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A B S T R A C T

In practice, the collected spectra are very often composes of complex overtone and many overlapping peaks which
may lead to misinterpretation because of its significant nonlinear characteristics. Using linear solution might not
be appropriate. In addition, with a high-dimension of dataset due to large number of observations and data points
the classical multiple regressions will neglect to fit. These complexities commonly will impact to multicollinearity
problem, furthermore the risk of contamination of multiple outliers and high leverage points also increases. To
address these problems, a new method called Kernel Partial Diagnostic Robust Potential (KPDRGP) is introduced.
The method allows the nonlinear solution which maps nonlinearly the original input X matrix into higher
dimensional feature mapping with corresponds to the Reproducing Kernel Hilbert Spaces (RKHS). In dimensional
reduction, the method replaces the dot products calculation of elements in the mapped data to a nonlinear
function in the original input space. To prevent the contamination of the multiple outlier and high leverage points
the robust procedure using Diagnostic Robust Generalized Potentials (DRGP) algorithm was used. The results
verified that using the simulation and real data, the proposed KPDRGP method was superior to the methods in the
class of non-kernel and some other robust methods with kernel solution.
1. Introduction

The Near Infrared Spectroscopy (NIRS) technology as secondary
measurement has been widely used in varies agricultural process. It re-
quires less (even no) sample preparation, non destructive, rapid, and
chemical-free with its great potential for product quality control and real
time analytical chemistry process. The NIRS uses a spectrometer to
collect a continuous absorption spectrum. This spectrum associates with
the chemical and physical composition of the sample material. Practi-
cally, NIRS applies the multivariate statistics method on the spectral
dataset to build the fitted model. The model is built by associating the
spectral dataset measured from the known sample with a set of reference
data. In routine chemical analysis, this model is applied in the analytical
process to predict the concentration of the unknown samples.

The NIR spectral data is presented as a high dimensional matrix. It
contains wide wavelengths ranges (350–2500nm: 1 or 2nm interval)
as predictor variables and takes a huge number of samples in line with
the increasing volumes of routine laboratory analysis. Normally, each
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spectrum NIR has more than thousands data points. Based on experi-
ence, the collected spectra also may often composed of complex
overtone and many overlapping peaks that result in broad NIR ab-
sorption bands [1]. These are caused by the physical properties,
chemical variation, and the instrumentation which lead to misinter-
pretation on the spectra information. This makes the spectral data
processing becomes more complicated. To encounter this, a well assign
of multivariate calibration based on statistical methods are highly
considered.

In multivariate calibration, the Partial Least Squares Regression (PLS)
method [2] is the most used. The PLS has benefit to tackle the presence of
multicollinearity and high dimensional in the dataset. In fact, in the
application the method is still less inferior due to its efficiency and
interpretability. The complexity in the NIR spectral dataset is also an
issue, where it may cause the risk of involving multiple outliers and high
leverage points increases. This may decrease the effectiveness in the
computational. As solution, then the robust procedure is needed to apply
with the PLS method.
ary 2020
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The PLS works by projecting the X matrix to a smaller set of uncor-
related variables called new components with corresponds to y vector. It
is known as a class of linear methods with the basic linearity assumptions
holds both in the relation between observations and for modeling in the
latent variables [3]. However, in the real NIR spectral dataset the sets of
predictor matrix X and response matrix y could have a nonlinear rela-
tionship. This is due to the scattering effect and noise problems in the
dataset. To overcome this, the nonlinear solution is suggested as alter-
native to discover the nonlinear behavior in the input space [4]. The idea
is the input data matrix is mapped into high dimensional nonlinear
feature space through a nonlinear mapping function. Next, these mapped
data are used in the post process of data analysis. Several studies with
different dataset using the beneficial of applying various types of
nonlinear high-dimensional space mapping method have been discussed
[see [4, 5, 6, 7, 8, 9]]. This has proven its superiority as the most efficient
method than such linear method [8, 10]. Considering the existing
nonlinear methods, the kernel is the most used due to its flexibility and
efficiency in the computational process [4, 6, 7, 11, 12, 13]. Instanta-
neously, the kernel solution presented here apply the famous Repro-
ducing Kernel Hilbert Spaces (RKHS) in the mapping formulation to
reach the nonlinear optimization procedure [7, 14] with universally
result to consistent result [15]. It has been observed so far there is still
less number of study considers its robustness particularly with
improvement on the resistance diagnostics to the multiple outliers and
high leverage points.

The outlier and/or high leverage data points are results of the
experimental and/or non experimental error. The outlier is an unwanted
observation in the y direction, oppositely the high leverage data point is
an outlier in the X direction. These have potential to influence the fitting
performance that lead to the misleading result. Using the non-robust
statistical methods is not recommended, since the estimated parameter
is sensitive to the small changes in the data distribution. Hence, seeking
for the robust procedure that may not suffer from the influence is needed.

In 1973, Huber introduced the M-estimator [16] that minimizes the
function of residual in the least square estimation. This estimator is well
known as robust location parameter estimator which uses ℓ1 � norm for
measuring residual in the observation that is identified as outlier. The
M-estimator fails to attain high breakdown point and has unbounded
influence factor hence it is not resistant to the leverage points [17, 18].
To improve the low breakdown point, another robust method called
S-estimator [17] was proposed by minimizing the scale of residual in
M-estimator. In fact, the method still fails to identify the leverage points
due to its unbounded influence factor [18]. In compliance to improve the
resistance through bounded influence, a Generalized M-estimator
(GM-estimator) [19] was suggested. The GM-estimator is still suffered in
a loss of efficiency [20] because observations with good leverage point
are still down-weighted. Another GM-estimator using Schweppe solution
[21] was proposed by adjusting the leverage down-weighted with the
size of residual. It was observed, the proposed GM has also less break-
down point (closer to 0), when the number of m predictor increases [22]
with some outliers more likely happen. As development, the GM6 was
introduced [23] and it has the bounded influence and high
breakdown-point (with closely to 50%). The GM6 has benefit in a
distinction between outliers and bad high leverage observations. It uses
Least Trimmed Square (LTS) [24] as initial estimator than classical Or-
dinary Least Square (OLS). To fit the limitations of previous robust esti-
mators, the MM-estimator [17] was introduced. The MM-estimator
reaches the robustness by discovering the smallest possible dispersion of
the residual in S-estimator and continues to find the resistant estimator
through the efficiency of the M-estimator [20]. Some robust high
breakdown-point estimator with a good efficiency such Least Trimmed
Square (LTS) [24] and Least Median Squares (LMS) [25] usually are used
as initial estimator in MM-estimator. However, the earlier robust
methods effective only to detect the outlier and single high leverage
points. In fact, they fail to detect multiple high leverage cases by reason of
masking and/or swamping effects on the low leverage some (see [16, 22,
2

26, 27, 28]). As solution, the Diagnostic Robust Generalized Potential
(DRGP) (see [29]) is assigned by initially classify the suspects high
leverage points and real outlier using the Robust Mahalanobis Distance
(RM2

i ) based on Minimum Volume Ellipsoid (MVE) [30, 31]. The DRGP
calculates the generalized potentials criteria to each observations
whether the suspected observations have potentially high leverage points
or not.

The method presented here is the extension work of the previous
study (in [7]) that introduces the robust algorithm procedure in the
nonlinear Kernel-PLS. The new method is named as a Kernel Partial
Diagnostic Robust Potential (KPDRGP) with the parameter estimators are
highly resistance to the existing of multiple outlier and high leverage
points in the dataset. The study provides a development and important
contribution to tackle the challenges of scientific big data especially in
vibrational spectroscopy technique. In the paper, some existing robust
methods are also reviewed and integrated in the PLS term. Some dis-
cussions are provided to compare the methods through simulation using
different datasets.

2. Some consideration methods

2.1. Partial least square regression

Partial Least Squares Regression (PLSR) [2] is the most used statistical
method in the Chemometric analysis. Particularly for NIR spectral
dataset, the PLSR has an important role to investigate the relationship
between two different sets of predictor X and response y. Here, we
limited the study only in the case of n >> m, where m represents the
number of predictor variable and significantly greater or less than the
number of sample size n. Related to the high dimensional problem in the
NIR dataset the PLSR becomes a standard procedure to decrease the
dimensional of predictor variables X. Technically, the predictor X is
projected to a smaller set of uncorrelated variables called new compo-
nents. The PLSR keeps a maximize covariance of the highly collinear
original predictors in these new components and regress these to the
single y. PLS has free distribution assumption means it does not matter
whatever data distribution is, it is also opposed violations of indepen-
dence, collinear, and small sample size that are known as main as-
sumptions in regression.

Let consider a multiple regression model consists two different sets of
predictor X and single response y, in matrix form these can be written as

y¼X b þ e (1)

where y,e are n x 1 vector, X is n x m matrix and b is m x 1 vector, the
common solution of estimator b using OLS method is given by

b ¼ ðXTXÞ�1XTy (2)

Earlier it considers the NIR dataset consisting large number of m
predictors. So that there will infinite number of solution for estimator b
as XTX is singular which not meet the usual trivial theorem on rank. As a
special procedure to this case, it is needed to extract new components by
maximizing a covariance criterion between predictor X and response y
where linking the centered values of these two sets [32].

Using the Eq. (1) and initialize a starting score vector of u from single
y, there exists an outer relation for predictor X which can be defined as

X ¼ VPT þ E (3)

where P is the matrix m x l consisting loading vector

1 x mfpg ¼ ðXT vgÞ=ðvgTvgÞglg¼1 with vg is the n x 1 column vector of

scores xj in X fvg ¼ ðXwjÞ=ðwT
j wjÞglg¼1

involve wj as a m x 1 vector of

weight for X fwj ¼ ðXTuÞ=ðuTuÞgmj¼1, V is a n x l matrix of the n x 1

vector vg and E is a n x mmatrix of residual in outer relation for predictor
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X. Unlike in Principal Component Analysis (PCA), vg is not simply as
multiplication of the matrix X and loading matrix P, a correspondence to
m x l weight matrix of W is considered. Following the similar procedure
as like predictor X, the outer relation for response y also can be given as

y ¼ u qT þ f (4)

In Eq. (4), variable y is in univariate term, q is the loading l x 1

vectorfqg ¼ ð yT vgÞ=ðvTg vgÞglg¼1
, u is n x lmatrix of y block score, and f is

a n x 1 vector of residual in y. u is also called as linear inner relation
between X block score and y block score which is calculated as

fu ¼ bgvg with bg ¼ uT vg=ðvTg vgÞglg¼1
or written as

u ¼ V binner þ g (5)

where binner is a l x 1 vector of regression coefficient as solution using LS
on the decomposition of vector u, and g is n x 1 matrix of residual in the
inner relation. Applying the normalization in W, q, P as the process for
improving the inner relation and obtaining orthogonal X block scores, so
that the mixed relation of PLSR model by integrating Eq. (4) and Eq. (5)
can be formed as [2].

y ¼ u qT þ f
y ¼ Vbinner qT þ g qT þ f

y ¼ V binner qT þ f
^

y ¼ VaT þ f
^

(6)

the l x 1 vector coefficient a is aT ¼ binner qT and f
^
denotes n x 1 vector of

residual in mixed relation f
^ ¼ g qT þ f. In Eq. (6) it holds a ¼ VTy,

without loss of generality that X ¼ VPT as in Eq. (3), then Eq. (6) can be
redefined by multiplying the two sides withm x lweight matrix ofW that
results

y ¼ X W* aþ f
^

y ¼ X W ðPTWÞ�1 aþ f
^ (7)

with V ¼ XW* and W* ¼ WðPTWÞ�1. Let define bPLSR ¼
W ðPTWÞ�1a as matrix coefficient of mixed relation in PLSR, and then
Eq. (7) is equivalent to

y ¼ X bPLSR þ f
^

(8)

f
^

need to be minimized. Applying the previous relation Eq. (3) and Eq.
(4), it holds W ¼ XTU, P ¼ XTVðVTVÞ�1 such that the estimator for
parameter bPLSR can be defined as

bbPLSR ¼ XTu ðVTX XTuÞ�1 VTy; bbPLSR 2 <mx1 (9)

Eq. (5)
bPLSR denotes the l dimensional vector of regression coefficient in

PLSR. In the PLSR model, the Non Linear Iterative Partial Least Squares
(NIPALS) algorithm is applied to computational.

2.2. Partial robust M-Regression

The Partial Robust M-Regression (PRM) is an alternative robust
version to classical PLSR [33]. It uses a modified robust M-estimate [16]
in PLSR by assigning additional reweighting function wi as diagnostic
tool [34]. The PRM succeed to identify the suspected outlier and leverage
points both in y and X direction. To maximizing the covariance between
the response and predictor variable as basic principle in PLSR, the PRM
modifies the covariance function to obtain loadings and scores using a
robust procedure.

Assigning proper weighted covariance
3

Covwðv; yÞ ¼ 1
n

Xn
ðwiviyiÞ
i¼1

Then the loading vectors in X is determined in a sequential way
through

pg ¼ arg max
p

CovwðX p; yÞ
s:t k p k ¼ 1

Covwð pj; pÞ ¼ 0 for all preciously computed pj

Continuing the Eq. (8), for 1 � i � n, the OLS solution of bPLSR for
single y is defined as

bbPLSR ¼ arg min
b

 Xn
i¼1

ðyi � vi bPLSR Þ2
!

(10)

The estimator is optimal if E ð f^Þ ¼ 0 and Var ð f^Þ ¼ 1 or where f
^ �

N ð 0 ; 1 Þ, otherwise fail to satisfy the normal assumption, the OLS losses
its optimality, hence the robust estimator yields better.

The robust M-estimates reconstruct the squares in term of u then
giving

bbM ¼ arg min
b

 Xn
i¼1

θ ðyi � vi bMÞ
!

(11)

with θ ðuÞ ¼ u2, θ ðyi � vi bMÞ ¼ ðyi � vi bMÞ2 as θ ðuÞ is defined to be loss

function which is symmetric and nondecreasing. Recall the f
^
as residual

n x 1 column vector f f^i ¼ yi � vi bPLSR g
n

i ¼1 in the objective function of
Eq. (11). Applying the partial derivative and reweighing technique [34],

then the row weight in each observations is wr
i ¼ θ ð f^iÞ= f

^

i

2
, taking

θ ð f^iÞ¼ w r
i f
^

i

2
thus equation in Eq. (11) can be rewritten as

bbM ¼ arg min
b

 Xn
i¼1

wr
i f
^

i

2
!

(12)

The weight in Eq. (12) is considered less sensitive to the vertical
outlier without pin-pointing the leverage points in X direction, follows
Serneels [33] then another weight wx

i is added to identify the suspected
leverage points. The test criteria iswx

i � 0would be suspected as leverage
point. The solution of partial robust M-regression hence can be formu-
lized as

bbPRM ¼ arg min
b

 Xn
i¼1

wr
i w

x
i f
^

i

2
!

(13)

where wi ¼ wr
i w

x
i is called to be the generalized weight. The Eq. (13) can

be rewritten as

bbPRM ¼ arg min
b

 Xn
i¼1

wi f
^

i

2
!

(14)

here, the weight w r
i and w x

i are calculated as

w r
i ¼ ρ

�
f
^

ibσ ; c
�

(15)

with bσ uses robustMAD ð f^1;…; f
^

nÞ ¼ median
i

��� f^i � median f
^

j

���
j

, ρ ðz; cÞ is

a weight function [34] and constant c follows the Huber's function [16].

w x
i ¼ ρ

� k vi � medL1ðVÞ k
median k vi � medL1ðVÞ k; c

�
(16)
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k � k is Euclidean norm,medL1ðVÞ is a robust estimator of the center of the
l dimensional score vectors, and vi ¼ ðvi;1;…; vi;lÞ T is the vector of
component score matrix V that need to be estimated.

3. Proposed method

3.1. Partial robust MM-Regression

Extending the previous work in PRM [33], the improved robust
MM-regression [17] was proposed to determine the final estimates in the
PLSR. The estimator combines a high breakdown point (50%) of a class of
LTS-estimators and better efficiency of modified M-estimators [33].
Using LTS-estimators [31] on PLSR as

bbLTS ¼ arg min
b

bσLTS ð f
^

1; f
^

2;…; f
^

nÞ (17)

the solution in Eq. (17) is obtained as it finds the minimal possible
dispersion of residual. Recall the procedures in the classical MM-
estimators: 1) the M-estimators are used as initial estimates; 2) calcu-
late the scale estimates bσLTS (LTS-estimators) [31] using the obtained

residual f
^

i with objective function labeled as θ0; 3) proceed the M-esti-
mators with objective function θ1 to calculate the final estimates. The
improved on robust partial MM-regression is now the M-estimators
replaced with the modified M-estimators. The aims are beside of having
high breakdown point and more efficient estimator, the final estimator is
resistant to the outliers and high leverage points. Following the Eq. (14),

by applying the re-descending score function ψ1ðuÞ ¼ ∂ θ1ðuÞ
∂ u with�

u ¼ yi�vibbMbσ LTS

�
and value of the scale estimates bσLTS the solution for

partial robust modified MM-estimators is the slight modification on
weight w r

i which is

w r
i ¼ ρ

�
f
^

ibσLTS
; c
�

(18)

with the additional resistant weight wx
i as in Eq. (16). The objective

function θ1 does not need to be similar to the θ0, but should satisfy the
properties as below:

i. θ is symmetric and continuously differentiable, with θð0Þ ¼ 0
ii. There exists a > 0 such that θ is rigidly increasing on ½0 ; a� and

constant on ½a ; ∞Þ
iii. θ1ð f

^Þ � θ0ð f
^Þ hence,

Xn
i¼1

θ1

�
yi � vi bbMbσLTS

�
�
Xn
i¼1

θ0

�
yi � vi bbMbσLTS

�

3.2. Partial robust GM6-Regression

The GM-estimator was introduced by Mallows [19] and Schweppe
[21] with objective to improve the resistance of classical M-estimator to
the suspected high leverage point through downweighing procedure. The
general robust GM-estimator using equation in Eq. (1) is given as

bbGM ¼ arg min
b

 Xn
i¼1

wi θ

�
yi � vi bb

zi bσ
� !

(19)

where θ is a specified function which is absolutely continuous and non-
decreasing on ½0 ; ∞Þ,wi, zi represent the weights and depend on the
matrix of V that are updated iteratively from initial estimate using any

robust method, and bσ is an estimate of robust scale. Taking the ψð f^Þ ¼
∂ θð f^Þ
∂ f
^ , the GM-estimator in Eq. (19) then yields the solution as
4

Xn
wi ψ

�
yi � vibbb

�
v ¼ 0 (20)
i¼1 zi σ

the Mallows solution [19] provides only the weight wi (ranged from 0 to
1), that is another weight zi ¼ 1. The weight wi is a square root function

of the diagonal elements of the hat matrixf wi ∝ð1� hiiÞ1=2 g; H ¼
VðVTVÞ�1VT [21]. It reduces the involvement of observations with high
influential points in the factor space. However, the estimator results in
loss efficiency because the good leverage points are also downweighed.
As improvement, the Schweppe [21] suggested the solution by adjusting

the leverage weights function based on the size of residual f
^

i (in PLSR)

with now the weight zi ¼ wi;
�
wi ∝

ffiffiffiffiffiffiffiffi
1�hii

p
ri

ψ
�

riffiffiffiffiffiffiffiffi
1�hii

p
��

;
�
ri ¼ f

^

ibσ
�
[35] and

bσ as scale estimator in [36]. Although the strategy is better thanMallows,
the Schweppe solution is problematic with low breakdown point [17]
and it is not consistent when the residuals are asymmetric [37]. More-
over, it is suffered with the influence of multiple outliers in the factor
space [36]. To overcome these limitation, the GM6 [23] with high
breakdown point (closer to 50%) and bounded influence was introduced.
The advantage of GM6 is it can classify whether the suspected leverages
are good or bad. In the algorithm, the initial estimates b0 uses high
breakdown (BDP ¼ 50%) LTS estimator [31] with the scale estimate is
calculated using LMS estimator [31] which provides 0.95
efficiencyf bσ ¼ 1:4826 ð1þ5 =ðn � pÞÞ Median jr ij g. The partial GM6
estimator can be defined as

bbGM6 ¼ bb0 þ
" Xn

i¼1

vTi В vi

#�1

�
Xn
i¼1

bσ W ψ
�
ri ðbb0Þbσ wi

�
vi (21)

it is known that the hat matrix hii fails to prevent the masking effects of
multiple outliers in the factor space [38], the weighing strategy W ¼
diag ðwiÞ using Robust Mahalanobis Distance (RM2

i ) [30] then is
preferred

wi ∝min
�
1;
χ20:95;p
RM2

i

�
(22)

RM2
i ¼ ðvi �mvÞ TC�1

v ðvi �mvÞ (23)

with mv and Cv are robust location and shape estimates of the minimum
volume ellipsoid (MVE) estimators. The value of MVE is calculated from

the matrix of latent variables V, B ¼ diag
�
ψ 0
�

riðbb0Þbσ wi

��
as diagonal in

the derivative of Huber's function ψ , and χ20:95;p is the suitable chi-square
distribution. In the GM6, the final estimates are calculated in the single
step (Newton Raphson) rather than iteratively. Here, as alternative to S-
estimator [36] the MM-estimator with better asymptotic efficiency is
assigned as initial estimator.
3.3. Partial robust DRGP-Regression

As a cause of masking and/or swamping effect in the factor space,
almost the existing robust methods only resistant to the influence of
single outlier or high leverage point. With multiple high influential
points in the factor space they are ineffective and fail to identify [22, 30,
39]. This may result to a poor fitting process, multicollinearity, and
heteroscedastic [40]. Due to this problematic, Habshah [29] introduced
the DRGP procedure in order to determine whether the observations
potentially have multiple high leverage point or not. The procedure uses
suitable robust cut-off point proposed by Imon [41] on the calculated
generalized potentials p*ii to decide the suspected observations. Here, the
robust DRGP is applied in the PLSR by assigning the new component
variables V as input space instead of original data X.
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Recall the multiple regression model in Eq. (1), the easiest way to
detect the influence point of outlier is based on their residual e. Using the
OLS method, the term of the true disturbance vector function of leverage
and true error weight matrix W can be defined as

e ¼ y� by¼�1�V ðVTVÞ�1VT
	
e (24)

whereW ¼ V ðVTVÞ�1VT reflects joint effect ofm predictors on the fitted
values by and it is also known as hat matrix. The diagonal elements wii is
the hat values in matrix W and it is considered as a measure of leverage
values of y corresponds to by.

The DRGP consists of two steps; the first step is to determine the
suspected high leverage points using robust approach in Eq. (23), with
robust cut-off criteria [39].

Median


RM2

i

�þ 3 MAD


RM2

i

�
(25)

this involves the calculation of median and Median Absolute Deviation
(MAD) in the RM2

i . The second step uses the diagnostic approach called
generalized potential denoted as p*ii for all members in data set to confirm
the suspicion. Let R as a set of “remaining” good observations and D as a
set of “deleted” observations, then the R consists of ðn�dÞ observations
after d < ðn�kÞ observations in D are deleted. In a case where the ith
observations are deleted from the remaining set of R and further joins the

deletion set in D. For any such i, the w�ðDþiÞ
ii equals to w�ðDÞ

ii =ð1�w�ðDÞ
ii Þ as

shown below

w�ðDþiÞ
ii ¼ vTi



VT

RVR

��1xi þ
�
vTi


VT

RVR

��1vi
	2

1� vTi


VT

RVR

��1vi
¼ w�ðDÞ

ii

ð1� w�ðDÞ
ii Þ

(26)

for a case when the size of R is ðn�1Þ and D ¼ i the w�ðDÞ
ii is equivalent as

an natural extension of ith potentials pii in RM2
i [30] as wð�iÞ

ii ¼
vTi ðVT

ðiÞVðiÞÞ�1vi ¼ pii, thus w�ðDÞ
ii is the ith diagonal element in matrix

V ðVT
RVRÞ�1VT .

The generalized potentials criteria as in [41] is given as

p*ii ¼

8><>:
w�ðDÞ

ii

1� w�ðDÞ
ii

fori 2 R

w�ðDÞ
ii fori 2 D

(27)

with the robust cut-off point consider both the dimension of the pre-
dictors and any account of the number of observations,

p*ii >Median


p*ii
�þ c MAD



p*ii
�

(28)

here c is a constant value of 2 or 3 and MAD ðp*iiÞ ¼ Median f��p*ii �
Median ðp*iiÞ

��g =0:6475. The criteria test, if the p*ii of suspicion is greater
than the cut-off point in Eq. (28) the suspicion in the first step is true.
While if it is not, then put back the observation into the dataset and
recalculate the generalized potentials p*ii on the remaining subset.
3.4. Kernel - PLS

With the restriction of nonlinear relationship and improper
spectra signature in the NIR dataset, the use of kernel function as
solution is suggested. By relating the RKHS and feature space F in
[7], each point in the original input vectors are mapped nonlinearly
to a higher dimensional F. Recall the NIPALS algorithm in PLSR
model, the kernel method replaces the dot products calculation of
elements in the mapped data corresponding to a nonlinear function
in the original input space. Consequently, the orthogonal weight
vectors w and a as in PLSR cannot be estimated directly, hence the
5

NIPALS algorithm should be reconstructed into its nonlinear
kernel-based variant [42].

Some general definitions associating with the theory in RHKS by
Aronszajn (see in [43]) are provided as below:

Definition 1. (Inner product). Let H be a vector space over field <. A
function 〈�; �〉H :H � H → < is said to be an inner product on H must satisfy the
conditions

i. Bilinearity: 〈α f þ β g; k〉H ¼ α〈 f ; k〉H þ β〈 g; k〉H8 f ; g; k 2 H; 8 α;
β 2 <

ii. Symmetric: 〈f ; g〉H ¼ 〈 g; f 〉H8 f ; g 2 H
iii. Positive definiteness: 〈f ; f 〉H 	 0; 8 f 2 H and 〈f ; f 〉H ¼ 0 if and

only if f ¼ 0.
Definition 2. (Normed space) is a linear (vector) space H over field <on
which a norm on H is defined and for f ; g 2 Hand 8 α 2 < satisfies the
properties

i. Positive homogeneity: kα fk ¼ jαj kfk
ii. Triangle inequality: kf þ gk � kfk þ kgk
iii. Positive definiteness: kfk 	 0 and kfk ¼ 0 if and only if f ¼ 0
Definition 3. (Convergent). Let H be an inner product space, a sequence
ffng∞n¼1 is said to be Convergent if for 8 ε > 0 there exists an element f 2 H,
such that k f � fnk < ε asn → ∞.

Definition 4. (Cauchy sequence). Let H be an inner product space, a
sequence ffng∞n¼1 be a Cauchy sequence in H if 8 ε > 0 there exists a positive
integer N, such that k fn � fm k < ε whenever n;m 	 N.

Any convergent sequence is also a Cauchy sequence.

Definition 5. (Complete). A linear (vector) space H is said to be complete if
the Cauchy sequence is convergent.

Definition 6. (Hilbert Space). A normed space is said to be a Hilbert space
on which the norm is induced by an complete inner product space 〈f ; g〉 as the
relation kfkH : ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〈f ; f 〉H
p

.

Definition 7. (Kernel). Consider X be an arbitrary non-empty set. A
function K:X� X → < is said to be a kernel if <-Hilbert space and a map
ϕ:X → H are exist, such that 8 xi;xTi 2 X,

K ð xi; xiT Þ:¼ 〈ϕðxiÞ;ϕðxiÞT〉H (29)

Definition 8. (Reproducing Kernel Hilbert Space). Let H be a Hilbert
space of function on non-empty set X whose 〈f ; g〉 as complete inner
product space andkfkH : ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〈f ; f 〉H
p

as the normed space in H, for f ;
g 2 H. Reproducing kernel of H is said to be a function of K:X� X → < if
satisfies the properties

i. Kxð�Þ ¼ Kðx; �Þ 2 H for any x 2 X, where
ii. Reproducing property: f ðxÞ ¼ 〈f ð�Þ;Kðx; �Þ 〉H , for any f 2 H and

x 2 X.

Applying the function Kx at y to the properties (ii) in (Def.8) giving

f ðxÞ¼ 〈f ðyÞ;Kðx; yÞ〉H ; for 8 f 2 H; and

KxðyÞ¼ 〈Kx;Ky〉; for x; y 2 X

with the symmetric function of two variables in K satisfying the Mercer's
theorem [44].

Theorem 1. Let H be a Hilbert space of function over non-empty set X. The
following properties are equivalent
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1. H has a reproducing kernel
2. For any x 2 X, the function ϕx:H → < defined by ϕxðf Þ ¼ f ðxÞ is

continuous.

Following Mercer's theorem, each positive definite kernel Kðx; yÞ on a
compact domain X� X may be written as

Kðx; yÞ ¼
Xs
i¼1

λiϕiðxÞ ϕiðyÞ; S � ∞ (30)

where λi is the sequence of eigenvalues with λ1 	 λ2 	 … 	 λS of Kðx; yÞ
and fϕigsi¼1 is the infinite sequence of eigenfunctions. Moreover, Eq. (30)
can be reformulated as

Kðx; yÞ ¼
Xs
i¼1

ffiffiffiffi
λi

p
ϕiðxÞ

ffiffiffiffi
λi

p
ϕiðyÞ¼ ðϕðxÞ �ϕðyÞÞ¼ ð ϕðxÞT �ϕðyÞ Þ (31)

It is obvious to see that any kernel Kðx; yÞ in Eq. (31) also corresponds
to a canonical (Euclidean) dot product in a possibly higher dimensional
feature space F, with the mapping function

ϕ:X → F
x →

� ffiffiffiffiffi
λ1

p
ϕ1ðxÞ;

ffiffiffiffiffi
λ2

p
ϕ2ðxÞ;…;

ffiffiffiffi
λs

p
ϕsðxÞ

	 (32)

with f f ffiffiffiffi
λi

p
ϕiðxÞg s

i¼1; x2 Xg denotes as feature mapping.
Based on these properties, the description of the nonlinear kernel is

discussed. Assuming a nonlinear transformation function of the input
variables xi 2 X⊂<m into the feature space F.

ϕ:xi 2X⊂<m →ϕðxiÞ 2 F (33)

with ϕð�Þ is a nonlinear mapping function in the input space of the
original input vectors to the feature space F. The mapping ϕ replaces xi
with the ϕðxiÞ and result to the high-dimension which can even be
infinite feature space F. Once the component score matrix V in linear
PLSR is obtained, then a nonlinear PLSR is computed as the original input
data space. Define ϕ as an n x s matrix of mapped space data with the ith
row is the vector ϕðxiÞ in s dimensional feature space F. Here the use of
nonlinear kernel function is preferred instead of an explicit nonlinear
mapping. The Eq. (31) giving the deflation

K¼ϕ ϕT (34)

with K represents as n x n kernel Gram matrix of the cross dot products
among all mapped input data points f ϕðxiÞgni¼1. Using the normalized
component scores vg , the deflation of K and y are formulized as

ϕgþ1 ϕT
gþ1 ←

�
ϕg � vgvTgϕg

	 �
ϕg � vgvTgϕg

	T

Kgþ1 ←
�
I� vgvTg

	
Kg

�
I� vgvTg

	 (35)

and

ygþ1 ← yg � vgvTg yg ¼ yg
�
I� vgvTg

	
(36)

the coefficient matrix of the KPLS regression model in F then can be
written as

bbKPLS ¼ ϕTu ðVTKTUÞ�1 VTy; bKPLS 2 <mxp (37)

and the final prediction of component concentration in the regression
model is given as

by ¼ ϕ ϕTu ðVTϕϕT uÞ�1 VTybyv ¼ Kvu ðVTK uÞ�1 VTy
(38)
6

where by and byv are the prediction of calibration set and validation set,
respectively.Kv is the nvx n kernel matrix of validation set with elements
are composed of Kij ¼ Kðxi;xjÞ, which are input vectors of calibration set

f xignþnv
i¼nþ1 and validation set

�
xj

n
j¼1. As suggested by Wu [45, 46],

centering the kernel both in calibration and validation are very important
to provide the bias term to be zero. Centralization on the mapped data in
F simply can be calculated as

K ¼
�
I� 1

n
1n1Tn

�
K
�
I� 1

n
1n1Tn

�

Kv ¼
�
Kv � 1

n
1nv1

T
nKv

��
I� 1

n
1n1Tn

� (39)

with I represents as n-dimensional identitymatrix, and 1n; 1nv denotes the
vectors whose elements equal to 1, with lengths n and nv, respectively.

3.5. Kernel - PRM

The Kernel-PRM (simply called as KPRM) develops the concept of
PRM to incorporate the nonlinear feature in the original input factor
dataset. In the prior study [47], the KPRM uses kernel function to
transform the nonlinear relationship in the original input space into a
linear PLS through high-dimensional feature space. The method provides
generalized weightwi scheme as robust procedure to the nonlinear kernel
to remove the outlier and downgrade the influence of bad high leverage
point in the dataset. A modified PRM as proposed in the KPRM is the
input matrix X is subsequently replaced as the outer product ϕ ϕT of the
n x n kernel Gram matrix K. A main concern in the KPRM procedure is

based on the weighing scheme in K. Let define K
^
as the weighted matrix

of K, so that

K
^ ¼ðΩϕÞ ðΩϕÞT ¼ΩKΩ (40)

whereΩ is said to be the diagonal weight matrix, with the ith elements in
the diagonal matrix equals to the generalized weight in the PRM.

3.6. Kernel Partial Diagnostic Robust Potential

Another alternative of robust method in the class of nonlinear kernel
called Kernel Partial Diagnostic Robust Potential (KPDRGP) is proposed.
The KPDRGP follows the principles of the Partial Robust DRGP-
Regression that uses the suitable robust cut-off point on the calculated
generalized potentials p*ii to confirm the suspected high leverage. Instead
of applying the explicit nonlinear mapping ofX to the feature space F, the
kernel function ϕ ϕT as the cross dot products among all mapped input
data points f ϕðxiÞgni¼1 is used. Here, a Gaussian kernel function is applied
due to its superiority to handle nonlinear dataset [48].

Ki;j ¼K


xi; xj

�¼ exp
�
�
�� xi � xj

�� 2

σ2

�
(41)

where σ2 is the non-robust variance of original training dataX and k � k is
Euclidean norm of two matrices.

Let define R
^
M2

i as robust Mahalanobis distance that employ the ith
elements kernel Gram matrix K in the input space, such that

R
^
M2

i ¼ðv^i �m^vÞ TC�1
v ðv^i �m^ vÞ (42)

wherem^v andC
^

v are robust location and shape estimates of the minimum
volume ellipsoid (MVE) estimators. These robust estimator are calculated

from the matrix of new components V
^
with kernel Gram matrix K in the

input space. To justify the suspicion high leverage points it is important
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to determine how w�ðDÞ
ii is adjusted. Define new w�ðDÞ

ii as the ith diagonal

element in matrix v^ ðv^T
R v
^
RÞ

�1
v^
T
and result to the new generalized po-

tential p^
*
ii. This value then is used as diagnostic tool to confirm the sus-

picion through cut-off point in Eq. (28).

p^
*
ii ¼

8><>:
w^

�ðDÞ
ii

1� w^
�ðDÞ
ii

fori 2 R

w^
�ðDÞ
ii fori 2 D

(43)

3.7. Algorithm Kernel Partial Diagnostic Robust Potential

Let defineK ¼ ϕðXÞ ϕðXÞT be the kernel Grammatrix of the cross dot
products among all mapped input data points f ϕð xiÞgni¼1 in feature space
F. In addition,Kmust be centered, and y need to be normalized to satisfy
the normal assumption.

1. Apply a nonlinear mapping function f ϕ:xi 2 X⊂<m → ϕðxiÞ 2 F g
in the input space of the original input vectors to the feature space
F. The mapping ϕ replaces xi with the ϕðxiÞ and result to the high-
dimensional feature space F.

2. Replace the outer product ϕðxiÞ ϕðxiÞT by the kernel matrix K.
Apply an identity matrix I as the initial weight Ω on the kernel

matrix to get the weighted K
^

g and output vector y^g , y
^
g ¼ Ω yg .

3. Initialize the weighted output vector y^ as a column weighted
latent variable u^1 ¼ y^g .

4. Regress K
^

g on u^1 to obtain the weight w^g ¼ ð K^T

g u^1Þ =ð u^
T
1 u^1Þ,

then normalize w^g and rename it as v^g ¼ w^g=
��w^g

��. v^g is the

weighted of new component variables with kernel GrammatrixK
^

g

in the input space.

5. Calculate the weights in y^g by c^g ¼ ð y^T
g v
^
gÞ = v^

T
g v
^
g and project

the y^g on the c^g to calculate the new component variable in y^g

using u^
*
g ¼ y^g c^g and normalize u^

*
g .

6. Determine the y^g and v^g improvement using u^Δ ¼ u^
*
g � u^g , if

u^Δ > tol, go to step 1 to 5 until convergence using u^
*
g . While if

u^Δ < tol, the first latent PLS is found and proceed to the step 7.
The tol refer to tolerance limit for convergence which is set to
10�4.

7. Deflate the K
^

g and y^g using K
^

gþ1 ¼ ð 1 � v^g v
^T
g Þ K

^

gð 1 � v^g v
^T
g Þ,

y^gþ1 ¼ y^gð 1 � v^g v
^T
g Þ

8. Continue to step 4 until all l PLS components are determined.

9. Here, the new calculated V
^
as nonlinear PLSR are used as the new

input space in the robustness procedures.

10. For each i point on ðv^i;m
^

iÞ pair, calculate the R
^
M2

i

11. Use the cut-off point criteria Median ðR^ M2
i Þ þ 3MAD ðR^ M2

i Þ to
determine the suspected outlier and high leverage points in each i

point of R
^
M2

i .
12. Calculate the generalized potential values for each observation. If

the p^
*
ii of suspicion is less than the cut-off point then put back the

observation into the dataset and then recalculate the generalized

potentials p^
*
ii on the remaining subset R.

13. The observations that are identified as real outlier and high
leverage points are removed from the remaining subset R.

14. Update the weight Ω by assigning the weight score as 0 to the
deleted observation, while the rest observations in the subset R are
weighted as 1.
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15. Continue to step 2 to recalculate the new weighted K
^

g and output

vector y^g , re-perform the rest steps until all PLS estimates are
obtained.

4. Results and discussion

To examine the superiority, all the proposed methods: PLS, PRM,
PRMM, PRGM6, PRDRGP, KPLS, KPRM, and KPDRGP were evaluated in
order using the simulation data and real data. The simulation data uses
the sin ðxÞ function with added noise e � Nð0; 0:05 Þ, while the real data
uses NIR spectral dataset of oil palm (Elaeis guineensis) fresh fruit meso-
carp (see Figure 1). This fruit samples are a part of breeding trial
experiment in Palapa Estate, PT. Ivomas Tunggal, Riau Province,
Indonesia. There are two response variables observed from the fruit
mesocarp sample: percent of oil to dry mesocarp (%ODM) and percent of
oil to wet mesocarp (%OWM). The spectral data were collected (in
contact) using the QualitySpec Trek from Analytical Spectral Devices
(ASD Inc., Boulder, Co., USA) on 12 different sampling positions in the
fruit bunch (without destructive). These data are good enough to eval-
uate the non linear effect of the proposed methods. The comprehensive
algorithms about the proposed methods were written into R-language
using Ri386 software (http://r-project.org) with 3.4.2 version for
windows.

4.1. Simulation data

The simulation data uses the sin ðxÞ function to generate the nonlinear
behavior dataset. Earlier it was known that some existing multivariate
calibration only capable to capture the linear datasets, otherwise it fails
to capture the dataset structure with highly nonlinear. In this section, 41
samples data were randomly generated in the range of ½0; 10� as training
set and were calculated with correspond to the sine function in Eq. (44).
To evaluate the sensitivity of the proposed method, 7 random outliers
were manually added in the training set. The outliers were marked
orderly followed their sample number which are 10, 12, 18, 19, 28, 33,
and 36.

f ðxÞ¼ sin ð�3 = 4xÞ (44)

To test the consistency in the training model, 101 samples was also
uniformly generated using the range of ½0; 10� as testing set. The per-
formance of the methods both using non-kernel and kernel methods are
presented in Figure 2 and Figure 3.

As seen in Figure 3, by applying the kernel transformation on the
methods the prediction results is really promising. The methods succeed
to capture the structure of highly nonlinear dataset. While without kernel
transformation (see Figure 2), all the methods fails to fit the model. The
proposed KPDRGP method shows a better fitting line compared with the
KPLS and KPRM. With the contamination of outliers in the training
dataset, the KPDRGP is less sensitive and succeeds to decrease the in-
fluence. It is interested to evaluate the robustness of the proposed DRGP
procedure with and without kernel transformation in PLSR through their
final weight values (see Figure 4).

With the influence of nonlinear effect in the dataset, the linear
PRDRGP algorithm fails to identify the true outliers in the dataset (see
Figure 4). While by transforming the data into a high dimensional feature
space using kernel Hilbert Space method, it succeeds to capture the true
outliers in the dataset. The KPDRGP method decides the sample number:
10, 12, 18, 32, 33, 34, and 36 were the true outliers. However it is still
failed to screen the remaining 2 outliers (sample number: 19 and 34), this
might be caused by the extraction process in the data transformation. In
Figure 3, the KPDRGP also succeed to prevent the over-lower prediction
in the testing data. The summarization of the prediction results both
using training and testing dataset can be seen in Table 1. Here, the sta-
tistical measures uses Desirability Indices [49] such as Root Mean

http://r-project.org


Figure 1. First run of averaged spectra on oil palm fresh fruit mesocarp.

Figure 2. Predictions on testing data using training model of non-
kernel methods.

Figure 3. Predictions on testing data using training model of kernel methods.
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Squared Error (RMSE), Coefficient of Determination (R2), Ratio of Pre-
diction to Deviation (RPD), Bias, and Standard Error (SE).

In Table 1, by preventing the effects of outlier in the fitting process,
the KPDRGP produces the lowest prediction error (SE and RMSE) both in
training and testing data set are about 0.150 and 0.144, respectively. The
method shows the highest R2 both in training and testing dataset which
are 0.980 and 0.965, respectively. This R2 value represents the variability
for a response variable that can be explained by predictor variables. The
method also shows better reliability value (RPD) with less bias than the
other methods. In the class of kernel, the KPLS method is inferior due to
contamination from outliers in the dataset. By downgrading the effect of
multiple outliers in the dataset, the KPDRGP is superior to KPRM.
4.2. Oil to dry mesocarp data

The real NIR spectra dataset on fresh fruit mesocarp was used to
examine the robustness of the kernel solution. The dataset contains 960
observations and 489 wavelengths data points as predictor variables. In
this section, the %ODM was used as response variable. As seen in
Figure 1, the higher spectral absorbance corresponds to a higher %ODM
in fruit mesocarp. Figure 5 shows the frequency distribution of the %
ODM values used as training set. To build a good training model, the
training set should contain all possible values. Earlier, it was considered
if the dataset has high dimensional problem as result of huge number of
observation and predictor variables. This condition may risk to the
multicollinearity that lead to the heteroscedastic problem in the residual.
To encounter this, the PLSR method is preferred to summarize the
covariance between predictor variable and the response variable by
downscaling the original variables X into less number of new PLS com-
ponents V.

In this study, the maximum of PLS components used in the model
were limited to 20 and 30 components. This strategy was assigned to
evaluate the efficiency of PLSR model using less and large number of PLS
components. The assumption is the less number of PLS components used
in the training model the most efficient is. As seen in Table 2 it is
observed that in the class of non-kernel method, all the proposed
methods (PLS, PRM, PRMM, PRGM6, PRDRGP) are not better than the
class of kernel partial method (KPLS, KPRM, KPDRGP). The KPDRGP
method produces the lowest prediction error (SE and RMSE) even using
less and higher number of PLS which are about 0.466 and 0.204,
respectively. The reliability of the training model based on its RPD is also
greater than 3; means that the training model constructed arestrong
enough to prove the reliability for routine analysis. With contamination
of outliers in the dataset, the KPLS fails to prevent the influence hence
result to a higher SE with lower R2 compared to the KPRM and KPDRGP.



Figure 4. The final sample weight values using DRGP algorithm: PRDRGP (black) and KPDRGP (red).

Table 1. Statistical measures on prediction results using sine function simulation data.

Dataset Desirability Index PLS PRM PRMM PRGM6 PRDRGP KPLS KPRM KPDRGP

Training RMSE 0.631 0.690 0.645 0.662 0.654 0.302 0.265 0.101

R2 0.201 0.109 0.171 0.141 0.156 0.920 0.958 0.980

RPD 1.117 1.021 1.092 1.064 1.077 1.087 2.656 5.724

Bias -0.106 0.003 -0.062 -0.081 -0.084 0.002 0.026 0.001

SE 0.639 0.698 0.653 0.671 0.662 0.320 0.269 0.150

Testing RMSE 0.647 0.704 0.686 0.768 0.713 0.235 0.679 0.143

R2 0.133 0.107 0.104 0.029 0.104 0.854 0.891 0.965

RPD 1.065 0.979 1.004 0.897 0.966 2.928 1.015 4.819

Bias 0.032 0.089 0.049 0.028 0.049 0.024 0.114 0.054

SE 0.650 0.707 0.690 0.772 0.717 0.236 0.682 0.144

Figure 5. Frequency distribution histogram of %ODM values.

Table 2. Statistical measures on prediction results using %ODM dataset.

PLS Desirability Index PLS PRM PRMM

l ¼ 20 RMSE 3.305 3.344 3.474

R2 0.556 0.578 0.562

RPD 1.551 1.533 1.475

Bias 0.240 0.298 0.426

SE 3.307 3.346 3.476

l ¼ 30 RMSE 2.934 2.992 3.166

R2 0.632 0.660 0.631

RPD 1.747 1.713 1.619

Bias 0.060 0.133 0.385

SE 2.996 2.993 3.168
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The fitting performance between measured and predicted values
using PRDRGP and KPDRGP methods on %ODM dataset are shown in
Figure 6. It highlights how well the kernel solution on the proposed
KPDRGP (Figure 6(c) and 6(d)) can improve the prediction result using
trainingmodel (see Table 2). This can be inspected through how close the
predicted values are to the fitted regression line using without kernel
(Figure 6(a)) and with kernel (6(c)) solution applied in the PRDRGP
model. In the study, the PRDRGP fits the data adequately (with R2> 95%)
compared to the others class of robust PLS such as PRM, PRMM, and
PRGM6.When the kernel solution is applied, the accuracy in the KPDRGP
increases. The KPDRGP (Figure (6(d)) yields the lowest prediction re-
sidual which is closed to 0 than PRDRGP (Figure 6(b)).

4.3. Oil to wet mesocarp data

Using similar NIR spectral dataset of oil palm fresh fruit meso-
carp as predictor variable, in this section the %OWM (see Figure 7)
was assigned as response variable. As seen in Figure 7, the distri-
bution of the response variable covers all possible value of oil
content in the wet mesocarp. The maximum number of PLS
PRGM6 PRDRGP KPLS KPRM KPDRGP

3.601 3.343 0.617 0.561 0.466

0.548 0.570 0.925 0.988 0.993

1.423 1.519 8.299 9.073 11.588

0.498 0.313 0.011 -0.021 -0.004

3.603 3.325 0.618 0.561 0.466

2.652 2.969 0.273 0.242 0.203

0.633 0.665 0.937 0.997 0.998

1.932 1.726 18.804 19.911 25.579

0.196 0.142 0.014 0.018 0.001

2.954 2.971 0.273 0.242 0.204



Figure 6. Fitting and residual performance on %ODM dataset: (a) measured vs predicted values on PRDRGP; (b) predicted vs residual on PRDRGP; (c) measured vs
predicted values on KPDRGP; (d) predicted vs residual on KPDRGP.

Figure 7. Frequency distribution histogram of %OWM values.
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components was set to 20 and 30 variables. In Table 3, the result
shows that the class of non-kernel partial methods which are
PRDRGP, PRM, and PRGM6 generally superior to PLS and PRMM.
The methods yield a higher R2 with lower prediction error (SE and
RMSE). According to their reliability index using RPD value, all the
non-kernel methods fail to meet (RPD <3). The proposed KPDRGP
method still provides the highest fitted regression line (R2>95%)
with lowest prediction error even using less and higher predictors.
The proposed robust KPDRGP is also more reliable (with RPD>3)
than the other methods. With the possible contamination of outliers
in the dataset, the non-robust KPLS fails to prevent the effect hence
results to low accuracy compared to the KPRM and KPDRGP.

Without kernel transformation applied in the input variable, all the
class of non-kernel methods fail to fit the training model. This also lead to
produce high bias in the predicted residual (see Table 2) compared to
their kernel version. The proposed robust PRDRGP method also does not
fit the data adequately (see Figure 8(a) and 8(b)) and still produce high
bias (see Table 2). While, by integrating kernel transformation in the
model, the method (KPDGP) improved the accuracy and reduce the bias
(see Figure 8(c) and 8(d)). This is to confirm that using different dataset,
in the class of robust with and without kernel method, the proposed
robust PLSR using DRGP procedure is still superior.



Table 3. Statistical measures on prediction results using %OWM dataset.

PLS Desirability Index PLS PRM PRMM PRGM6 PRDRGP KPLS KPRM KPDRGP

l ¼ 20 RMSE 4.471 4.516 4.535 4.487 4.517 0.923 0.768 0.686

R2 0.644 0.658 0.655 0.662 0.658 0.956 0.990 0.993

RPD 1.726 1.709 1.702 1.720 1.709 8.363 9.972 11.646

Bias -0.029 0.151 0.004 0.002 0.007 -0.026 0.031 0.003

SE 4.473 4.519 4.537 4.489 4.519 0.923 0.768 0.686

l ¼ 30 RMSE 4.085 4.126 4.249 4.180 4.130 0.404 0.374 0.279

R2 0.710 0.714 0.697 0.712 0.714 0.967 0.998 0.999

RPD 1.890 1.870 1.816 2.097 1.869 19.098 20.946 28.252

Bias 0.075 0.048 0.011 -0.030 0.097 0.003 -0.010 0.002

SE 4.087 4.129 4.251 4.082 4.133 0.404 0.374 0.279

Figure 8. Fitting and residual performance on %OWM dataset: (a) measured vs predicted values on PRDRGP; (b) predicted vs residual on PRDRGP; (c) measured vs
predicted values on KPDRGP; (d) predicted vs residual on KPDRGP.
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5. Conclusions

The development of the robust DRGP algorithm in the PLSR
method with kernel solution in the input space to handle the high
dimensional problem and irregular data space has been discussed.
Based on the study using simulation and real NIR spectral dataset, the
proposed KPDRGP method was superior compared to the other
upgraded methods using some considered robust methods. The
11
KPDRGP succeed to capture the highly nonlinear relationship be-
tween the predictor variables against response variables through
high-dimensional feature mapping. The reliability of the method also
was evaluated; the result also shows the high promising using the
method for routine prediction. With the contamination of the mul-
tiple outliers and high leverage points in the dataset, KPDRGP was
not suffered otherwise the method prevents the influence during the
fitting process.
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