mRNA in part members of ALDHs was correlated 
with the clinicopathological parameters of patients with hepatocellular carcinoma.

Mutation of ALDHs Family Members in Hepatocellular Carcinoma and Its Effect 
on Prognosis

As shown in Fig. 11A, we explored the frequency and type of ALDHs family muta-
tions in 8 data sets of hepatocellular carcinoma (containing 1507 samples) through 
cBioPortal. Alteration frequency in TCGA-Firehose Legacy, TCGA-PanCancer 
Atlas, INSERM-Nat Genet 2015, and AMC-Hepatology is 28%, 23%, 9%, and 8%, 
respectively (Fig. 10).

Fig. 9  Association of mRNA expression of ALDHs family members with cancer stages of HCC patients. 
Violin plot showing the mRNA expression of ALDHs family members in HCC patients in cancer stages 
1, 2, 3, or 4 (A–S). *p < 0.05; **p < 0.01; ***p < 0.001
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The mutation of ALDHs family members was significantly associated with the 
prognosis of HCC patients, and the OS, DFS, PFS, and DSS of ALDHs mutation 
group were significantly shortened.

From the overall survival analysis, there is a significant correlation between 
the mutation of ALDHs family and the poor prognosis of HCC patients. The 
normal expression of ALDHs family members is beneficial to HCC patients.

Prognostic Value of mRNA Expression of ALDHs Family Members in Patients 
with HCC of Different Races

First, we used Kaplan–Meier plotter to analyze the relationship between mRNA 
expression of ALDHs family members and the prognosis of HCC patients. 
Lower mRNA expression of ALDHs was significantly associated with shorter 
OS and PFS of HCC patients (Table 3).

Since the incidence of liver cancer in Asians is much higher than that of 
Whites, we conducted a subgroup analysis of the expression of ALDHs family 
in liver cancer patients of different races. And we were surprised to find that the 
difference in the expression of ALDHs family has a far greater impact on the 
prognosis of Asian liver cancer patients than Whites. The low expression of 15 
genes in the ALDHs family is significantly associated with the poor prognosis 

Fig. 10  Association of mRNA expression of ALDHs family members with race of HCC patients. Box-
plot showing the mRNA expression of ALDHs family members in Asian and the White race (A–S). 
*p < 0.05; **p < 0.01; ***p < 0.001
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of Asian liver cancer patients, while there are only 3 genes in White liver cancer 
patients (Fig. 11).

These results suggest that differences in gene expression of ALDHs family of 
different races will affect the progression and prognosis of liver cancer (Fig. 12).

Fig. 11  The frequency and type of ALDHs family mutations in 8 data sets of HCC (cBioPortal). (A An 
overview of ALDHs mutations. B Alteration frequency of ALDHs; C The overall survival of ALDHs 
mutation group was significantly shortened; D The disease-free survival of ALDHs mutation group was 
significantly shortened; E The progress-free survival of ALDHs mutation group was significantly short-
ened; F The disease-specific survival of ALDHs mutation group was significantly shortened
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Discussion

Alcohol and acetaldehyde are considered to be clear carcinogens; previous research 
described the features and mutational landscape of oxidative DNA damage caused 
by acetaldehyde, an endogenous and alcohol-derived metabolite (Garaycoechea 
et al. 2018; Vella et al. 2011). Aldehydes produced by alcohol metabolism are one 
of the major causes of HCC. Aldehyde dehydrogenases (ALDHs) play an important 
role in detoxifying aldehydes that accumulate through metabolism. On account of 
aldehyde dehydrogenases (ALDHs) that oxidize aldehydes to the corresponding car-
boxylic acids using either NAD or NADP as a coenzyme, thus the ALDHs family 
plays an important role in the metabolic degradation of carcinogens such as acetal-
dehyde (Muzio et al. 2012).

In fact, the expression and role of ALDHs family in cancer are receiving wide-
spread attention. Currently, there are many studies to investigate the potential prog-
nostic and diagnostic role of ALDHs. The prognostic significance of ALDH1A1 in 
breast cancer (Althobiti et  al. 2020), ALDH1 in rectal cancer (Deng et  al. 2014), 
ALDH1 in esophageal cancer (Hwang et al. 2014), and ALDH2 in oropharyngeal 
cancer (Shinomiya et al. 2017) has been explored by scholars.

Table 3  Correlation of ALDHs mRNA expression and clinical prognosis in HCC by Kaplan–Meier plot-
ter

Statistically significant p values are shown in bold

ALDHs Overall survival Progression free survival

Hazard ratio p-value Hazard ratio p-value

ALDH1A1 0.66 (0.46–0.95) 0.0236 0.71 (0.51–0.98) 0.0353
ALDH1A2 0.69 (0.48–0.97) 0.0332 0.85 (0.63–1.15) 0.3021
ALDH1A3 0.63 (0.44–0.90) 0.0107 0.67 (0.48–0.92) 0.0136
ALDH1B1 0.56 (0.36–0.87) 0.0089 0.89 (0.66–1.19) 0.4299
ALDH1L1 0.69 (0.49–0.98) 0.0375 0.66 (0.49–0.89) 0.0065
ALDH1L2 0.67 (0.47–0.95) 0.0250 0.73 (0.54–0.98) 0.0379
ALDH2 0.42 (0.29–0.60) 1.3E-06 0.53 (0.38–0.74) 0.0001
ALDH3A1 0.81 (0.56–1.16) 0.2475 1.31 (0.97–1.78) 0.0782
ALDH3A2 0.73 (0.50–1.06) 0.0990 0.73 (0.54–0.99) 0.0410
ALDH3B1 1.53 (1.08–2.18) 0.0170 1.17 (0.85–1.61) 0.3375
ALDH3B2 1.68 (1.14–2.48) 0.0076 1.26 (0.93–1.70) 0.1374
ALDH4A1 0.72 (0.51–1.02) 0.0632 0.53 (0.36–0.78) 0.0009
ALDH5A1 0.44 (0.31–0.62) 2.2E-6 0.63 (0.45–0.89) 0.0084
ALDH6A1 0.57 (0.40–0.81) 0.0013 0.69 (0.52–0.93) 0.0150
ALDH7A1 0.50 (0.35–0.71) 7.7E-05 0.66 (0.48–0.89) 0.0072
ALDH8A1 0.54 (0.35–0.84) 0.0050 0.63 (0.46–0.86) 0.0032
ALDH9A1 0.53 (0.36–0.78) 0.0011 0.61 (0.45–0.82) 0.0012
ALDH16A1 0.62 (0.42–0.90) 0.0120 0.67 (0.5–0.9) 0.0075
ALDH18A1 1.40 (0.97–2.01) 0.0740 1.39 (1.00–1.93) 0.0475
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As a member of ALDHs family, there are many studies on the relationship between 
ALDH2 and liver cancer. Asian drinkers have a higher risk of developing cancer 
because of mutations in ALDH2 and ALDH2 deficiency exacerbates alcohol-associated 
HCC development both in patients and in mouse models. One study found that ALDH2 
deficiency had an increased risk of HCC development in cirrhotic HBV patients with 
alcohol drinking but not in those without alcohol drinking (Seo et al. 2019). However, 
other members of the ALDHs family have similar functions to ALDH2. Tomita et al. 
identified ALDH1 is a marker of tumor stem cells (CSC), where it is participating in 
self-renewal, differentiation, and self-protection (Tomita et al. 2016). Previous studies 

Fig. 12  The effect of ALDHs expression on survival and prognosis in different races. A Correlation 
between the expression of ALDHs and the prognosis of HCC patients in Asia. B Correlation between the 
expression of ALDHs and the prognosis of HCC patients in the White race
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have shown that ALDH1A2 is a candidate tumor suppressor gene in ovarian cancer and 
enhancing ALDH1A2-linked signaling might provide new opportunities for therapeutic 
intervention (Choi et al. 2019). ALDH3A1 acts as a prognostic biomarker and inhibits 
the epithelial–mesenchymal transition of oral squamous cell carcinoma through IL-6/
STAT3 signaling pathway (Qu et al. 2020). ALDH5A1 mRNA expression was down-
regulated in OC patients compared with that in normal tissues and a high mRNA level 
of ALDH5A1 was associated with improved overall survival (Tian et al. 2017). Recent 
studies underscored ALDH1L1 as a candidate tumor suppressor and potential marker 
of aggressive cancers (Krupenko and Krupenko 2018). In view of this, their functions 
in the prediction and progression of liver cancer should also be paid attention to and 
studied in depth.

Our study showed that mRNA expressions of ALDH1B1, ALDH1L1, ALDH2, 
ALDH4A1, ALDH6A1, ALDH7A1, ALDH8A1, and ALDH9A1 were significantly 
lower in HCC tissues compared to normal tissues from the Oncomine database. The 
mRNA expressions of majority ALDHs family members were downregulated in HCC 
tissues from the TCGA database. And there were significant differences in ALDH2, 
ALDH6A1, and ALDH8A1 among these groups. The important role of these three 
genes in HCC has also been confirmed by many scholars (Shin et al. 2020; Seo et al. 
2019; Grinberg et al. 2014). ALDH2 has been proven to play a carcinogenic role in 
HCC by modulating the activity of the ALDH2-acetaldehyde-redox-AMPK axis (Hou 
et  al. 2017). Besides, similar results were found by the HPA in protein expressions. 
With further research, we found that proteins, including RP11-162P23.2, NDUFAB1, 
AASDH, SEPHS1, SEPHS2, GART, and DCXR, interacted with ALDHs family 
members through PPI network analysis by GeneMANIA. Our results suggest that the 
functional consequence of ALDHs mainly includes ethanol metabolic process, cellu-
lar aldehyde metabolic process, and primary alcohol metabolic process. These find-
ings are consistent with the molecular pathways implicated in HCC carcinogenesis. 
Subsequently, we analyzed the association of ALDHs family members’s expression 
with clinicopathological factors of HCC patients. The result shows a tendency that 
the lower the expression of ALDHS family members, the worse the tumor stage and 
grade in HCC patients. And according to the results of data analysis, the expressions 
of ALDH1A3, ALDH1L2, ALDH2, ALDH4A1, ALDH6A1, ALDH8A1, ALDH9A1, 
and ALDH18A1 related to the race of patients.

In the survival analysis, we found that the expression of ALDHs has significant sur-
vival differences between the Asian and White population. The expression of ALDHs 
family genes has a significantly stronger effect on the prognosis of Asian liver cancer 
patients than White patients. Some researchers found that polymorphisms on ALDH2 
had a significant indirect effect on HCC risk, mediated through alcohol drinking (Liu 
et  al. 2016). By analyzing the researches, we suspect that this may be due to more 
liver cancers caused by hepatitis B virus in Asian liver cancer patients. The interaction 
between ALDHs and hepatitis B is also worth exploring.

This study preliminarily explored the expression of ALDHs at RNA and protein lev-
els. There are still some shortcomings in the research. Although, on the whole, ALDHs 
showed consistent downregulation of RNA and protein levels, there are still some 
inconsistencies. This is because RNA analysis results were derived from TCGA, while 
protein analysis results were derived from HPA, which included different patients. In 
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further exploration, we will collect samples of liver cancer patients by ourselves. The 
expression of same sample will be tested at RNA and protein levels to provide more 
convincing research conclusions.

Conclusion

In conclusion, our study identified that downregulation of ALDHs members in 
HCC was common. Moreover, ALDHs were significantly associated with individual 
cancer stage, nodal metastasis status, and patient’s race. Furthermore, high expres-
sions of ALDHs were significantly related to longer OS in HCC patients. And the 
performance of this benefit among Asian HCC patients is much higher than that of 
Whites. In an overall view, our findings play an important role in the study of prog-
nostic markers and anti-liver cancer therapeutic targets for members of the ALDHs 
family, especially in patients with liver cancer in Asia.
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