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1 Introduction

In medicinal chemistry, the analysis of structure-activity re-
lationships (SAR) is of fundamental importance in under-
standing the structural determinants of biological activity,
and it underpins lead generation for drug development. Al-
though the dominance of mono-target approaches has
been challenged by polypharmacology and regulatory net-
works, a thorough understanding of molecular SAR and se-
lectivity remains a key driver for most medicinal chemistry
projects.[5] In drug discovery the use of molecular target
classifications, such as GPCRs, kinases, proteases, NHRs and
ion channels, became widely adopted as the human
genome was approaching completion.[6] Postgenomically,
these were given a formal descriptive framework in the
landmark “Druggable Genome” paper.[7]

During the past decade the medicinal chemistry com-
munity has witnessed a rapid growth (via their own collec-
tive output) in public SAR data from patents, journals and
repositories such as PubChem BioAssay and ChEMBL.[8] This
has extended the range of proteins being explored as tar-
gets for possible therapeutic modulation and also includes
cross-reactivity data generated from panel screening. How-
ever, none of these would claim complete capture and
most institutions have a repository for proprietary internal
assay results.

The consequent necessity to mine across multiple sour-
ces is demanding for both bench scientists and informati-

cians because optimally exploiting any individual database
needs a significant time investment, not only to understand
the data structure, query options and content but also to
develop post-processing filtering strategies. These prob-
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lems are compounded when data needs to be extracted
and merged from different sources. Assembling and main-
taining these resources poses significant technical and or-
ganisational challenges. In particular, the need to query
across resources has highlighted the challenges of intero-
perability and the need to collaborate across industry, aca-
demia and learned societies to establish long-term solu-
tions.[9] Navigating the resulting extended SAR matrix pres-
ents new challenges in terms of both volume and complex-
ity of data. Several applications have been described for
summarising SAR data, either as tables[10] or networks.[11]

They include browsing and filtering hierarchies of com-
pounds (e.g. built on molecular topology or structure simi-
larities) and targets (e.g. target ontologies of different
levels).[12]

Within AstraZeneca (AZ) we conceived an application to
meet these challenges. This was predicated on the success
of Chemistry Connect that already provided the first level
of comprehensive data integration across multiple sour-
ces.[3] We specified that this should be able to: i) retrieve in-
tegrated SAR data, ii) connect this to individual proteins
and their target classes, iii) use gene/protein identifiers to
connect to the biology around targets, iv) connect targets
via chemical scaffolds-in-common, and v) provide navigable
hierarchies for both target classes and scaffolds. In this
paper we present the development of SARConnect, a client
application built on TIBCO Spotfire that efficiently retrieves
data for visual display and allows users to navigate these
relationships. We also developed a heuristic target classifi-
cation to support the browsing and retrieval of related tar-
gets for medicinal chemistry users. This is a critical compo-
nent of navigation and query systems for molecular data-
bases and while, as outlined below, there are no ‘correct’
solutions we hope that the availability of analogous classifi-
cation systems in public domain resources such as Con-
ceptWiki will support interoperability between both public
and proprietary data sources.[13]

2 Methods

Our implementation of the target and target-class map-
pings was based on a number of simplifying assumptions,
thus:

– A default assumption for internal usage that gene = pro-
tein.

– Include a complete set of canonical human proteins as
the top layer.

– Use Swiss-Prot as a single source to extract a middle
layer of target-class mappings between protein IDs and
compounds in our data sources.

– Split complex targets into their constituent protein IDs.
– Ensure we could utilise the powerful query options or-

thogonal to target classifications such as Enzyme Com-
mission numbers, the Human Gene Nomenclature Com-

mittee (HGNC) subfamily symbol stems,[14] the Gene On-
tology[15] functional categories and the InterPro[16] homol-
ogy-based classification of families and domains.

Human proteins were collected as 1:1:1 entries with
HGNC, Entrez Gene[17] and Uniprot/Swiss-Prot IDs. To pro-
vide an overview of the accessible target landscape, we fo-
cused on three major classes: enzymes, G-protein coupled
receptors (GPCR), ion channels and the fourth and smallest
class of nuclear hormone receptors (NHR). Human proteins
not belonging to these are classified as “Other”. An initial
analysis revealed that a hierarchy with three levels was suf-
ficient to cover all relevant target information and facilitate
comprehensive activity data mapping. The content was fur-
ther annotated with keywords such as kinase, lipase or
transmembrane etc. Because maximising the chemistry
mapping was the objective, we emphasised recall for the
protein classifiers rather than being concerned about
equivocal or multiple memberships. We thus applied
“greedy”, high capture, selections, such as transporters that
would also include channels. We also selected all EC num-
bers and PDB structures. As expected, many entries have
multiple memberships (e.g. protease, serine protease, EC
number and PDB). We used one exclusion list for class
1 GPCRs by intersecting “G-protein coupled receptor”
family, with “olfactory” from the Web resource cross-refer-
ence to the Human Olfactory Receptor Data Exploratorium,
(HORDE).[18] After evaluations via the UniProt web interface
the family information from an internal XML instance of
human Swiss-Prot was extracted into a local Oracle data-
base of 19 426 records with a Pipeline Pilot interface. We
have deposited the structural classification as an Excel file
and technical details of the target database as Supplemen-
tary Data. A summary of the occupancy figures in the data-
base are found in Results. In brief, we provided three princi-
pal levels for users to navigate. The top level consists of
broad target classes, encompassing approximately 4600
proteins in four major classes, with 14 800 human proteins
classified as “other”, thus adding up to 19 400 in the pro-
tein classification DB. The second level consists mainly of
the Swiss-Prot family designations and the third level is
sub-families along with EC number sub-groups (for further
details on technical description see Supporting Informa-
tion).

2.1 Chemical Structure Classification

The structural classification is represented as a four level hi-
erarchy (Figure 1) similar to the approach described by
Bemis and Murcko.[19] The first level corresponds to the
compound structures standardised according to AZ in-
house chemistry business rules.[3] For the second level, mo-
lecular frameworks are generated by removing terminal
groups and side chains. In the third step, topological frame-
works are prepared by removing exocyclic double bonds
and double bonds directly attached to the linker and ignor-
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ing all bond types and atom types. The fourth level (Top
Level) classifies a set of molecules into limited number of
sets defined by terminal rings and bonds. This latter classifi-
cation schema has proved successful in differentiating be-
tween drugs, clinical candidates and bioactive molecules.[20]

2.2 Test and Results

The integration of SAR data for AZ in-house applications
has been described recently.[3] The current application in-
corporates the web-service interface from Chemistry Con-
nect. The Test and Results was specifically focused on inte-
grating the three major SAR sources: IBIS (internal),
GOSTAR (commercial) and ChEMBL (public).

Activity values for all three sources are transformed into
a normalized potency (pAct) taken as the negative loga-
rithm of the potency converted to molar concentration.
The “% effect” results are transformed to pAct by assuming
a concentration-response curve from 0 at the bottom and
100 at the top with a slope of 1. While this approximation
has known caveats, SARConnect users always have direct
links to the untransformed data and the primary docu-
ments or assay records via Chemistry Connect. Thus for
GOSTAR and ChEMBL all results with endpoints of EC50,
IC50, Ki, potency or % inhibition standard activity types are
captured whereas binned or cut-off values are not. A similar
parsing scheme is applied to in-house data (IBIS) where the
extraction is limited to the subset of test records internally
flagged as active. Test records are marked as active if the
converted pAct is greater than or equal to 5.0.

2.3 Technical Description SARConnect Application

SARConnect is built using the TIBCO Spotfire 3.1 plat-
form.[21] All functionalities are included in a TIBCO Spotfire

analysis document (.dxp), which can be loaded in the
TIBCO Spotfire client or in a browser with the TIBCO Spot-
fire Web Player. The application is designed to allow users
to query SAR data from several different entry points and
explore large data sets. This is achieved by using built-in
TIBCO Spotfire functionality extended by the IronPython
scripting interface.[22] These extensions allow data extracted
from Chemistry Connect web-services to be merged with
other sources.

3 Results and Discussion

3.1 A Revised AZ-Wide Target Classification

Historically, AZ had utilised a number of target class listings
in different parts of the organisation. This presented prob-
lems where data-analysis was no longer confined to a speci-
alised computational function but became part of the
wider medicinal chemistry and bioscience practice. The lack
of internal consistency between systems and the ad hoc
usage of different gene and protein names gave rise to
continual cross-mapping ambiguities (i.e. “which target did
you mean”) which hampered effective analysis of the target
landscape. This affected many areas including target port-
folio management, project titles, disease-to-gene associa-
tions, designations for prospective HTS runs and assigning
names to the thousands of different in vitro target assays
used by project teams. In addition insufficient internal
maintenance inevitably caused these classifications to
decay. This resulted in target number differences as exter-
nal sources updated and cases of the internal usage of
symbols and names long after they had been superseded
by HGNC approved revisions. This is exacerbated by the
sustainability of some public target databases because
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Figure 1. Four distinct levels of hierarchy for structure classification.
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even if they stayed “live” funding fluctuations can constrain
update frequencies.

The classification of drug targets is related to the wider
challenge of dividing up proteomes into structural and
functional groupings that have utility for classification and
make biological sense. A protein ontology with this objec-
tive has been developed but was not primarily designed
for predictive medicinal chemistry.[23] An inspection of the
top-500 protein family automated annotations for the
human genome illustrates the target-specific challenge.[24]

This includes 759 rhodopsin-like GPCRs, 481 Serine-threo-
nine/tyrosine-protein kinases, and 121 chymotrypsin-type
S1A proteases. These families cannot be rooted in the ho-
mology sense. However, kinases and the serine proteases
can be sequence-clustered with subfamilies at the leaves of
each tree. For the GPCRs the term clan is used for group of
families. While there are indications of evolutionary rela-
tionship (via genomic duplications from a common ances-
tor) the sequence similarity across the clan is insufficient to
root the clusters.[25] To make an analogous classification
with proteases is even more complex because, despite
being unified under Enzyme Commission 3.4. as hydrolases
acting on peptide bonds, they have many different evolu-
tionary origins.[26] The GPCR families also illustrate the prob-
lem of progressive classification shifts during continued re-
curation. For example, one of the earliest post-genomic
analyses had grouped 342 non-olfactory human GPCR se-
quences into five main families: glutamate, rhodopsin, ad-
hesion, frizzled, and secretin, with the rhodopsins further
subdivided into four groups and 13 sub-families.[27] Subse-
quent reviews are largely congruent with this classification
but inevitably present differences.[28]

Orthogonal classification systems are found in dedicated
specialist databases: these include GPCRDB,[29] a molecular-
class information system that collates and validates hetero-
geneous data, the GPCR section of the International Union
of Basic and Clinical Pharmacology (IUPHAR) organisation,
the GPCR spatial restraint resource for structural modelling
and the GPCR-Oligomer Knowledge Base.[30] Yet another
level of connectivity is interposed via links from these
family databases to the major pipelines that encompass all
proteins, such as Ensembl,[31] Entrez Gene, HNGC and Uni-
ProtKB. Efforts are underway to enhance connectivity still
further by integrating GPCRDB with new methods for ex-
ploring, visualising and live-linking journal articles via the
Utopia PDF reader.[32]

As annotation and cross-referencing continues on
a global scale it can result in inter-source discordances,
family size changes, asynchronous updates, differences in
curation rules, redundancy and circular connectivity that
obscures data provenance. However, these challenges re-
flect the reality of a progressive evolution of protein classifi-
cation and the collated analysis of a large expert communi-
ty. While GPCRs have historically received a lot of attention
other target classes are similarly endowed with specialist
resources. A sample would include the NucleaRDB for nu-

clear receptors,[33] the MEROPS database for proteases,[34]

substrates and inhibitors, annotation of human and mouse
kinomes in Swiss-Prot,[35] the Transporter Classification Da-
tabase (TCB), the IUPHAR[36] Guide to Receptors and Chan-
nels (GRAC) and a recent review of histone deacetylases
(HDACs).[37]

Our solutions in the context of developing SARConnect
were guided by pragmatic principles. The first was to have
real-world utility that chemists, biologists and portfolio
managers should find easy to use. This led us to develop
a “flat” hierarchy with a small number of classes and sub-
classes that do not necessarily reflect a detailed evolution-
ary classification but can be easily navigated by non-ex-
perts. The second was to reduce maintenance overheads
that a complex system abstracted and integrated from
many sources would necessitate. The third was to use sim-
plifying assumptions but understand their caveats and
document their consequences. From an internal assessment
we noticed recent improvements in sequence features,
cross-references, keywords and other annotations in human
Swiss-Prot, largely due to the Human Proteomics Initiative
(HPI) and its successor the Chordata protein annotation
program.[38] A brief summary of the target classes in our
three-level hierarchy is given in Table 1.

3.2 Chemical Structure Classification

In the context of medicinal chemistry, structure classifica-
tion is performed to rationalise SAR for a chemical series
according to the concept that “similar structures have simi-
lar bioactivities”. Analysis of compound clusters and near-
neighbours can be performed using a range of fingerprints
derived from molecular connectivity tables and/or sets of
physicochemical properties and similarity metrics.[39] Such
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Table 1. Target statistics for classification in SARConnect.

Target class Count

G-protein coupled receptor 827
G-protein coupled receptor (Class A) 717
G-protein coupled receptor (Class B) 49
G-protein coupled receptor (Class C) 22
Kinase 608
Nuclear hormone receptor 48
Ion-channel 227
Lipase 40
Phosphatase 180
Protease 575
.. Aspartyl 19
. . Cysteine 153
.. Serine 241
.. Metallo 187
. . Threonine 29
Transporter 538
EC number 4001
PDB entry 4436
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analyses are computationally intensive and the cluster
space (i.e. the compound hierarchy) changes with addition-
al compounds. In addition, typical clustering methods do
not offer a high enough level of structure abstraction for
efficient visual browsing of large sets of compounds.

For SARConnect we aimed to define a compound hierar-
chy that complemented our target classification and facili-
tated the answering of specific questions such as “retrieve
all compounds that modulate target P” as well as more
general queries such as “retrieve all chemical series for kin-
ases”. Such hierarchies can be built using molecular scaf-
folds and refinements based on ring and linker concept-
s.[19a, 20] For instance, Scaffold Hunter, a tree-like hierarchical
representation for chemical space navigation,[40] , has been
used to analyse natural products and “target hopping” ap-
proaches. The classification we have in SARConnect is con-
ceptually similar to these systems with modifications imple-
mented primarily to aid navigation and simplify compound
grouping in the TIBCO Spotfire interface. Table 2 shows
a summary of the statistics for the structural hierarchy in
the three sources, IBIS, GOSTAR and ChEMBL.

The Top Level classifier is used as an initial filter for fur-
ther exploration using the Topological Framework and Mo-
lecular Framework. The number of compounds from
GOSTAR (49 %) is larger than in IBIS (38 %) and ChEMBL
(13 %) and this is also reflected in the number of Topologi-
cal Frameworks and Molecular Frameworks. The percentage
of Topological Framework and unique Topological Frame-
work are higher in GOSTAR relative to IBIS, which reflects
the wider set of targets covered in this source. Interestingly,
the number of Molecular Framework and unique Molecular
Framework is comparatively larger in IBIS than in GOSTAR.
This probably reflects small variations of a scaffold (e.g.
a phenyl ring is replaced by a pyrimidine ring) that are not
necessarily published in a patent. Analysis of the top ten
most frequent Molecular Framework with test data in SAR-
Connect are shown in Figure 2.

Along with expected common smaller scaffolds, larger
ones can be found that we might predict to exhibit poly-
pharmacology. For example, the large N2,N4-diphenylpyri-
midine-2,4-diamine scaffold, is present in drugs such as Ril-
pivirine, targeting HIV reverse transcriptase, Pazopanib,
a multikinase angiogenesis inhibitor, as well as in com-
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Table 2. Compound and structural classification statistics for the sources of test data in SARConnect. The unique number of Topological
and Molecular Framework are calculated with respect to the other two data sources in the table. The percentage is related to that propor-
tion of the whole set of compounds for Topological Framework and Molecular Framework, respectively.

IBIS GOSTAR ChEMBL

Compounds 1180 457 (38 %) 1 547 979 (49 %) 399 836 (13 %)
Top level 9 9 9
Topological Frameworks 75 002 (31 %) 132 874 (55 %) 34 074 (14 %)
Molecular Frameworks 373 606 (38 %) 471 818 (48 %) 129 159 (13 %)
Unique top level 0 0 0
Unique Topological Frameworks 44 379 (30 %) 93 588 (65 %) 6705 (5 %)
Unique Molecular Frameworks 308 613 (41 %) 389 824 (52 %) 54 064 (8 %)

Figure 2. Top-ten most frequent molecular frameworks in SARConnect.
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pounds in phase II trials such as TG-101348 inhibiting Janus
kinase 2. As the second most frequent scaffold with activity
data this scaffold is linked to 26 900 compounds.[41] Of
these, 14 700 compounds have a pAct ranging from 5.0 to
10.0 for 416 targets covering all classes.

3.3 SAR Data

As a step towards broadening and simplifying AZ’s exploi-
tation of multiple sources we recently developed the enter-
prise Chemistry Connect application.[3] This integrates
55 million unique chemical structures from 20 internal and
external data sources. It also includes reported bioactivity
assay data merged into a set of tables designated “Test and
Results” (T&R). The first version of this included links from
4.5 million compounds, via 10 000 protein identifiers, to
12 million in vitro SAR data points and other types of bio-
annotation such as in vivo pharmacological activity. As
a prelude to the development of SAR-connect we imple-
mented a second T&R version with increased activity strin-
gencies and omitting some sources that we determined as
having promiscuous target mappings. Also, specifically for
SAR-connect, we introduced the additional restrict of
human proteins to the normalization and integration rules
for the three sources. The resulting aggregated and compa-
rative statistical analysis of content for SAR-connect content
is shown in Table 3.

While a detailed comparison is outside the scope of this
report we note that activity records cannot be directly
compared because they are not standardized. The substan-
tial proportion of unique chemical structures in each
source suggests complementary chemotype coverage. The
somewhat lower novelty of ChEMBL is explained by extrac-
tions from a proportion of the same journals in GOSTAR.
This is also the reason for lower target novelty in this set
because GOSTAR includes both journals and patents. Given
the initial disclosure of targets in the literature and/or pat-
ents the small proportion of novel targets becomes explica-
ble. Some of these may also be for specificity testing. Given
that targets are proportionally less unique than com-
pounds, it would indicate different compounds being
tested against targets-in-common thus aggregating chemo-
types across targets.

3.3.1 The SARConnect Application

The development of the SARConnect has been driven by
the need to efficiently retrieve and present SAR across
target and target classes. The Target classification (see
Methodology) linked to the application provides the bio-
logical dimension. This is matched by the four level struc-
tural classifications and the third dimension is represented
by reprocessed SAR data. The pAct descriptor enables com-
parisons over different biological assays and their end-
points. The given mode of action (e.g. inhibitor, agonist, an-
tagonist) and the original assay endpoints (e.g. EC50, IC50, Ki)
provides the trace back to original data and in combination
with the other descriptors retrieved this creates the scene
for the SARConnect application.

3.4 Data Retrieval

SARConnect allows data to be extracted and explored
using different web services in Chemistry Connect.

1) Via target identifiers
One or several targets can be selected as prime target

from the target classification. Users can choose to extract
only SAR data for the selected targets, or to include all off-
target SAR data for compounds with test data linked to the
target selection.

2) Via compound structural information
Two different methods for extracting SAR data from

a compound query structure are provided. All available SAR
data in for compounds with either a matching substructure
or a Lingos-based[42] similarity value within a given thresh-
old to the query structure can be loaded for visualization.

3) Extracting SAR data from patent identifiers
Given a list of patent numbers, document metadata, as

well as all available SAR data for the claimed compounds
will be loaded for visualization.

3.5 Data Processing and Analysis

SARConnect handles large sets of hits efficiently. For exam-
ple, a query for all reported kinase SAR will retrieve ~1.5 M
records into the TIBCO Spotfire interface but still provides
interactive analysis. SARConnect also provides a set of pre-
calculated physico-chemical properties such as molecular
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Table 3. Target, compound and activity statistics for the three sources of test data in SARConnect. The unique number of targets and com-
pounds are calculated with respect to the other two data sources in the table.

IBIS GOSTAR ChEMBL

Targets 835 4785 2514
Human targets 835 2424 1298
Unique targets 63 2626 587
Activity records 4 186 903 4 235 360 1 255 670
Compounds 1180 457 1 547 979 399 836
Unique compounds 1 083 677 1 367 476 247 923
pAct average, median, 90th percentile 5.0, 4.9, 6.4 6.1, 6.0, 8.2 5.3, 4.9, 7.2
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weight (MW), cLogP, polar surface area (PSA), number of
rings, activity value, activity flag, mechanism of action, data
source, compound classifications and target classifications.
These can be used as data reduction filters.

3.6 SARConnect

SARConnect enables biology- and chemistry-centric search-
es with the three entry points presented, namely from pro-
teins, chemical structure or patent information (Figure 3).
The target classification has a link-out to Entrez Gene ID
and includes the HGNC symbol and HGNC full name as
well as the target class membership. One or more targets
can be selected as the primary query to which all retrieved
SAR data will relate. The relationship of target and result
can be restricted to the selected targets or extended to all
cross screening results linked to the initially selected com-
pounds. This facilitates an immediate indication of potential
polypharmacology, selectivity or safety issues.

4 Practical Use – Cases

4.1 Extracting SAR Data from Target Identifiers: Thrombin
Molecular Pharmacology

As a first example, a search for compounds screened
against thrombin (Approved symbol F2, Gene ID: 2147) is
presented, a serine protease that has been pursued as an
anti-coagulation target for more than 35 years.[43]

The search resulted in ~105 K records with 33 500 results
linked to a thrombin assay result, including both positive
(thrombin inhibitors) and negative results. The retrieval also
captures 68 500 cross-screening records on the 676 addi-

tional targets of different classes. It can be assumed that
much of this is selectivity screening of potential leads
against other serine proteases (e.g. F10, F7, PLAU and
ELA2). The SAR compounds view (Figure 4) displays the
proteins against the chemical structural classification of the
retrieved data. Removing records classified as non-active
for the primary and cross-screening targets reduce the data
to 58 K records covering 15 K compounds and 367 targets.

This result reflects a general aspect of target query re-
sults that, before the introduction of SARConnect, were not
possible for AZ scientists to visualize at this scale. It also
highlights a major challenge for the design of selective
compounds. We thus envisage SARConnect becoming an
essential first step in AZ drug discovery projects because it
quickly reveals pre-existing data relationships, including
secondary pharmacology which would need to be ad-
dressed with off-target screens. Nevertheless, a full assess-
ment of chemical safety risks requires additional data and
specialised tools.[44] In the next step, non-actives are re-
moved and restriction on pAct >5, MW<600 and �2<
cLogP <6 are applied, which reduces the thrombin data
set to 48K records (see Figure 5).

The target view reveals the unique compound count for
each target (upper left panel in Figure 5). Thrombin, as the
prime target of our search query, is connected with all com-
pounds (~12 400) followed by Factor Xa, another serine
protease acting prior to thrombin in the coagulation cas-
cade. This enzyme is connected to 5200 unique com-
pounds with recorded activity values. The expanded bar
chart details the set of the overall thrombin active com-
pounds modulated enzyme targets, many of them closely
related serine proteases. The bar in green corresponds to
trypsin (PRSS1), commonly included in serine protease se-
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Figure 3. A view of the target (class) selection interface of SARConnect using TIBCO Spotfire.
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Figure 4. Extended SAR matrix of compounds linked to human thrombin. Compounds classified as active or inactive are coloured in red
and blue, respectively.

Figure 5. SARConnect target detail view.
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lectivity screening. Further analysis also reveals the less ob-
vious activity against matrix metallopeptidase 13 (MMP13)
for a set of 25 compounds. The in-house designed throm-
bin inhibitor N-[(4-carbamimidoylphenyl)methyl]-2-[2-hy-
droxy-3-[(3-methoxyphenyl)sulfonylamino]-6-methyl-phe-
nyl]acetamide, has a pAct of 7.71 and 5.79 on thrombin
and MMP13, respectively.[45]

The option of visualising the molecular structure of com-
pounds (as shown in the chemical structures of the blue re-
cords on the lower left scatter plot displayed in the right
panel spreadsheet in Figure 5) enables the rapid inspection
of the SAR for a primary target against any cross screening
target.

4.2 The Framework Details Panel: Highlighting the
Structural Diversity of Thrombin Inhibitors

Key medicinal chemistry issues in the development of
thrombin inhibitors include the molecular geometry and
topology for anti-parallel beta-strand mimics as well as op-
portunities to extend interactions to the prime-side target

pocket. These structural relationships can be analysed in
a framework-centric view (see Figure 6).[19a] A total of 91 re-
cords, with 66 actives and 25 non-actives, delineate a dis-
tinct topology framework linked to thrombin. This relates
to 23 compounds with 8 molecular frameworks and activity
data for more than 10 distinct targets.

Compounds selected by their molecular frameworks can
be further inspected with respect to their SAR data. Follow-
ing the current example, the lower panel of Figure 6 shows
for the selected compounds a pAct range from 5 to 9.3 on
the prime target thrombin (F2) and low to high activity for
plasminogen activator urokinase receptor (PLAUR), HGF ac-
tivator (HGFAC), acetylcholinesterase (ACHE).

4.3 Extracting SAR Data from Compound Structural
Information: Privileged Motifs

For the next use-case, we have queried SARConnect with
spiro[indoline-3,4’-piperidine] scaffold, a known privileged
motif for GPCR binding, to retrieve ~6700 structures.[46]
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Figure 6. Molecular frameworks panel of selected thrombin actives. Topological frameworks are presented in the upper left panel. The mid
left panel shows the molecular frameworks corresponding to the marked molecular topology and the upper right panel shows the corre-
sponding compounds and associated pAct values. The lower panel shows the cross screening of the filtered compound set.
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Extracting SAR data for these compounds gives ~7000
records covering ~2900 compounds (see Figure 7). Thus
~4000 compounds do not have any biological data associ-
ated with them in SARConnect.

Sixteen GPCR targets have recorded activity on more
than 20 compounds. MC4R has 657 records connected to
220 unique compounds- (see Figure 8). Five targets TACR1/
2, OPLR1, GSHR1 and CCR2, all belonging to Class A, have
data from more than 100 compounds. The only GPCR with
more than 20 hits (89) which does not belong to Class A is
the Class C glutamate receptor, metabotropic 2 (GRM2).

Overall, the spiro[indoline-3,4’-piperidine] scaffold has
been screened against all captured targets classes. Al-
though a predilection for GPCRs is clear the application
shows this structural motif is not selective. In total 2788 re-
cords are linked with SAR data towards the GPCR target
class, for a total of 1219 unique compounds (Figure 8). Ap-
proximately ~25 % (770) show activity against enzymes.
Within the 770 compounds, 262 have a pAct value of
above 6.0 on 28 enzyme targets, and greater than 9.0 on

three targets (cathepsin K (CTSK), hydroxysteroid (11-beta)
dehydrogenase (1HSD11B1) and mitogen-activated protein
kinase 14 (MAPK14)). The compound 1-methyl-1’-[(E)-3-[2-
(trifluoromethyl)phenyl]prop-2-enoyl]spiro[indoline-3,4’-pi-
peridine]-2-one has a pAct of 10 on 1HSD11B1 (see
Figure 9). Another 184 unique compounds have SAR data
for ion channels, but only six have a pAct greater than 6.0.
From this analysis the absence of SAR data for NHR recep-
tors and spiro[indoline-3,4’-piperidine] motif is a potentially
important observation.

Typically, MC4R agonists are large and lipophilic.
Figure 10 shows this in the display of cLogP, PSA and MW
for the set of compounds active against MC4R. In general,
physicochemical properties are strongly correlated with
DMPK, safety issues and attrition in clinical trials. Many
studies have addressed these relationships and monitoring
parameters such as LogD is a key requirement in com-
pound design.[47] Even for targets with a distinct preference
for lipophilic compounds, it has been shown that one can
find clinical candidates and drugs with physico-chemical
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Figure 7. Results from a substructure search with spiro-indoline ‘privileged’ GPCR motif showing broad activity across target-classes, inde-
pendent of topological context.
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properties in the usual drug-like corresponding ranges.
SARConnect facilitates such investigations by displaying the
properties of any selected set of compounds (see
Figure 10).

5 Conclusions

SARConnect does what it says on the box by providing AZ
scientists with an interface that connect targets, activity
and compounds from the major internal and external sour-
ces. The application exploits the web services of Chemistry
Connect. Because it incorporates all human proteins, map-
ping gaps are restricted to residual curatorial ambiguity be-
tween Swiss-Prot IDs and a small proportion of target as-
signments made by the sources. While the target classifica-
tion we developed is a critical component, we do not pres-
ent our solution as necessarily ‘correct’. Nonetheless, we
hope that the availability of analogous solutions in the
public domain, together with resources such as the Con-
ceptWiki that can align and maintain different target clas-

sification systems, will support expanding interoperability
between both public and proprietary data sources.

The application is inherently flexible in that new target
selections or chemical structure relationships can be added
to the query interface. Crucially, it constitutes a de facto
join between cheminformatics and bioinformatics. This
means that scientists in our drug design teams can now ex-
ecute advanced queries of the form “give me compounds
for all the proteins in human pathway X associated with
disease Y”. This reduces to a simple Swiss-Prot ID list with
which the user can profile in SARConnect for active com-
pounds and quickly select exact matches or close ana-
logues from the AZ compound collection and/or chemical
supplier catalogues. Subsequent mechanism of action
(MOA) and potency analysis can rapidly progress target
identification and validation.

The application has additional utilities beyond classical
primary target-directed SAR. The first of these is a conse-
quence of hypothesis-neutral and broad data capture pro-
viding a compound-protein interaction network where
each pAct-to-protein link constitutes an edge. Chemical
structures can thus be compared with those in the data set
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Figure 8. Target detail view for spiro[indoline-3,4’-piperidine] scaffold. The lower left panel shows the distribution of pAct values according
to registered mode of action measured in the bioassay (MOA) and the right hand spreadsheet displays the records of the marked bar.
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to provide useful information or inferences (e.g. cross-
screening profiles, P450 and albumin binding), highlight
potential assets (e.g. polypharmacology, repurposing, drug
combinations or target-hopping) as well as indicate liabili-
ties (e.g. hERG and other safety or side-effect related pro-
teins). This network also facilitates the selection of chemical
biology probes that can be used for perturbing normal
and/or disease related pathways in any model system. This
allows mechanistic hypotheses to be tested before pro-
gressing to target validation.

New targets under consideration by AZ or academic col-
laborators can be assessed for any type of relationship (ho-
mology-based or mechanistic) with proteins already con-
nected to active compounds. The continually expanding
range of chemotypes that Chemistry Connect feeds into
SARConnect consequently provides a de facto chemical

tractability assessment.[48] It may even be adequate to itera-
tively generate results sufficient for disease model testing
without the necessity to schedule an HTS. This principle
can be extrapolated in two dimensions. The first is that as
the range of targets with data occupancy expands, the
probability of finding starting points for any new target (or
a new MOA for an existing target) increases. The second di-
mension is that this probability of screening success in-
creases still further as new bioactive scaffolds appearing
from external sources are added to the compound collec-
tion.
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Figure 9. Detailed activity view for compounds with enzymatic activity having the spiro[indoline-3,4’-piperidine] scaffold.
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