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Abstract 

tRNA-derived fragments (tRFs) are a new category of regulatory noncoding RNAs with distinct biological 
functions in cancers and stress-induced diseases. Herein, we first summarize the classification and 
biogenesis of tRFs. tRFs are produced from pre-tRNAs or mature tRNAs. Based on the incision loci, tRFs 
are classified into several types: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. Some tRFs participate in 
posttranscriptional regulation through microRNA-like actions or by displacing RNA binding proteins and 
regulating protein translation by promoting ribosome biogenesis or interfering with translation initiation. 
Other tRFs prevent cell apoptosis by binding to cytochrome c or promoting virus replication. More 
importantly, the dysregulation of tRFs has important clinical implications. They are potential diagnostic 
and prognostic biomarkers of gastric cancer, liver cancer, breast cancer, prostate cancer, and chronic 
lymphocytic leukemia. tRFs may become new therapeutic targets for the treatment of diseases such as 
hepatocellular carcinoma and respiratory syncytial virus infection. Finally, we point out the existing 
problems and future research directions associated with tRFs. In conclusion, the current progress in the 
research of tRFs reveals that they have important clinical implications and may constitute novel molecular 
therapeutic targets for modulating pathological processes. 
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Introduction 
Recently, multiple studies have revealed that 

small noncoding RNAs (sncRNAs) exist extensively 
and have a diversity of functions in humans [1-3]. In 
the eukaryotic nucleus, RNA polymerase III (RNA Pol 
III) plays the role of transcribing tRNA genes into 
precursor tRNAs (pre-tRNAs) [4, 5]. During tRNA 
maturation, the typical cloverleaf structure of the 
pre-tRNA 5'-leader sequence as well as the 3'-tail 
(‘poly-U’) sequence are enzymatically digested by 
endoribonuclease P (RNase P) and endonuclease Z 
(RNase Z)/cytoplasmic homolog ribonuclease Z 2 
(ELAC2), respectively; then, under the action of tRNA 
nucleotidyl transferase, the trinucleotide ‘CCA’ 
sequence is attached to the tail-free tRNAs at the 3' 

ends [4, 5]. The tRNA transcripts undergo enzymatic 
splicing, and chemical modification may yield new 
species of sncRNAs, such as tRNA-derived small 
RNAs (tsRNAs) [6, 7]. According to the cleavage loci 
and length, tsRNAs can be divided into two 
major categories: tRNA-derived stress-induced RNAs 
(tiRNAs) and tRNA-derived fragments (tRFs) (Figure 
1). The generation of tiRNAs and tRFs takes place in 
multiple biological processes, which implies that 
these fragments are not random cleavage products [7]. 

tiRNAs are generated by ribonuclease 
angiogenin (ANG) incision at the middle site of the 
anticodons of mature tRNAs, so tiRNAs are also 
called tRNA halves [8, 9]. tiRNAs, with lengths of 31- 
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40 nucleotides (nt), have the 5′ hydroxyl but not the 5′ 
phosphate, which is different from the situation for 
microRNA (miRNA) 5′ phosphate ends, which are 
generated by Dicer enzymes [8, 9]. Based on whether 
the 5′ or 3′ sequencer of the anticodon cleavage 
position is included, tiRNAs are classified into two 
basic types: 5′ tiRNAs and 3′ tiRNAs [8, 9]. The 5′ 
tiRNAs encompass the 5′ end of the mature tRNA to 
the terminus of the anticodon loop, while the 3′ 
tiRNAs extend from the anticodon loop to the 3′ end 
of the mature tRNA (Figure 1). These tiRNAs are 
mainly generated by stress exposure, such as 
oxidative stress, hypoxia, and virus infection [8, 9]. 

In addition, another type of tRNA half known as 
the sex hormone-dependent tRNA-derived RNA 
(SHOT-RNA) is induced by sex hormones and 
cleaved by ANG [10, 11]. SHOT-RNA, which is not 
induced by stress, is particularly highly expressed in 
androgen receptor (AR)-positive prostate cancer cells 
and estrogen receptor (ER)-positive breast cancer and 
is not expressed in other cancers at present. 
Specifically, 5′ SHOT-RNAs bear a phosphate at the 5′ 
end and a 2′,3′-cyclicphosphate at the 3′-end (Figure 
1), while 3′ SHOT-RNAs are characterized by a 
hydroxyl at the 5′ end and an amino acid at the 3′ end, 
as they are derived from aminoacylated tRNAs [10, 
12, 13]. 

High-throughput sequencing technology has 
revealed that there is more diversity in tsRNAs than is 
reflected in the existing classifications. Among 
tsRNAs, tRFs, with a length of 14 nt to 30 nt, have a 
greater number of distinct classes and function as key 
players in the regulation of gene expression at 
transcriptional as well as posttranscriptional levels, 
indicating that they are not merely byproducts of the 
random cleavage of tRNAs but are regulatory 
sncRNAs involved in physiological and pathological 
processes [1, 3]. 

Since tRFs are the major types of tsRNAs, in this 
review, we focused on tRFs. We present updated 
views focusing on the specific molecular mechanisms 
underlying tRF-mediated regulation of mRNA 
stability and translation, stress responses and viral 
infections and their potential roles as biomarkers or 
therapeutic targets in cancers and virus infections. 

Classification and biogenesis of tRFs 
tRFs are produced from pre-tRNAs or mature 

tRNAs [14, 15]. Notably, they are similar in size to 
miRNAs, with a 5′ phosphate and a 3′ hydroxyl [14]. 
According to the mapped locations, tRFs are largely 
categorized into two main classes: tRF-5 and tRF-3 
[14, 15]. tRF-5s begin at the 5′ end of mature tRNAs 
and are cleaved by Dicer at the D-loop or the stem 

 

 
Figure 1. Classification and biogenesis of tsRNAs. tRFs can be classified into five types: tRF-5, tRF-3, tRF-1, tRF-2, and i-tRF. tiRNAs are cleaved by ANG at the middle site of 
the anticodon of mature tRNAs. SHOT-RNAs are induced by sex hormones. The production of tRFs and tiRNAs is promoted by various stress conditions. They play roles in 
processes such as transcriptional regulation and the regulation of protein biogenesis. Abbreviations: tsRNAs, tRNA-derived small RNAs; Pol III, polymerase III; pre-tRNA, 
precursor tRNA; RNase Z, ribonuclease Z; ELAC2, cytoplasmic homolog ribonuclease Z 2; ANG, Angiogenin; SHOT-RNAs, sex hormone-dependent tRNA-derived RNAs; tRF, 
tRNA-derived fragments; tiRNA, tRNA-derived stress-induced RNA; P, phosphate; cP, cyclicphosphate; aa, amino acid; Ho, hydroxyl. 
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position between the D-loop and the anticodon loop 
[14, 15]. On the basis of the incision loci and lengths, 
tRF-5s are further classified into three subtypes: 
tRF-5a (14-16 nt), tRF-5b (22-24 nt) and tRF-5c (28-30 
nt) [14, 15]. tRF-3s begin at the 3′ end (at the 
trinucleotide ‘CCA’ at the 3′ end) and are cleaved by 
Dicer and ANG at the T-loop of mature tRNAs. 
tRF-3s, which are approximately 18-22 nt in length, 
are further classified into two subgroups: tRF-3a and 
tRF-3b (Figure 1). 

There are three additional groups of tRFs: tRF-1, 
tRF-2, and inter tRF (i-tRF) [15, 16]. tRF-1s are small 
fragments derived from the 3′ tails of pre-tRNsA 
(containing the ‘poly-U’ sequence at the 3′ ends) and 
are cleaved by RNase Z or ELAC2 [15]. tRF-2s 
comprise anticodon loop and stem sequences, 
excluding the 5′ end and 3′ end structures [15, 16]. 
However, the details of ribonuclease processing 
required for the production of tRF-2s and i-tRFs 
remain unclear [15, 16]. i-tRFs, originating from the 
internal body of mature tRNAs [17, 18], include the 
anticodon loop and segments of the D-loop and 
T-loop other than the 5′ terminal and 3′ terminal 
(Figure 1). 

Regulation of mRNA stability 
Studies have revealed that some tRFs target 

genic mRNAs and participate in posttranscriptional 
regulation in humans [19]. Here, we elaborate on tRFs 
targeting mRNA expression through miRNA-like 
actions and binding to RNA-binding proteins (RBPs) 
to control mRNA stability. 

MiRNA-like actions 
Preparatory bioinformatic analysis suggests that 

tRFs have sufficient sequence complementarity with 
endogenous mRNAs and thus may play a potential 

role in posttranscriptional regulation [19, 20]. As one 
kind of sncRNA with a length less than 30 nt, it seems 
logical to conclude that tRFs have functions similar to 
those of miRNAs [21, 22]. 

Huang et al. reported that tRF/miR-1280, which 
is derived from tRNALeu and pre-miRNA, inhibited 
colorectal cancer cell proliferation by inhibiting the 
Notch signaling pathway by directly interacting with 
the JAG2 mRNA 3′ untranslated region (UTR) [23]. In 
particular, these tRFs are physically related to 
Argonaute (Ago) proteins, which regulate gene 
expression [24, 25]. Recently, an increasing number of 
researchers have found that tRFs are loaded into Ago 
complexes [26, 27]. RNA-seq analysis proves that 
tRF-3009a guides Ago to inhibit the expression of 
targeted genes in a Dicer-independent manner 
posttranscriptionally [28]. Maute et al. verified in B 
cell lymphoma that tRF-3 derived from tRNAGly-GCC 
possessed an miRNA-like structure and functions by 
binding a complementary target site [29]. Using 
large-scale meta-analyses of available experimental 
data, researchers observed Ago1-loaded tRFs, and 
these tRFs interacted with target genes at the 3ʹ UTR 
[30]. Li et al. found that tRF-3s could guide Ago2 to 
cleave the target mRNA (Figure 2A) [31]. Kumar et al. 
intriguingly reported that tRF-5s and tRF-3s were 
preferentially associated with Ago1, Ago3, and Ago4 
but not with Ago2 in human embryonic kidney 
293 (HEK293) cells (Figure 2B) [32]. Hence, in 
conjunction with different Ago proteins, tRFs can 
regulate gene expression through either canonical or 
noncanonical miRNA-like actions [32-35]. 
Additionally, Ago-bound tRFs should be further 
explored because they have a propensity to target 
endogenous mRNA and to construct regulatory 
networks in humans [36, 37]. 

 

 
Figure 2. Regulation of mRNA stability by tRFs. (A, B) tRFs bind with different Ago proteins to inhibit targeted mRNA expression via pathways that exert either canonical or 
noncanonical miRNA-like activity. (C) tRFs cause oncogene transcript degradation by displacing YBX1 from the 3′ UTR of mRNA. Abbreviations: miRNA, microRNA; Ago, 
Argonaute; YBX1, Y-box-binding protein 1; 3′ UTR, 3′ untranslated region; RISC, RNA-induced silencing complex; ORF, open reading frame. 
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Figure 3. Translational activation by promoting ribosome biogenesis. (A) tRF increases ribosome biogenesis by unfolding the RPS28 mRNA secondary structure, thus enhancing 
translation. (B) tRF interacts with the human multisynthetase complex, thereby promoting RNA-binding protein translation. Abbreviations: RPS28, ribosomal protein S28. 

 

Bind to RNA-binding proteins 
tRFs may bind to RBPs and posttranscriptionally 

regulate gene expression [38, 39]. RBPs interact with 
targeted RNAs to control their stability [40]. 

In breast cancer cells, Goodarzi et al. reported 
that under hypoxic conditions, several tRFs were 
upregulated, which then suppressed oncogenic 
transcript stability by displacing the 3' UTR from the 
YBX1 protein [41]. These hypoxic stress-induced tRFs, 
which are mainly derived from tRNAAsp, tRNAGlu, 
tRNAGly, and tRNATyr, can competitively bind to 
YBX1 and block its interaction with oncogenic 
mRNAs [41]. YBX1 is an RBP with many biological 
roles. YBX1 maintains oncogene transcript stability 
and increases cell proliferation by binding with 
endogenous oncogenic mRNA [42]. YBX1 may also 
bind with several categories of regulatory RNAs, 
including tRFs [41]. Under hypoxic stress, cancer cells 
could produce more tRFs that can compete with 
oncogene transcripts and then bind to YBX1, thereby 
promoting mRNA degradation and eventually 
inhibiting the proliferation of cancer cells (Figure 2C). 
This posttranscriptional suppression depends on 
sequence complementary because tRFs have a motif 
that binds the sequence that YBX1 can recognize [41, 
43]. 

In fact, YBX1 is not the only RBP that may be 
displaced by specific tRFs. In fact, a novel tRF derived 
from mature tRNAGlu has been found to be able to 
bind and displace the RBP nucleolin in breast cancer 
[44]. 

Regulation of protein translation 
tRFs play additional biological roles by 

activating or inhibiting protein synthesis via different 
mechanisms [18]. 

Translational activation via promotion of 
ribosome biogenesis 

An innovative study by Kim et al. proved that a 
22 nt length tRF called 3′ tRFLeuCAG enhanced 
translation by facilitating ribosome protein biogenesis 
[45]. Ribosome gradient analysis showed that 
ribosomal protein S28 (RPS28) was needed for 
ribosomal RNA 18S rRNA biogenesis and was an 
integral part of the 40S ribosomal subunit [46]. The 3′ 
UTR target site of RPS28 mRNA forms a secondary 
structure that is a major region containing a 
translation initiation site. Several experiments 
involving target-site mutations demonstrated that 3′ 
tRFLeuCAG bound to duplexed secondary target sites in 
RPS28 mRNA and unwound the hairpin secondary 
structure to increase translation in human cancer cells 
[45] (Figure 3A). Thus, 3′ tRFLeuCAG plays a vital 
function in regulating the numbers of ribosomes. The 
greater the number of ribosomes, the more potential 
protein synthesis, eventually increasing cell growth 
and proliferation [45]. 

Keam et al. also convincingly showed the 
translational activation of tRFs [47]. 5′ tRFGln19 
interacted with the human multisynthetase complex 
(MSC) and then promoted RBP translation (Figure 
3B). However, the detailed mechanism needs to be 
determined. 

Translational inhibition by interfering with 
translation initiation 

Recently, Guzzi et al. showed that in stem cells, 
pseudouridylation synthase 7 (PUS7) mediated 
pseudouridine (Ψ) disposition of particular tRFs 
(mTOG-Ψ8) to suppress translation (Figure 4A). They 
identified that PUS7 was enriched in embryonic 
and/or hematopoietic stem cells and then bound to 
diacritical tRNAs and modified uridine (U) into 
pseudouridine (Ψ) at the U8 position (Ψ8) [48]. PUS7- 
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mediated “Ψ” controls the stem cell biogenesis of 5′ 
tRFs, which have a common oligoguanine motif at the 
terminus and are named mTOG-Ψ8 [48]. Under 
normal growth conditions, polysomes form a closed- 
loop translation complex (Figure 4A). In this 
structural model, translational initiation factors 
[eukaryotic initiation factor (eIF)-4 A/G, and E] 
interact with cytoplasmic poly(A) binding protein-1 
(PABPC1) [49, 50]. In response to stress, PUS7 binds to 
diacritical tRNAs and governs biogenesis of 
mTOG-Ψ8; then, mTOG-Ψ8 preferentially binds to 
PABPC1, resulting in displacement of eIF-4 A/G and 
E from m7G-capped mRNAs (Figure 4A). PUS7 and 
mTOG-Ψ8 loss affects translation regulation, 
resulting in the increased biosynthesis of proteins and 
the impairment of hematopoietic stem cell 
commitment, potentially leading to myeloid 
malignancies [48]. 

Blanco et al. demonstrated that 
posttranscriptional methylation of tRNA at cytosine-5 
(m5C) by the methyltransferase NSUN2 was an 
innovative mechanism to suppress global protein 
synthesis [51]. External stress stimulation represses 
NSUN2 activity, causing the loss of m5C; the 
dysregulation of m5C increases the affinity between 
tRNA and angiogenin, leading to the accumulation of 
tRF-5s, which then repress protein synthesis and 
promote squamous tumorigenesis (Figure 4B). Sobala 
et al. showed that tRF-5 derived from tRNAGln was 

able to inhibit translation and did not require 
complementary target sequences of mRNA [52]. 
Mechanistically, these inhibitory effects of tRFs on 
translation require a conserved 3′ “GG” dinucleotide 
[52]. 

Signs of cell stress and promotion of virus 
replication 

The production of tRFs can be induced by stress 
conditions, such as high salinity, oxidative stress, and 
virus infection [53, 54]. Persistently activated stress 
responses result in inflammation and disease 
pathogenesis [54]. 

Signs of cell stress 
Under sodium arsenite stress, Chen et al. 

revealed that the demethylase α-KG-dependent alkB 
homolog 3 (ALKBH3) induced tRFs to interact with 
cytochrome c (Cyt c) to suppress cell apoptosis [55]. 
ALKBH3 catalyzes the demethylation of 1-methyl-
adenosine (m1A) and 3-methylcytidine (m3C) in 
tRNAs. Demethylated tRNAs are more sensitive to 
the cleavage of ANG and easily generate tRF-5Gly-GCC 
[55, 56]. These tRFs bound to Cyt c that was released 
from the mitochondria and then eventually 
strengthened ribosome assembly and finally 
prevented apoptosis of cervical cancer cells (Figure 
5A). 

 

 
Figure 4. Translation inhibition by interfering with translation initiation. (A) Increased displacement of translational initiation factors from mRNA by the tRF mTOG-Ψ8 
represses translation. Loss of PUS7 and mTOG-Ψ8 may contribute to human myeloid malignancies. (B) Loss of m5C increases the affinity between tRNA and ANG, leading to 
tRF-5 accumulation, which then decreases protein synthesis. Abbreviations: PUS7, pseudouridylation synthase 7; Ψ, pseudouridine; eIF4A/G, E, eukaryotic initiation factor 4 A/G, 
E; PABPC1, poly(A) binding protein-1; ANG, angiogenin. 
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Figure 5. Signs of stress and viral infection. (A) Under stress, the demethylase ALKBH3 induces tRFs to interact with Cyt c to suppress cancer cell apoptosis. (B) Virus 
infection-induced stress leads to the induction of specific tRFs. Some tRFs recognize the target site in the 3′ UTR of anti-virus protein APOER2 mRNA. The suppression of 
APOER2 will promote virus replication. Other tRFs are used as guide RNAs to initiate viral reverse transcription. Abbreviations: ALKBH3, α-KG-dependent alkB homolog 3; 
ANG, Angiogenin; Cyt c, cytochrome c; UTR, untranslated region; ORF, Open reading frame; APOER2, apolipoprotein E receptor 2; RT, reverse transcription. 

 
Under oxidative stress, Gkatza et al. reported 

that the activity of the cytosine-5 RNA 
methyltransferase NSUN2 can be suppressed, leading 
to the reduction of tRNA methylation and then the 
intracellular biogenesis of tRFs related to the 
repression of protein synthesis [57]. 

Promotion of virus replication 
Recent studies have demonstrated that infecting 

host cells with respiratory syncytial virus (RSV) can 
initiate a stress response by mediating ANG digestion 
of tRNAs to generate increases in tRFs [58, 59]. 
Viruses can exploit host tRFs as guide primers to 
improve their replication and promote the efficiency 
of infection [59, 60]. Deng et al. convincingly 
demonstrated that a specific tRF originating from the 
5′ end of tRNAGluCTC (tRF-5GluCTC) was induced by 
RSV infection [61]. The 3′-portion of tRF-5GluCTC 
recognizes a target site in the 3′ UTR of apolipoprotein 
E receptor 2 (APOER2) mRNA (Figure 5B). APOER2 
is a host anti-RSV protein whose inhibition favors 
RSV replication [61]. As is well-known, the 5′-end of 
miRNAs is critical for their gene silencing effect [62]. 
However, with regard to tRFs, the 3′-portion of 
tRF-5GluCTC is important for gene targeting [63]. 
Therefore, tRFs have different trans-silencing 
mechanisms than miRNAs. Zhou and his colleagues 
also found that RSV specifically led to the induction of 
two novel tRFs, tRF-5GlyCCC and tRF-5LysCTT [59]. These 
tRFs play a significant role in promoting RSV 
replication and impact RSV-induced cytokines/ 
chemokines. Ruggero et al. proved that tRF-3019 in 

host cells is thoroughly complementary to primer 
binding site (PBS) in retroviral RNA from human 
T-cell leukemia virus type 1 (HTLV-1) [60]. Therefore, 
tRF-3019 could be utilized to guide RNA initiation of 
reverse transcription and increase virus amplification 
(Figure 5B). 

Based on the above, we can see that tRFs play 
various roles in cancers and virus infection (Table 1). 

Clinical value of tRFs 
In recent years, tRFs have become rising stars in 

the regulation of biological processes, and their 
deregulation has important clinical implications [64]. 
Here, we describe the potential value of tRFs as 
diagnostic biomarkers and therapeutic targets (Table 
2). 

Potential as diagnostic and prognostic 
biomarkers 

As high-throughput sequencing technology has 
spread, an increasing number of studies have 
demonstrated that aberrant expression of tRFs 
contributes to carcinogenesis and could represent new 
biomarkers for diagnosis [65]. tRFs carried by 
exosomes have been exploited as biomarkers and 
have been found to mediate communication between 
exosome-secreting cells and recipient cells [65]. Zhu et 
al. found that patients with liver cancer exhibited 
significantly higher levels of tRF-5GluCTC in plasma 
exosomes than healthy controls, indicating that 
exosomal tRFs in plasma can act as novel “liquid 
biopsy” biomarkers for the diagnosis of cancer [66]. 
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Sun et al. also showed that patients with high 
expression of tRF-27-ZDXPHO53KSN and tRF-30- 
JZOYJE22RR33 in serum obtain less benefit from 
trastuzumab-based therapy, indicating that these two 
tRFs could be explored as potential intervention 
targets and biomarkers in trastuzumab-resistant 
breast cancer [67]. Biostatistical analysis revealed that 
i-tRFGlyCCC levels were significantly lower in 
peripheral blood mononuclear cells (PBMCs) from 
chronic lymphocytic leukemia (CLL) patients and 
could be considered a screening biomarker [68]. 
i-tRFGlyGCC and i-tRFPheGAA have been reported to have 
prognostic and diagnostic value in CLL, respectively 
[69, 70]. In addition, Olvedy et al. demonstrated that 
patients prostate cancer in which the expression of 
tRF-315/tRF-544 was increased in tissues had 
obviously poorer progression-free survival (PFS) [71]. 
These results indicated that abnormal tRFs could 
serve as fluid-based biomarkers for prospective 
screening research in the future. 

Potential clinical therapeutic targets 
Aberrant expression of tRFs not only plays a 

diagnostic and prognostic role in cancers but also 
indicates their potential usage as therapy targets for 
the treatment of disease [72]. For example, Kim et al. 
proved that tRF-3LeuCAG resolved the hairpin structure 

of RPS28 mRNA and facilitated ribosome protein 
biogenesis to promote hepatocellular carcinoma 
growth [45]. Using an antisense oligonucleotide to 
block tRF-3LeuCAG prevents it from binding RPS28 
mRNA, resulting in diminished ribosome biogenesis 
and apoptosis of hepatocellular carcinoma cells [45]. 
This finding suggests the possibility that tRFs may be 
used as a therapeutic target in hepatocellular 
carcinoma therapy [45]. Wang et al. reported that the 
combined utilization of an anti-tRF oligonucleotide 
and a small interfering RNA (siRNA) could down-
regulate RSV-induced tRF-5GluCTC and eventually 
block RSV replication [63]. Since the dysregulation of 
tRFs is closely related to cancers, cellular stress 
responses and virus infection in humans [73], tRFs 
may become new therapeutic targets for the treatment 
of diseases. 

Challenges and outlook 
In this review, we mainly focused on the possible 

applications of tRFs in cancers and viral infections. 
However, tRFs also play roles in other types of 
diseases, including neurodegenerative and metabolic 
disorders [16, 57, 74, 75]. The study of tRFs remains at 
an early stage; there are many problems that still need 
to be resolved. 

 

Table 1. The mechanisms underlying the roles of tRFs in cancers and virus infections 

Function Biological effect Mechanism tRF name/ID Cancer type/Virus infection References 
Regulation of 
mRNA 
stability 

MiRNA-like actions Conjunction with different Ago 
proteins or direct interaction with 
mRNAs 

tRFLeu-3a/miR-1280, Colorectal cancer, [23] 
tRF-5Gln, cervical carcinoma [25]  
tRF-3GlyGCC, B lymphoma [29]  
tRF-3 (tRFHis-GTG, tRFLeu-CAG), Chronic lymphocytic leukemia [31] 
tRF-3 (ts-3676, ts-4521)  Lung cancer [35]  

Binds to RNA-binding 
proteins 

Binding to YBX-1 or nucleolin  tRFs (tRFAsp, tRFGlu, tRFGly, tRFTyr) Breast cancer [41, 44] 

Regulation of 
protein 
translation 

Translational 
activation 

Promotion of ribosome biogenesis tRF-3LeuCAG  Hepatocellular carcinoma [45] 
Gln19 Cervical carcinoma [47]  

Translational 
inhibition 

Displacement of translational 
initiation factors from mRNA or 
tRF-5 accumulation for the loss of 
m5C  

mTOG-Ψ8 Myeloid malignancies [48] 
tRF-5 Squamous tumor [51] 

Signs of cell 
stress and 
promotion of 
virus 
replication 

Suppression of 
apoptosis 

Interaction with Cyt c to suppress 
stress-induced cell apoptosis 

tRF-5GlyGCC  Cervical carcinoma [55] 

Promotion of virus 
replication 

Targeting of anti-virus proteins or 
utilization as primers to favor 
virus replication 

tRF-5GlyCCC, tRF-5LysCTT, 
tRF-5GluCTC, 

Respiratory syncytial virus infection [59, 61]  

tRF-3019 T-cell leukemia virus type 1 infection [60] 
 

Table 2. Clinical value of tRFs in cancers and virus infections 

Function Sample type tRF name/ID Cancer type/Virus infection References 
Potential diagnostic and 
prognostic predictive utility 

Plasma (exosome) tRF-5GluCTC Liver cancer [66] 
Serum tRF-30-JZOYJE22RR33, tRF-27-ZDXPHO53KSN Breast cancer [67] 
Blood (peripheral blood 
mononuclear cells) 

i-tRF-GlyCCC, i-tRF-GlyGCC, i-tRF-PheGAA Chronic lymphocytic leukemia [68-70] 

Tissue tRF-315, tRF-544 Prostate cancer [71] 
Potential clinical 
therapeutic targets 

Cell, serum, patient-derived 
xenograft model 

3′tRF-LeuCAG Hepatocellular carcinoma [45] 

Cell, virus tRF-5GluCTC Respiratory syncytial virus infection [63] 
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First, how many additional classes of tRFs exist? 
For restriction sequencing technology, the current 
nomenclature of tRFs is based on the different 
cleavage loci of tRNAs or their origins in tRNAs that 
transfer a specific amino acid. The nomenclature and 
classification of tRFs are still rudimentary and cannot 
provide clear basic information about tRFs. Second, 
which mechanisms are crucial for tRF roles? The 
distribution of tRFs may contribute to their biological 
roles. A recent report suggested that tRF-5s are 
located mostly in the nucleus, whereas tRF-3s and 
tRF-1s are mostly cytoplasmic [15]. The detailed 
mechanisms underlying the involvement of tRFs in 
cancers and stress may exceed our present knowledge 
and are worth more in-depth study in the future. 
Third, whether tRFs are safe and effective should be 
examined in the clinic. The applications of new 
bioinformatics techniques and additional 
experimental approaches, such as photoactivatable 
ribonucleoside-enhanced cross-linking and immuno-
precipitation (PAR-CLIP) and cross-linking, ligation 
and sequencing of hybrids (CLASH), to understand 
the exact molecular mechanisms and the 
establishment of clinical indicators are critically 
important for the therapeutic application of tRFs. 

Taken together, the evidence suggests that the 
roles and applications of tRFs still require intensive 
study. We are confident that future in-depth efforts 
will contribute to elucidating the mechanisms of tRFs 
and developing them as novel diagnostic biomarkers 
and therapeutic targets. 
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