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Background: Tumor hypoxia is theorized to contribute to the aggressive

biology of pancreatic ductal adenocarcinoma (PDAC). We previously

reported that hypoxia correlated with rapid tumor growth and metastasis in

patient-derived xenografts. Anticipating a prognostic relevance of hypoxia in

patient tumors, we developed protocols for automated semi-quantitative

image analysis to provide an objective, observer-independent measure of

hypoxia. We further validated this method which can reproducibly estimate

pimonidazole-detectable hypoxia in a high-through put manner.

Methods: We studied the performance of three automated image analysis

platforms in scoring pimonidazole-detectable hypoxia in resected PDAC (n =

10) in a cohort of patients enrolled in PIMO-PANC. Multiple stained tumor

sections were analyzed on three independent image-analysis platforms, Aperio

Genie (AG), Definiens Tissue Studio (TS), and Definiens Developer (DD), which

comprised of a customized rule set.

Results: The output from Aperio Genie (AG) had good concordance with

manual scoring, but the workflow was resource-intensive and not suited for

high-throughput analysis. TS analysis had high levels of variability related to

misclassification of cells class, while the customized rule set of DD had a high

level of reliability with an intraclass coefficient of more than 85%.
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Discussion: This work demonstrates the feasibility of developing a robust,

high-performance pipeline for an automated, quantitative scoring of

pimonidazole-detectable hypoxia in patient tumors.
KEYWORDS

hypoxia, tumor microenvironment, ductal adenocarcinoma (PDAC), tumor
heterogeneity, image analysis
Background

Histopathological tumor analysis has historically been the

foundation of cancer diagnosis and prognostication. In the pursuit

of targeted treatment approaches, a number of molecular analyses

have now become standard pathological assays, with the most

extensively used being the immunohistochemical (IHC) detection

of proteins. In spite of its widespread use, however, IHC can be

confounded by resource-intensive analysis (1), and poor inter-

laboratory, inter-observer, and intra-observer reproducibility (2, 3).

Several factors contribute to the variability of the output of IHC

analyses, including the selection of appropriate tumor regions,

heterogeneity in marker expression, variations in antibody

performance and staining techniques, and the subjectivity and

qualitative nature of traditional manual scoring (4).

Several complementary strategies have been recommended to

improve on the stringency of IHC tumor analysis. These include

robust guidelines around optimization of IHC staining methods,

including the use of automation (5) and considerations on the

issue of marker heterogeneity, as has been studied by ourselves

and others (6). Finally, the validation and adoption of automated

digital image analysis have the potential to provide IHC tumor

analysis with the objectivity, reliability, and speed required for

effective biomarker research with translation to the clinic (4).

Several independent groups have already demonstrated at least

equal, if not superior, performance of automated digital image

analysis (DIA) versus traditional manual scoring (7, 8).

In the context of tumor hypoxia, we recently completed the

quantitative scoring of pimonidazole IHC in a cohort of resected

pancreatic ductal adenocarcinomas (PDAC) in patients accrued to

the PIMO-PANC trial, using the adaptive, pattern-recognition,

image analysis platform, Aperio Genie (1). Pimonidazole (1-[(2-

hydroxy-3-piperidinyl) propyl]-2-nitromidazole hydrochloride) is

an exogenous hypoxia tracer with an extensive prior use in

preclinical and clinical hypoxia studies and is a well-established

technique for assessing tissue hypoxia (9–11). This 2-

nitroimidazole undergoes bioactive reduction to form covalent

adducts with thiol-containing macromolecules in hypoxic (pO2 <

10 mmHg) but metabolically viable cells (12, 13). Adducts are

then identified using different immune-detection methods
02
including IHC. Pimonidazole studies have historically utilized a

semiquantitative, ordinal scoring system (14), which remains

susceptible to bias and variability, given its basis in manual

visual scoring. Another relevant limitation of ordinal scoring

systems is the potential for non-linear relationships across

categories, to confound correlation with biological data. The

work we describe here was initiated with the primary objective

of developing and validating a pipeline for image analysis that was

(1) reproducible, (2) relatively user-independent, and (3) could be

applied in a high-throughput manner. Further, given the

emerging contributions of cancer-associated stromal cells to

tumor biology and clinical behavior, we wanted a method that

would be able to confidently differentiate between tumor epithelial

and stromal cellular compartments (15, 16).

In our initial analysis, Aperio Genie provided a quantitative,

and continuous, estimate of tumor hypoxia that had good

concordance with manual scoring; analysis of five full tumor

sections per each patient tumor was able to appropriately

account for tumoral heterogeneity (1). However, the workflow

was quite resource-intensive, with each tumor requiring its own

customized analysis algorithm and settings. Further,

distinguishing epithelial from stromal cells was challenging on

the pixel-based Genie platform. We therefore proceeded to

evaluate two other image analysis platforms that were in

common use at our institution, both of which better resolve

distinct cell types through improved cell segmentation

algorithms. Definiens Tissue Studio utilizes a prepackaged,

generic cellular segmentation methodology, with limited

adaptability, while Definiens Developer allows customized

modifications of cellular segmentation. We describe here the

results of our comparison of quantitative tumor image analysis

of pimonidazole IHC on these three platforms.
Materials and methods

Study details

PIMO-PANC (NCT01248637) is a prospective, REB-

approved, single-institution trial conducted at the Princess
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Margaret Cancer Centre/University Health Network. Eligible

patients were 18 years or older, being considered for surgery with

a presumed diagnosis of localized pancreatic ductal

adenocarcinoma (PDAC). The primary objective is to evaluate

the effect of hypoxia on survival of early-staged (resectable) PDAC.

Registered patients received a single dose of the hypoxia marker

pimonidazole, on the day prior to surgery. Resected tumors were

evaluated and processed as per institutional standard practice for a

clinical diagnosis. All archived hematoxylin and eosin (H&E)-

stained slides were retrospectively reviewed by an expert GI

pathologist, and at least five representative tumor sections were

identified. Tumor tissue selection criteria included sections

containing viable tumor occupying the most surface area with

minimal artifacts (such as necrosis and variations in tissue

processing). Sections were cut (4 µm) from the five selected

tumor blocks for pimonidazole immunohistochemical (IHC)

staining and analysis with Aperio Genie (Ref 1) and Tissue

Studio. Subsequently, new sections were cut and stained for

PIMO immunohistochemistry from the same tumor blocks for

Definiens Developer analysis. Data from Aperio Genie were used

from the previous study (1), for comparison.
Pimonidazole immunohistochemistry
protocol

FFPE tumor sections were dried at 60°C for 1–2 h and IHC

staining completed as per the manufacturer’s guidelines, using an

automated slide stainer (BenchMark XT, VentanaMedical Systems)

with medium antigen retrieval (CC1, Tris/borate/EDTA pH 8.0,

#950-124). The dilution for pimonidazole antibody (Hypoxyprobe,

Inc.) was 1:400, with incubation time of 60 min. Secondary

detection was completed using Ventana ultraview Universal DAB

Detection Kit (#760-500) and visualization by hydrogen peroxide

substrate and 3,3′-diaminobenzidine tetrahydrochloride (DAB)

chromogen. Slides were counterstained with Harris hematoxylin

and Bluing in PBS, dehydrated in graded alcohol, cleared in xylene,

and coverslipped in Permount. Stained sections were digitized for

analysis (Aperio ScanScope, Leica Biosystems Inc., Carlsbad CA).
Quantitative image analysis

Pimonidazole IHC-stained tumor slides from 10 patients

were scanned and analyzed on three independent image-analysis

platforms as outlined below.
Aperio genie

Analysis was completed as described previously (1). Briefly,

regions of interest (ROIs) were manually annotated on scanned

images of the IHC-stained tumor slides for analysis, excluding
Frontiers in Oncology 03
areas of necrosis and non-neoplastic normal tissue adjacent to

tumor. Classes “epithelium,” “stroma,” and “other” were defined

and used to develop unique classifiers for each patient tumor to

differentiate epithelial from stromal tumor compartments. The

“other” class was used to define regions to exclude from analysis

(e.g., necrosis, non-pancreatic tissue). Aperio’s Positive Pixel v9

algorithm was applied to quantify hypoxic percentages (HPs) in

epithelial and stromal tumor compartments (with HP-whole

tumor = HP-epithelial + HP-stromal) within annotated ROIs.
Definiens tissue studio

All scanned slide images of the of the IHC-stained tumor slides

were loaded into Tissue Studio (TS) 4.0 (Definiens Inc., Munich,

Germany). A machine learning classifier differentiating “stroma”

from “epithelium” was developed by providing examples of images

of both tissue classes, as well as tissue artifact to be excluded from

analysis using the decision tree algorithm. This classifier was then

applied to refine regions of interest, followed by a pathologist review

and manual correction of any regions incorrectly labeled by the

automated classifier including manual extraction of background

normal tissue. It should be noted that the manual correction was

performed individually on every image from each tumor.

A stain separation algorithm was used to separate

hematoxylin from the DAB signal, with nuclear segmentation

being performed based on the hematoxylin signal. Cell size was

estimated and simulated by growing an area of cytoplasm 2

microns from every nucleus. A threshold applied to the intensity

of the DAB signal was used to differentiate between

pimonidazole-positive and -negative cellular regions.
Definiens developer XD

Scanned images were manually annotated by the study

pathologist to select tumor regions only. At this time, any

large areas of necrosis within the tumor region were also

excluded. This initial step of manual annotation of the tumor

region approximately took an average of 5 min per image. A

custom set of algorithms for cellular segmentation and

classification was developed with direct input from a platform

programmer and a study pathologist as outlined in detail below.

Development of custom classification
algorithms

The white balance of respective slides was computed to

correct for uneven lighting in slide scanning, and the DD stain

separation algorithm was used to separate DAB and hematoxylin

stains into unique image channels. Information regarding white

balance and stain color coefficients was used to improve stain

channel accuracy. Preliminary ROIs were then re-annotated to

exclude whitespace and other obvious artifacts.
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Fifty ROIs (512 × 384 microns) were randomly selected across

slides from 68 patient tumors and divided into two groups. One

group of 25 ROIs was designated as the training set, with the

remaining 25 assigned as the validation set. Two expert GI

pathologists used an open-source image editing program (GIMP,

The GIMP Development Team, Retrieved from https://www.gimp.

org) to independently manually annotate cells within all 50 fields as

“epithelial”, “stromal”, or “inflammatory cell/other”, further

differentiating pimonidazole-positive cells as “stained” and

pimonidazole-negative cells as “unstained”. Cells annotated as

inflammatory cell/other were excluded from hypoxia analysis. A

“consensus annotation” methodology was used to resolve

discrepancies between pathologists’ annotations. If both

pathologists’ annotations agreed, or if one pathologist annotated a

cell which the other did not, then the agreed or positive

identification was assigned. In cases of epithelial/stromal

mismatch, the cell was identified as stroma to reduce

misclassification of non-epithelial cells as epithelial. Likewise, for

inflammatory/other cell mismatch, any cell identified as such by

one of the two pathologists was classified as inflammatory, to ensure

stringency of epithelial cell discrimination.

A training set of 25 grids was used to iteratively develop a

custom cell classifier algorithm with joint input from a study

pathologist and a platform programmer. The hematoxylin

channel was used to segment ROIs into nuclear (high

hematoxylin signal) or cytoplasmic (low hematoxylin signal)

segments. Nuclear segments were then classified as either

“epithelial,” “stromal,” or “other” (which included primarily

inflammatory cells) using a custom-trained, pixel-wise Random

Forest classifier trained on the “consensus annotation” applied to

each detected cell segment within the segmented 25 field training

sets. Nuclear segments were expanded into cytoplasmic tissue

segments to simulate epithelial cells, fibroblasts, and inflammatory

cells/other cell bodies using cell-type-specific, sizing heuristics.

Cellular segments were individually assessed using the

information present in the DAB stain channel. Segments were

designated pimonidazole positive if more than 50% of their mean

optical density (commonly: opacity/translucency) was derived from

the DAB channel (and the optical density was above a minimum

threshold of 0.1). This approach was selected as it agreed with

pathologist assessment of stain intensity and performed well

independent of cellular density and stain concentration.

Simulated cellular segments were then used to designate larger

regions of tumor tissue as predominantly containing epithelial,

stromal, or inflammatory cells/other. Stromal tissue regions were

then further classified as “cellular” or “acellular” by subtracting the

stromal cell segments based on the average size of a fibroblast and

classifying the remaining stromal tissue area as “acellular.”

Cell classifier validation
The derived cell segmentation and classification algorithm was

then applied to the 25 fields of the validation set to calculate
Frontiers in Oncology 04
concordance of classification between individual pathologists (IS

and SS), combined-pathologist scoring (“joint”), andDD. There was

greater reliability across the two pathologists’ scoring of epithelial

cells (>72%) than stromal cells (>66%). When pathologists’ scoring

was combined to define a “consensus annotation” or “joint

classification,” the machine-based algorithm had an 86% alignment

with manual scoring of epithelial tumor cells (Figure 1).
Cross-platform comparison and
statistical analysis

A cross-platform agreement of quantitative estimates of

hypoxia was analyzed in a 10-patient tumor cohort. Spearman

correlation coefficients were calculated to assess the concordance

between the hypoxia level for the different techniques and between

epithelial hypoxia and stromal hypoxia. Mixed-effect modeling

was employed to obtain the variances between patients (inter-

tumor heterogeneity) and within a patient (intra-tumor

heterogeneity). Based on these variances, the intraclass

correlation coefficients (ICC) were calculated. The ICC is a

measure of reliability ranging from 0 to 1.0; values equal to or

greater than 0.85 indicate a high level of reliability across

measurements. These calculations were performed using all

sections and all patients available (10 patient tumors for Aperio

Genie and Definiens Tissue Studio analysis; 92 patient tumors for

Definiens Developer). We have calculated the ICC corresponding

to analysis on one section per patient tumor, as well as with two to

five sections per tumor (Table 1). All analyses were performed

utilizing R 3.4 software (https://cran.r-project.org/).
Results

There were visible differences in the resolution of cellular

classification across the three platforms related to the pixel-

based segmentation algorithms utilized by Aperio Genie

compared with the cell-based segmentation of Definiens

Tissue Studio and Definiens Developer (Figure 2).
Hypoxia is variable across patient tumors

Consistent with our previous reports, pimonidazole-

detectable hypoxia is variable across patient tumors and

appears to exist along a continuous spectrum (1). Hypoxia

levels in epithelial tumor regions are concordant with levels in

stroma as measured by all three image analysis platforms

(Spearman’s coefficient 0.69 (Genie), 0.79 (DD), 0.88 (TS)).

Variability in quantitative estimates of hypoxia in 10 patient

tumors using three different platforms is summarized in

Figure 3. The range of whole-tumor HP was 0% to 26% as
frontiersin.org
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measured by both (Aperio) Genie and (Definiens) Developer

and 0% to 15% as measured by (Definiens) Tissue Studio. Higher

levels of hypoxia were observed in the epithelial tumor

compartments, with estimates of HP-epithelial ranging from
Frontiers in Oncology 05
0% to 38% by Developer, 0% to 40% by Genie, and 0% to 52% by

Tissue Studio. Estimates of HP-stroma were unexpectedly low

using Tissue Studio (0 to 2%) in comparison with the other two

platforms (0% to 14% by Genie and 0% to 19% by Developer).
TABLE 1 Reliability of estimation of hypoxia using different platforms based on number of slides evaluated.

No. of tumour sections evaluated Intra-class co-efficient (ICC)

Developer Genie Tissue Studio

HPwt HPepi HPstr HPwt HPepi HPstr HPwt HPepi HPstr

1 0.728 0.736 0.713 0.678 0.702 0.567 0.325 0.308 0.059

2 0.842 0.848 0.832 0.808 0.825 0.724 0.490 0.471 0.112

3 0.889 0.893 0.882 0.863 0.876 0.797 0.591 0.572 0.159

4 0.914 0.918 0.909 0.894 0.904 0.840 0.658 0.640 0.201

5 0.930 0.933 0.925 0.913 0.922 0.868 0.706 0.690 0.240
frontie
FIGURE 1

Comparison of cellular classification (epithelial vs. stromal) by (A) pathologist 1, (B) pathologist 2, (C) Developer algorithm v1, and (D) Developer
algorithm v2 with epithelial cells highlighted in red and stromal cells in blue; cells excluded from analysis (including inflammatory cells, necrotic
cells, and others) are indicated in yellow. Circled regions highlight the example of a region of cellular misclassification with cells identified as
necrotic and coded yellow by both pathologists (to be excluded from analysis), which were classified as epithelial (red) or stromal (blue) by
Developer algorithm v1. After further optimization and derivation of Developer algorithm v2, these cells were now excluded (highlight yellow).
Scale bar in a) 25 microns.
rsin.org
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Factors contributing to heterogeneity of
quantitative hypoxia measurements

The respective contributions of intra- and interpatient

heterogeneity to the variability of the estimates of HP were

evaluated by mixed-effect modeling; these results are

summarized in Figure 4.

For Developer and Genie analyses, most of the variability in

measurement was related to heterogeneity across different

tumors, with a lower proportion of the variability being related

to the heterogeneity within a particular tumor. For example,

with Developer analysis, 73% of the variability inherent in

measures of HP-whole tumor was interpatient variance while

27% was related to heterogeneity within a tumor; for analysis on

Genie, the numbers were 68% (inter-) vs. 32% (intra),

respectively. The comparatively higher inter- vs. intra-patient

heterogeneity on Genie and Developer suggests that automated
Frontiers in Oncology 06
image analysis (AIA) estimates of tumoral hypoxia using these

platforms will identify real differences in HP across patients. In

contrast, most of the variability inherent in the Tissue Studio

analysis was related to heterogeneity within a tumor (for HP-

whole tumor, 68% intra-patient vs. 32% interpatient

heterogeneity). The high level of intra-patient heterogeneity

reduces the confidence with which estimates of HP by Tissue

Studio approximate “true” tumoral hypoxia, and the degree to

which this analysis is likely to differentiate biologically real and

relevant differences in hypoxia levels across patients is low.

Hypoxia was more variable in the stromal vs. epithelial

tumor compartment on all three platforms—29% vs. 26% on

Developer, 43% vs. 30% on Genie, and 94% vs. 69% on Tissue

Studio. This suggests that HP-epithelial, with its relatively high

inter-patient and low intra-patient heterogeneity, would be the

best measure to use to differentiate among tumors based on

levels of pimonidazole-detectable hypoxia.
FIGURE 2

Comparison of tumor cellular classification with image overlay as processed on different image analysis platforms: (I) Aperio Genie: (A)
pimonidazole (pimo), IHC (B) epithelial (red), from stroma (yellow) classification; (C) pimo +ve (red/orange) vs. pimo -ve (blue) in epithelial
tumor; (D) pimo+ (red/orange) vs. pimo -ve (blue) in stromal tumor. (II) Definiens Tissue Studio: (A) pimonidazole IHC; (B) epithelial (orange)
from stroma (light blue) classification; (C) pimo +ve (brown/orange/yellow) from pimo -ve (white) in epithelial compartment; (D) pimo+ (brown/
orange/yellow) from pimo -ve (white) in stromal compartment; and (III) Definiens Developer: (A) pimonidazole IHC; (B) segmented cell overlay
with pimo +ve epithelial cells (pink), pimo -ve epithelial cells (red), pimo +ve stromal cells (green), pimo -ve stromal cells (blue), inflammatory/
other (yellow).
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An additional contributor to the heterogeneity of hypoxia

measurements within a given patient’s tumor is the variance

within and across slides. In the analysis completed on Developer,

there was less variability across different sections of the same tumor

compared with the variability within one section. For example, in
Frontiers in Oncology 07
estimating HP tumor, 25% of the variance inherent in the measure

of hypoxia was related to variability across different ROIs in a given

tumor section while 9% of the variance was related to variance

across different sections and 66% of the variance in the measure was

related to inter-patient variability (Figure 5).
A B C

FIGURE 3

Estimates of tumoral hypoxia by different image analysis platforms. Each point on the x-axis represents a unique study patient. Each patient
(except 10) has estimates of hypoxia on Definiens Developer, Genie, and Tissue Studio as indicated by different colored bars. Y-axis shows the
hypoxia percentage (HP) (i.e., pimonidazole-detected hypoxia) in specific tumor compartments: (A) whole tumor, (B) epithelial, and (C) stromal
tumor compartments.
FIGURE 4

Variability in assessment of hypoxic percentage (in different tumor compartments) across platforms related to inter-patient (light gray) vs. intra-
patient (dark grey) variability.
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Reliability of estimates of HP based on
number of sections evaluated

We calculated the intraclass correlation coefficient (ICC)

using the mean of two or more values for each tumor, to

understand the reliability of estimates of HP related to the

number of tumor sections evaluated per patient tumor, with

values equal to or greater than 0.85 indicating a high level of

reliability across measurements. The results of this analysis are

summarized in Table 1. As expected, ICC values increased with

greater number of sections evaluated. Across the different

platforms, calculated ICC was highest with Developer (0.88 for

HP-stroma and 0.89 for both HP-epithelial and HP-whole

tumor if three tumor sections were analyzed per patient

tumor) and lowest with Tissue Studio (0.24 for HP-stroma,

0.69 for HP-epithelial, and 0.71 for HP-whole tumor if five

sections were analyzed). These data suggest that analysis of three

(representative) tumor sections would be sufficient to reliably

estimate HP in resected pancreatic cancers using Developer but

by contrast, analysis on Tissue Studio had high intra-patient

variability, such that even evaluation of five tumor sections had

poor reliability.
Discussion

We present here our results studying three unique image-

analysis platforms with computer-based learning capabilities, for

their ability to provide quantitative estimates of pimonidazole-
Frontiers in Oncology 08
detectable hypoxia in surgically resected pancreatic cancers.

These studies add to our prior work where an extensive,

iterative training process was used to develop tumor-

individualized scoring algorithms for the pixel-based platform

Genie. This semiquantitative strategy provided estimates of

pimonidazole tumor staining that were highly concordant with

manual scoring (1). Its primary limitation, however, was the

need to develop a customized algorithm for each tumor

analyzed, resulting in a strategy that was cumbersome and

impractical for high-throughput analysis. We have now

compared these results with analyses conducted on two other

image analysis platforms with different cellular segmentation

capabilities—Developer and Tissue Studio. Both platforms were

selected for study based on their contemporary use at our

institution at the time and to test the hypothesis that

automated analysis platforms performing tumor/stroma

differentiation at a cellular level would yield more reproducible

and accurate estimates of pimonidazole staining, which could be

completed in a high-throughput manner.

We observed significant variability in pimonidazole staining

both within and across patient tumors, using all three platforms.

Quantitation by Developer and Genie were closely aligned, but

estimates of stromal hypoxia by Tissue Studio were much lower

than those made on the other two platforms. Pimonidazole

scoring on both Developer and Genie had greater inter-patient

than intra-patient heterogeneity, suggesting that either of these

techniques should be able to confidently discern differences in

levels of pimonidazole-detectable hypoxia across patients. In

contrast, the high intra-patient variability of Tissue Studio
FIGURE 5

Estimation of variability of hypoxia estimated by Definiens Developer analysis within given patients and across patients. HP; hypoxic percentage.
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hypoxia estimates compromises the utility of this platform to

discriminate biologically relevant differences in hypoxia levels

across patients.

The calculated intraclass coefficients (ICCs) provided

insights into the impact of increasing the number of estimates

made per patient tumor on measurement reproducibility, with

an ICC of 0.85 (or 85%) considered good reliability. Analysis of

three sections per patient tumor on Developer was sufficient for

reliable estimates of both epithelial and stromal hypoxia, in

comparison with the five required for analysis on Genie. This

finding likely reflects the improved accuracy of cellular

classification and differentiation of epithelial from stromal

cells, using Developer with its cell-based segmentation,

compared with the pixel-based platform Aperio. In contrast,

the low ICC estimates of the Tissue Studio analysis underscore

its low reliability in architecturally complex tissue like PDAC,

likely due to the inferior epithelial/stromal discrimination by

tissue-level classifiers. In Developer, we were able to develop

customized, pathologist-guided, and cell-based segmentation

algorithms that could use random-forest-based machine

learning classifiers to identify unique cell phenotypes. In

contrast, Tissue Studio analyses apply a generic, tissue-level

classifier to differentiate epithelial from stromal regions, and

subsequently, standard, computer-vision based, nuclear

segmentation algorithms are used for cellular discrimination.

Although this strategy does allow for a higher degree of cellular

discrimination than pixel-based platforms like Genie, the

complex architecture of PDAC tumor tissue meant that several

rounds of refinement and manual correction were required,

limiting both the consistency and throughput of this analysis.

Although the development of the Developer rule set was

time/resource intensive, once optimized, the trained classifier

could be applied across hundreds of slides, with the only manual

intervention being a pre-analysis annotation of tumor regions of

interest, a process that took few minutes per slide. This provided

an efficient and reliable workflow with significant reduction in

time spent for post-segmentation ROI correction. Following

annotation, whole-slide processing utilizing a tiled approach

enabled the analysis of 0.5–1 slides per hour on a desktop server

running two Developer CPU engines simultaneously. The time

requirement for these same tasks on platforms using tissue-level

classifiers with manual correction was on average 20+ hours per

image, highlighting additional advantages to the cellular

segmentation-based analysis methods.

We recognize that since the completion of this work, several

other digital image analysis platforms have emerged with

comparable capabilities and more modern interfaces than

those discussed here. A similar workflow in which cellular- or

tissue-level features are used to build a segmentation strategy

guided by input from expert disease-site pathologists should

provide similar results. In future directions from this work, the
Frontiers in Oncology
 09
cellular segmentation map output could also be leveraged as

training data for more contemporary machine learning or AI-

based image analysis approaches.

Although manual scoring by expert pathologists remains the

standard method of immunohistochemical analysis, its

robustness and broader applicability can be deeply affected by

subjectivity and interobserver variability (17). Attempts to

improve on between-pathologist reproducibility and within-

pathologist repeatability has led to the exploration of field-of-

view analysis (18). Further semiquantitative scoring systems

have been derived to convert subjective descriptions of IHC-

marker expression into quantitative data. One such tiered system

was historically used in prior pimonidazole-based hypoxia

scoring studies and performed well in comparison with

manual scoring. However, the categorization of data results in

loss of information that could be inferred from continuous

variables, and unless category borders are well defined a priori,

border misclassification introduces ambiguity in analysis (4). In

the specific context of hypoxia scoring, a lack of clarity with

respect to biologically relevant thresholds of pimonidazole-

detectable hypoxia results in the use of arbitrary cut-points to

define categories. All of these issues have the potential to obscure

biologically relevant differences across tumors, limiting the

utility of an analysis method. It is worth mentioning that, in

spite of the clearly recognized prognostic significance of tumoral

hypoxia, therapeutic targeting of this microenvironmental

feature has been challenging, perhaps in part due the lack of

robust tools for defining patient subgroups based on tumor

hypoxia levels.

Contemporary platforms of image analysis with cellular

segmentation capability, and utilizing computer-based learning

algorithms for rule-set development, combines the discrimination

power of manual scoring by expert pathologists, with the

consistency and high throughput of automated digital pathology

(19). Furthermore, the whole-section analysis that is possible with

automated digital pathology appears to have greater reproducibility

than field-of-view, manual scoring (20). There is the further

advantage that computational analyses may have greater

discriminatory power than human visual perception; however,

whether there is biological relevance to these differences remains

to be determined.

In conclusion, we have presented in this report our workflow

and preliminary results from a quantitative, automated digital

image analysis that can be applied to formalin-fixed, clinical

PDAC tumors in a high-throughput manner. This method has

been applied to the full dataset of PIMO-PANC patient tumors

to explore relationships between hypoxia and prognosis in

patients with early-stage, pancreatic ductal adenocarcinoma. In

future work, we will be exploring the potential to modify the

current algorithms, with the input of expert pathologists, for

application to other tumor types.
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