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Abstract: Photothermal therapy is a promising treating method for cancers since it is safe and
easily controllable. Black phosphorus (BP) nanosheets have drawn tremendous attention as a novel
biodegradable thermotherapy material, owing to their excellent biocompatibility and photothermal
properties. In this study, silk fibroin (SF) was used to exfoliate BP with long-term stability and
good solution-processability. Then, the prepared BP@SF was introduced into fibrous membranes
by electrospinning, together with SF and polylactic-co-glycolic acid (PLGA). The SF/PLGA/BP@SF
membranes had relatively smooth and even fibers and the maximum stress was 2.92 MPa. Most
importantly, the SF/PLGA/BP@SF membranes exhibited excellent photothermal properties, which
could be controlled by the BP@SF content and near infrared (NIR) light power. The temperature of
SF/PLGA/BP@SF composite membrane was increased by 15.26 ◦C under NIR (808 nm, 2.5 W/cm2)
irradiation for 10 min. The photothermal property of SF/PLGA/BP@SF membranes significantly
killed the HepG2 cancer cells in vitro, indicating its good potential for application in local treatment
of cancer.

Keywords: black phosphorus nanosheets; silk fibroin; cancer; photothermal therapy; electrospinning

1. Introduction

Cancer is a serious disease characterized by uncontrolled growth and fast proliferation
of abnormal cells. Cancer cells have ability to spread to different tissues and organs in the
human body, finally causing death. Recent statistics reveal that cancer is the first- or second-
ranked fatal disease for people over 70 years old, in 112 countries out of 183 countries [1,2].
Despite the tremendous efforts that are devoted to its treatment, cancer remains an unsolved
problem in clinical therapy. So far, there are four treatment methods for cancers, including
chemotherapy, radiotherapy, immunotherapy, and phototherapy [3,4]. Chemotherapy and
radiotherapy are still commonly used alongside surgery to treat cancers. However, the
random distribution of the drug molecules in the organism can inflict a great threat to
normal tissues and organs. Meanwhile, the patients have to take several consecutive doses
of the drugs to achieve the desired therapeutic effect, which greatly increases the financial
burden on patients. Immunotherapy is safe, effective and, at the same time, makes it
impossible for the cancer cells to escape from the immune recognition mechanism, which
eventually eliminates the cancer cells. However, the immune cells are unable to kill tumor
cells in many cases, even if the tumor cell-specific antigens have been recognized by the
T cells [5–7]. Photothermal therapy (PTT) is a combination of the local administration
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of photothermal agents and near-infrared laser irradiation (NIR), in which a nanoscale
transducer converts photonic energy into heat, and then this locally released heat effectively
kills the cancer cells. With high efficacy and low side effects, this treatment has attracted
extensive attention in the latest research works [8].

Many nanoparticles, such as gold nanoparticles, manganese oxide nanoparticles,
and selenium-coated tellurium nanoparticles, have been used as photothermal agents to
achieve the maximal ablation of cancer cells [9,10]. However, their poor degradability
may lead to long-term cytotoxicity in the organism before being metabolically removed.
Therefore, biodegradable photothermal agents are urgently needed for clinical use. Since
black phosphorus (BP) nanosheets were first discovered in 2014, they have become one
of the most attractive nanomaterials. BP nanosheets have many unique properties, such
as tunable band gap, excellent surface activity, extensive spectrum light absorption, and
excellent photothermal conversion efficiency. Most importantly, the BP nanosheets have
excellent biocompatibility and biodegradability, and their degradation products are non-
toxic phosphates and phosphonates [11,12]. Therefore, BP nanosheets can be used as a
photothermal agent for cancer treatment. Shao et al. prepared biodegradable nanospheres
of black phosphorus quantum dots (BPQDs) and polylactic-co-glycolic acid (PLGA) for
tumor treatment. After intravenous injection into the body, the BPQDs/PLGA nanospheres
reduced the degradation of the BPQDs during prolonged cycling to ensure sufficient MCF7
breast tumor accumulation for efficient PTT [13]. Li et al. presented a combination of
BP nanosheets and gemcitabine (GEM) to prepare a thermosensitive hydrogel for chemo–
photothermal combination therapy against cancer. The hydrogel effectively killed the 4T1
tumors in vivo. Meanwhile, the BP-GEM-GEL showed negligible systemic toxicity [14]. The
BP nanosheets are expected to be the next generation of NIR light-mediated nanophotonic
materials for the photothermal or photodynamic therapy of tumors [15,16].

Although the BP nanosheets have many excellent properties, there are still some
technical obstacles in preparing BP nanosheets [17]. N-methyl pyrrolidone was generally
used as an exfoliating agent for the liquid stripping of the BP nanosheets, which is not
eco-friendly. The BP nanosheets produced by this method are prone to be degraded by
oxygen and water in the physiological environment, resulting in negative effects on their
optical and electronic properties [18,19]. Furthermore, the poor solution-processability of
BP nanosheets limits the fabrication of multi-structured, functional BP-based materials.
An efficient and environmentally friendly method has been developed to synthesize thin-
layered BP nanosheets in aqueous media through a strong binding between silk fibroin
(SF) and 2D nanomaterials. As an exfoliating agent, SF provides a long-term dispersion
stability of the resulting nanosheets in a physiological environment [20]. The prepared
SF-modified BP nanosheets (BP@SF) show long term stability and good solubility, so that it
has the potential for good applications in the biomaterial filed.

It is still a challenge to effectively deliver BP nanosheets to cancerous areas, since
the conventional systemic administration of free BP nanosheets by intravenous injection
is associated with a high propensity for deposition in normal tissues [21]. Therefore, to
enhance the cancer specificity and mitigate the adverse effects on healthy organs, im-
mobilizing the BP nanosheets in scaffolds for local treatment may enhance the clinical
meaningfulness [22–24]. Electrospinning is a technology to produce fibrous and porous
polymer scaffolds. The electrospun materials have a large field of potential application,
owing to their large surface area, controllable surface configuration, well-modified sur-
face, complex pore structure and good biocompatibility [25–30]. Electrospun membranes
are widely used in the biomedical field, including tissue engineering, drug delivery, and
wound healing. Chen et al. doped polyaniline nanoparticles into poly(ε-caprolactone) and
gelatin (PG) to form nanofibrous fabrics. The polyaniline PG was implanted directly onto
the surface of hepatoma H22 tumors and excellent anti-tumor effects were observed [31].
Wang et al. designed a tissue-engineered membrane by incorporating Cu2S nanoflowers
into biopolymer fibers, based on a modified electrospinning method. With uniformly
embedded Cu2S nanoparticles, the membrane resulted in over 90% mortality of skin tumor
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cells under NIR irradiation and effectively inhibited tumor growth in mice [28]. These re-
cently reported studies prove that electrospinning technology is good for loading materials
for photothermal therapy.

Inspired by Huang et al. [20], this study prepared thin-layered BP nanosheets, using an
SF-assisted liquid exfoliation method. The SF-modified BP nanosheets (BP@SF) maintained
excellent photothermal properties. Then, the BP@SF was introduced into polymer fibers
by electrospinning. Three composite nanofiber membranes were prepared with PLGA,
SF, and different contents of BP@SF. The mechanical properties and biocompatibility of
SF/PLGA/BP@SF were investigated. More importantly, the photothermal therapy of
SF/PLGA/BP@SF on tumor cells was examined in the near infrared (808 nm, 2.5 W/cm2).

2. Results and Discussions
2.1. Preparation and Characterization of BP@SF Sheets

The BP@SF sheets were prepared by ultrasound-assisted liquid exfoliation, using SF
as an effective exfoliator. With a unique hydrophilic–hydrophobic structure and abundant
carboxyl groups, SF can facilitate the interfacial bonding with 2D nanomaterials [32,33]. On
this basis, during the exfoliation process, the SF molecules stably bound to the BP crystal
surface through strong hydrophobic interactions. Meanwhile, their hydrophilic regions are
exposed to water to stabilize the exfoliated BP nanosheets and prevent re-agglomeration.
The ultrathin BP@SF sheets were obtained after sonication of BP powders in aqueous SF
solution for 2 h. The size of BP@SF was from 200 to 400 nm (PDI = 0.688) (Figure 1a). The
SEM observation (Figure 1b) and EDS analysis (Figure 1c) showed that the BP@SF were
well distributed. The exfoliated BP@SF exhibited a lamellar appearance and the lattice
spacing of the sheets was 0.2823 nm (Figure 1d,e), which was consistent with the study
reported [20].
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Scale bar of 10 nm; (c) EDS. Phosphorus distribution, scale bar of 10 nm; (d) TEM. Scale bar of 200 nm;
(e) selected area electron diffraction. Scale bar of 2 nm.

FTIR was used to analyze the chemical structure of BP@SF (Figure 2a). For the SF
powders, the peaks at 1640 cm−1, 1405 cm−1, 1274 cm−1, and 631 cm−1 belong to amide I,
amide II, amide III, and amide V, respectively [34]. Meanwhile, the BP@SF curve exhibits
peaks at 1640 cm−1 (amide I of SF), 1405 cm−1 (amide II of SF), 1274 cm−1 (amide III), and
631 cm−1 (amide V), demonstrating that the SF molecule is stably bound to the surface of
the BP crystal. The XRD pattern of BP@SF shows the presence of the characteristic peak
of BP (Figure 2b), which matches its orthorhombic structure (Figure 2c) [35]. This further
confirms the successful binding of BP to the SF.

BP has a wide spectrum of light-absorption qualities. It absorbs light between 400 and
900 nm. As a result, BP is frequently utilized as a photothermal agent in the PTT of cancer.
Near-infrared light at 808 nm is commonly utilized to test the photothermal characteristics
of BP [36,37]. In this study, we investigated the spectrum absorption of 0.1 mg/mL,
0.2 mg/mL, and 0.4 mg/mL BP@SF in an aqueous solution between 400–900 nm, with
an emphasis on the light absorption between 775 and 855 nm (Figure 2(e2, e3)). BP@SF
had a broad range of light absorption between 400 and 900 nm (Figure 2(e1)), with the
absorption peak from 800 to 810 nm being the most prominent (Figure 2e). Furthermore, as
the concentration of BP@SF grows, the intensity of the light absorption increases continually.
As a result, NIR at 808 nm was used for further testing in this study.
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from 775 to 855 nm; (e3) The absorbance of 0.1 mg/mL BP@SF and 0.2 mg/mL BP@SF from 775 to
855 nm.

PTT is a relatively safe method of treating cancer by inducing apoptosis through local
heating, with minimal negative effects on the surrounding healthy tissue [8]. BP nanosheets
are a favorable PPT agent. To demonstrate the NIR photothermal properties of BP@SF,
the aqueous solution without BP@SF (control), 0.1% BP@SF aqueous solution, and 0.2%
BP@SF aqueous solution are irradiated with a NIR (808 nm, 0.5 W/cm2) for 10 min and
then the heating temperature is measured. The results show that the photothermal effect
of the control group is weak, with an increase of only 2.5 ◦C (Figure 2d). The heating
effect increases significantly with the increased BP@SF concentration. In the aqueous
solution containing only 0.1% BP@SF, the heating effect is ten times greater than that of the
control. More strikingly, a heating effect of 37 ◦C could be achieved in an aqueous solution
containing 0.2% BP@SF. This suggests that BP@SF can effectively convert light energy into
heat energy, and has the potential to be used as an agent in PTT to ablate cancer cells.

2.2. Preparation and Characterization of BP@SF Electrospun Membranes

Based on the good solution processability of BP@SF, four fibrous membranes were
electrospun with 0 mg BP@SF, 1 mg BP@SF, 2 mg BP@SF, and 4 mg BP@SF and named
SF/PLGA, SF/PLGA/BP@SF-1, SF/PLGA/BP@SF-2, and SF/PLGA/BP@SF-4, respectively.
There were 0.6 g of SF and 0.6 g of PLGA in each membrane. The SEM observation
(Figure 3a) showed that the electrospun SF/PLGA fibers have a smooth appearance and the
average fiber diameter was approximately 470.40 ± 96.17 nm, while the electrospun fibers
with loaded BP@SF had a relatively rough surface and their average fiber diameter varied
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(Figure 3b). The fiber diameter of SF/PLGA/BP@SF-1 ranged from 200 nm to 800 nm. With
a further increase in the loaded BP@SF content, the fibers ranged from 300 nm to 900 nm
and the average diameter of the fibers significantly increased, from 444.60 ± 90.20 nm
(SF/PLGA/BP@SF-1) to 607.60 ± 116.93 nm (SF/PLGA/BP@SF-4) (Figure 3b). Thus,
the mixing of BP@SF greatly affects the morphology of the electrospun membrane. This
is because the viscosity of the electrospun-blend solution increases with the increasing
BP@SF concentration. In general, the viscosity of the electrospinning solution affects
the nanofibrous morphology and fiber diameter, and the viscosity of the solution can be
adjusted by the polymer concentration, together with the blended material [38,39]. The
higher viscosity of the electrospinning solutions with higher BP@SF content leads to a
significant increase in the diameter of the electrospun fibers [40,41].
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Figure 3. Morphology and characterization of the electrospun membranes. (a,b) SEM images
(10,000×) and diameter distribution of 50 fibers in electrospun membranes of different components.
(a1,b1) SF/PLGA; (a2,b2) SF/PLGA/BP@SF-1; (a3,b3) SF/PLGA/BP@SF-2; (a4,b4) SF/PLGA/BP@SF-4;
(c) Elemental scanning of carbon, nitrogen, oxygen and phosphorus in SF/PLGA/BP@SF-4 electrospun
membrane. Separate detection of elemental distribution of carbon, oxygen, nitrogen and phosphorus.

The BP@SF elements on the electrospun membrane were characterized using elemental
analysis techniques (Figure 3c). The EDS analysis indicated that the content of the P element
was 0.13% in SF/PLGA (Table 1), which was from the SF protein. With the loaded BP@SF,
the P element content increased and reached up to 0.25% for SF/PLGA/BP@SF-4 (Figure 3c
and Table 2), which identified that the BP@SF was evenly loaded on the fibrous membrane
through electrospinning.

Table 1. P elemental analysis of electrospun membranes.

Sample Atomic Conc. Weight Conc.

SF/PLGA 0.06% 0.13%
SF/PLGA/BP@SF-1 0.06% 0.14%
SF/PLGA/BP@SF-2 0.08% 0.18%
SF/PLGA/BP@SF-4 0.11% 0.25%

Table 2. EDS elemental analysis of SF/PLGA/BP@SF-4 membrane.

Element Number Element Symbol Element Name Atomic Conc. Weight Conc.

6 C Carbon 43.45% 37.82%
8 O Oxygen 32.02% 37.13%
7 N Nitrogen 24.42% 24.79%
15 P Phosphorus 0.11% 0.25%
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2.3. Hydrophilic and Hydrophobic Properties

Hydrophobicity is one of the important properties of electrospun fibrous membrane [42].
The hydrophilic properties of the four composite electrospun membranes are investigated
by the contact angle tests (Figure 4a). With increasing time, the contact angles of all of the
four membranes gradually decrease from >100◦ to 0◦. A total of 12 s is required for the
SF/PLGA membrane to have a 0◦. For the SF/PLGA/BP@SF-1 (SF/PLGA/BP@SF-2) and
SF/PLGA/BP@SF-4, the time is 20 s and 30 s, respectively. These results indicate that all of
the electrospun membranes have good hydrophilicity. Furthermore, the contact angle of
SF/PLGA is the minimum at each moment, the blended BP@SF makes the contact angle of
the electrospun membrane become bigger at the same time point. Most notably, at the third
second, the contact angles of SF/PLGA, SF/PLGA/BP@SF-1, SF/PLGA/BP@SF-2, and
SF/PLGA/BP@SF-4 are 28.53 ± 3.75◦, 75.40 ± 3.49◦, 118.37 ± 2.74◦, and 120.37 ± 4.94◦,
respectively. The higher the content of the BP@SF, the bigger the contact angle of the
electrospun fibrous membrane. Although the BP@SF has good stability in water, the surface
of the BP nanosheets is hydrophobic, according to isotope experiments, contact angle mea-
surements, and calculations [43]. Therefore, as the concentration of the BP@SF increases,
the contact angle gradually increases, and the hydrophilic properties of the electrospun
membrane become weaker.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 4. (a) The contact angles of the electrospun membranes; (b) Photothermal effect; (c) Tensile 

properties; (d) the SF/PLGA/BP@SF-4 cycle test of heating under near-infrared irradiation with 2.5 

W power. 

2.4. Tensile Properties 

Appropriate mechanical properties of electrospun membrane are necessary for its 

application [44,45]. Therefore, the effect of the BP@SF on the mechanical properties of the 

electrospun membrane were investigated, using a tensile testing machine (Figure 4c). 

Among these electrospun membranes, the SF/PLGA membrane had the lowest stress, 

strain, and Young’s modulus, which were 1.51 ± 0.89 MPa, 229 ± 3.3% MPa, and 254.83 ± 

3.37 MPa, respectively. Compared to the SF/PLGA electrospun membrane, the breaking 

strength and elongation at break of the electrospun membrane increased correspondingly 

with the increase in the BP@SF content in the electrospun membrane. In particular, the 

stress, strain, and Young’s modulus of the SF/PLGA/BP@SF-4 membrane enhanced to 2.92 

± 0.32 MPa, 51 ± 2.3% and 104.94 ± 2.15 MPa, respectively. This may attribute to the good 

mechanical properties of the BP nanosheets. It was proved that the BP had good mechan-

ical properties and can enhance the mechanical properties of the composites [46]. 

2.5. Photothermal Effects and Stability Tests 

For PTT, photothermal characteristics are essential [26]. The electrospun membranes 

were irradiated with different powers of NIR in the dry (air) state, and the temperature 

changes and thermal images were recorded (Figure 4b). The electrospun membranes with 

different concentrations of BP@SF show a temperature increase under NIR irradiation at 

Figure 4. (a) The contact angles of the electrospun membranes; (b) Photothermal effect; (c) Tensile
properties; (d) the SF/PLGA/BP@SF-4 cycle test of heating under near-infrared irradiation with
2.5 W power.



Molecules 2022, 27, 4563 7 of 16

2.4. Tensile Properties

Appropriate mechanical properties of electrospun membrane are necessary for its ap-
plication [44,45]. Therefore, the effect of the BP@SF on the mechanical properties of the elec-
trospun membrane were investigated, using a tensile testing machine (Figure 4c). Among
these electrospun membranes, the SF/PLGA membrane had the lowest stress, strain, and
Young’s modulus, which were 1.51 ± 0.89 MPa, 229 ± 3.3% MPa, and 254.83 ± 3.37 MPa,
respectively. Compared to the SF/PLGA electrospun membrane, the breaking strength
and elongation at break of the electrospun membrane increased correspondingly with the
increase in the BP@SF content in the electrospun membrane. In particular, the stress, strain,
and Young’s modulus of the SF/PLGA/BP@SF-4 membrane enhanced to 2.92 ± 0.32 MPa,
51 ± 2.3% and 104.94 ± 2.15 MPa, respectively. This may attribute to the good mechanical
properties of the BP nanosheets. It was proved that the BP had good mechanical properties
and can enhance the mechanical properties of the composites [46].

2.5. Photothermal Effects and Stability Tests

For PTT, photothermal characteristics are essential [26]. The electrospun membranes
were irradiated with different powers of NIR in the dry (air) state, and the temperature
changes and thermal images were recorded (Figure 4b). The electrospun membranes with
different concentrations of BP@SF show a temperature increase under NIR irradiation at
0, 0.5, 1, 1.5, 2, and 2.5 W for 10 min. All of the three electrospun membranes show the
highest temperature rise at 2.5 W NIR irradiation. Among them, the temperature of the
SF/PLGA/BP@SF-4 membrane increases most, with a temperature increase of 15.26 ◦C
from the room temperature at 2.5 W NIR power. The SF/PLGA/BP@SF-1 membrane
rises by 8.34 ◦C and the SF/PLGA/BP@SF-2 membrane rises by 12.89 ◦C under the same
conditions. These results indicate that the SF/PLGA/BP@SF-4 membrane has great and
controllable photothermal properties and that the heating effect increases with the increas-
ing BP@SF concentration. Thus, adjusting the BP@SF concentration and the NIR power to
control the temperature can realize the PTT, so that they have great potential for application
in cancer therapy.

The stability of NIR absorption in a wet environment is closely related to the effective-
ness for tumor therapy. The stability of SF/PLGA/BP@SF-4 to NIR absorption properties
in the PBS solution was tested. The temperature change of the solution was recorded under
five on/off irradiations of the NIR light (808 nm, 2.5 W/cm2) (Figure 4d). The temperature
of the solution increases by 15.5, 14.6, 13.9, 13.5, and 13.1 ◦C after five NIR irradiations for
10 min. Although the enhanced temperature slightly decreases, the SF/PLGA/BP@SF-4
also exhibits a stable photothermal property after cycle numbers of test.

2.6. Biocompatibility

The mouse fibroblast cell line L929 was used to assess the biocompatibility of the
electrospun membranes. The cells were cultured on each electrospun membrane for 3 days
and the cell activity and cytotoxicity were examined by CCK-8 assay and double fluorescent
staining with Calcein-AM /PI (Figure 5a). In general, the cells have normal growth and
proliferation during the culture days. With the increase in inoculation time, the cell OD
values of all of the groups show a rising trend. However, compared to the control group,
there is a slight decrease in the cellular OD values for the SF/PLGA/BP@SF membranes
on the third day. This suggests that the addition of BP@SF may have a slight inhibitory
effect on the cell proliferation. Furthermore, the LIVE/DEAD cell-staining images show
that none of the three SF/PLGA/BP@SF membranes causes cell death, similar to the results
of the control group (Figure 5b). This indicates that all of the membranes are not toxic and
have good biocompatibility.
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Figure 5. Biocompatibility of electrospinning membrane. (a) Evaluation of cell viability by CCK-8
assay; (b) LIVE/DEAD cell staining of L929 cells on the third day of culture. * P < 0.05, ** P < 0.01,
*** P < 0.001, data represent means ± SD.

2.7. In Vitro Anti-Tumor Properties

Human hepatocarcinoma cell line (HepG2) was inoculated onto the membranes and
the anti-tumor effect of the SF/PLGA/BP@SF membranes under the photothermal effect
was investigated in vitro (Figure 6a). On the first day, the cell viability showed no sig-
nificant difference between the five groups without NIR treatment. After being treated
by NIR (808 nm, 2.5 W/cm2 for 10 min), the cell viability dramatically decreases for
SF/PLGA/BP@SF-1-L, SF/PLGA/BP@SF-2-L, and SF/PLGA/BP@SF-4-L, respectively,
while the cell viability of SF/PLGA-L group had no significant reduction. It was evident
that the BP@SF on fibrous membrane converts the NIR to heat, which inhibits the cancer
cell growth and proliferation, leading to the lower cell viability. There was a similar finding
for cell viability on the second day. Further, the LIVE/DEAD cell staining was conducted
to observe the cell stadium after treating by NIR (Figure 6b). The cells of the control and
SF/PLGA groups show green fluorescence and almost all of the cells are alive, while a
great numbers of dead cells for the SF/PLGA/BP@SF-1-L group, SF/PLGA/BP@SF-2-L
group, and SF/PLGA/BP@SF-4-L group are found (shown in red), indicating that the
photothermal effect of these groups can significantly kill the HeGp2 cancer cells. These
results demonstrate that the SF/PLGA/BP@SF membranes have excellent and controllable
photothermal properties, which have a good potential for application in cancer therapy.
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Figure 6. In vitro anti-tumor properties of the electrospun membranes. (a) Evaluation of cell viability
by CCK-8 assay; (b) LIVE/DEAD cell staining of HepG2 cells on the second day of culturing.
* P < 0.05, ** P < 0.01, *** P < 0.001, data represent means ± SD.

3. Discussion

With the development of medical technology and the demand for precision in treat-
ment, conventional cancer treatments, such as chemotherapy, face the fundamental prob-
lems of strong side effects for the normal cells and a constant recurrence, which seriously
affect the long-term effects of cancer treatment. Precise and effective treatments remain a
challenge and also an ultimate goal of cancer treatment. PTT, which relies on photothermal
properties for converting light irradiation into heat to ablate tumors, has attracted wide
attention in recent research in cancer treatment, owing to its non-invasive, local treatment
and good therapeutic effects. The preclinical studies and early trials prove that PTT has
good therapeutic effects on superficial tumors (e.g., skin cancer, head and neck cancer) [47].

In general, the therapeutic effect of PTT mainly depends on photothermal materials.
Under the local irradiation of NIR at a certain wavelength, photothermal materials can
quickly switch from ground state to excited state and then dissipate back to ground state in
the form of heat. The heat dissipated during this process acts on the cancer cells, leading to
cell apoptosis and cell death. The NIR photothermal materials have the advantage of deep
penetration in the body, enabling less biological interference and better treatment in deep
tissues. In addition, the biological cells and tissues have little absorption in the NIR wave-
length region, and thus are not damaged under low-intensity NIR laser [10]. Depending on
clinical needs, ideal photothermal materials need to have excellent biodegradability, good
photostability, broad near-infrared spectral absorption, and high photothermal conversion
rates [9,48]. Compared with other photothermal agents [49], BP nanosheets have the charac-
teristics of non-toxic biodegradability, excellent biocompatibility, and a high photothermal
conversion rate [50], which make them have a promising clinical application [51].

In this paper, BP nanosheets were exfoliated with SF auxiliary liquid by means of a
green and environmentally friendly liquid-phase exfoliation method [20]. Then, the BP@SF
was mixed with PLGA and SF to prepare electrospun fibrous membranes by electrospin-
ning. With the addition of the BP@SF, the viscosity of the electrospinning solution increased,
which in turn increased the diameter of the electrospun fibers, affecting the pore size of the
electrospun membrane and further affecting cell adhesion and distribution. In addition,
owing to the excellent mechanical properties of BP@SF, the mechanical properties of the elec-
trospun membrane were enhanced with the addition of BP@SF. Three different sizes of BP
nanosheets (large BP (394 ± 75 nm), medium BP (118 ± 22 nm) and small BP (4.5 ± 0.6 nm)
were prepared by Fu et al. using a modified liquid stripping technique [52]. The larger
BP nanosheets had the best thermal ablation effect on cancer cells. At a concentration of
2.5%, the temperature of the larger BP solution could be increased by 24.0 ◦C after 10 min
of irradiation with the 808 nm laser. In comparison, the temperature rise of the medium BP
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and small BP solutions was 21.8 ◦C and 19.2 ◦C, respectively. For the preparation method
in this study, the size of the BP@SF was relatively large for these three sizes, and it was be-
tween 400 and 600 nm. Only 0.2% of the BP@SF concentration can increase the temperature
to 37 ◦C in an aqueous solution, exhibiting excellent photothermal conversion properties.
Meanwhile, the SF/PLGA/BP@SF-4 electrospun membrane also demonstrated excellent
photothermal conversion performance. Under NIR (808 nm, 2.5 W/cm2) irradiation, the
temperature of the electrospun membrane increased by 15.26 ◦C. In addition, under NIR
(808 nm, 2.5 W/cm2) irradiation, the cell viability of the SF/PLGA/BP@SF-1-L decreased
sharply, and the OD value was significantly lower than that of the other groups under
the same conditions. These results indicate that SF/PLGA/BP@SF-1-L has a significant
inhibitory effect on HepG2 cells under photothermal properties. Further, the addition of
BP@SF did not affect the biocompatibility of the membrane. Phosphorus, one of the most
common biological components of the human body, is closely associated with the formation
of cell membranes and deoxyribonucleic acid (DNA), as well as minerals. The lone pair
of electrons on each phosphorus atom results in a high reactivity of the BP nanosheets
to water and oxygen, leading to the degradation of the BP nanosheets to non-toxic phos-
phates (PO4

3−) and other PxOy in the physiological environment [53]. The PO4
3− captures

surrounding positive calcium ions (Ca2+) to form calcium phosphate (CaP) [54], which
promotes local biomineralization for in situ bone regeneration [55].

In conclusion, the SF/PLGA/BP@SFs electrospun membranes can be simply fabricated
with excellent mechanical properties and good biocompatibility, controllable photothermal
conversion properties under NIR, and effective ablation of cancer cells, which gives them
great potential in the treatment of cancer (Figure 7). However, there are also some challenges
in this study. For example, only in vitro cellular experiments and cancer cell ablation
experiments were performed. In vivo animal studies are required for further evaluation.
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4. Materials and Methods
4.1. Materials

The Bombyx mori silkworm cocoons were obtained from Southwest University. The
(BP) (purity > 99.0%) was obtained from Feynman Nanomaterials Technology Co. The
polylactide-co-glycolide (PLGA, 50/50, MW: 110,000) was acquired from Jinan Daigang
Biotechnology Co., Ltd. (Jinan, China). The chloroacetic acid (CA) (purity = 98.0%) and
potassium bromide (KBr) were obtained at McLean (Shanghai, China). The phosphate
buffer solution (PBS) was obtained from Thermo Fisher (Shanghai, China). The sodium
carbonate anhydrous and anhydrous ethanol were obtained from Chongqing Chuandong
Chemical (Group) Co. (Chongqing, China). The calcium chloride anhydrous and 1,1,1,3,3,3-
Hexafluoro-2-propanol (HFIP) (purity > 99.5%) were purchased from Aladdin Chemical
Co., Ltd. (Shanghai, China). The Dulbecco’s modified Eagle medium (DMEM), fetal bovine
serum (FBS), trypsin−EDTA, and penicillin-streptomycin were purchased from Gibco BRL,
Rockville, MD, United States. The CCK-8 assay and Calcein/PI Cell Viability/Cytotoxicity
Assay Kit were obtained from Beyotime Biotechnology companies (Shanghai, China).
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4.2. Preparation of BP Nanosheets
4.2.1. Preparation of SF Aqueous Solutions

To obtain SF, the Bombyx mori cocoons were first divided into 1 cm2 sheets and
boiled twice for 30 min in 0.5% (w/w) Na2CO3 solution (liquid ratio 1:50) at 100 ◦C. The
degummed cocoons were washed for three times and dried at 45 ◦C. Then, the dried
SF was dissolved in a ternary solvent system of CaCl2/ C2H5OH/H2O (1:2:8 M ratio) at
75 ◦C (liquid ratio 1:10) for 2 h. After cooling down, the mixed solution of silk fibroin
was centrifuged (5000 rpm, 5 mins), and then dialyzed using a semipermeable membrane
(MWCO: 3.5–5 kDa) for 3 days. Finally, the regenerated SF sponge was prepared by
freeze -drying [56,57]. Then, 10 mL of SF solution and 6.5 mL of 1 M chloroacetic acid
were mixed on a magnetic stirrer (85-2A, Jintan Scientific Analytical Instruments Co., Ltd.
(Jiangsu, China)) at a constant temperature of 25 ◦C for 1 h. The filamentous aggregates
were removed from the SF aqueous solution through dialysis and centrifugation, and the
clarified supernatant was then kept in reserve at 4 ◦C.

4.2.2. Preparation of BP@SF

The BP@SF were prepared by ultrasound-assisted liquid exfoliation using bulk BP as
the raw material and SF as the exfoliating agent. Firstly, 20 mg of BP bulk powder was
dispersed in 20 mL of a 5 w/w % SF aqueous solution (SF:BP = 50:1). Nitrogen was added
to the mixture, to separate the oxygen and prevent the oxidation of the BP, which was
then sonicated for two hours in an ice bath, using an ultrasonic cell crusher (SCIENTZ-IID,
Ningbo Xinzhi Biotechnology Co., Ltd. (Zhejiang, China)). To remove the unstripped BP,
the solution was centrifuged for 30 min at 1500 rpm with a frozen high-speed centrifuge
(TGL-20MS, Shanghai Xiang Yi Centrifuge Instruments Co., Ltd. (Shanghai, China)), then
for another 30 min at 6000 rpm to obtain the BP@SF powder. Finally, an electric blast dryer
(DHG-9245A, Shanghai Qiaoxin Scientific Instruments Co. (Shanghai, China)) was used to
dry and store the prepared BP@SF.

4.3. Preparation of SF/PLGA/BP@SF Electrospun Composite Membranes

The 2–10% SF solution was prepared by referring to 4.2.1, and then reverse dialyzed
with PEG (15–20%) for 1–2 days to remove water to increase the concentration and facilitate
the freeze-drying to obtain the SF powder.

Four different concentrations of the BP@SF suspensions were obtained by ultrasonicat-
ing 0 mg, 1 mg, 2 mg, and 4 mg of BP@SF in 9 g of HFIP for 60 min, which were recorded
as control, BP@SF-1, BP@SF-2, and BP@SF-4, respectively. The SF/PLGA spinning solution
and the SF/PLGA/BP@SF spinning solutions of the different BP@SF concentrations were
produced by magnetic stirring for 4 h at room temperature. The spinning was then carried
out using an electrospinning machine (TL-Pro-BM, Shenzhen, China). A 21G metal needle
was attached to a 10 mL syringe and each of the four groups of spinning solutions was
injected into the syringe with the front end of the metal needle connected to the positive
voltage and a grounded barrel with tin foil as a receiver device connected to the negative
voltage. The spinning conditions were a receiving distance of 7.5 cm, a solution flow
rate of 4 mL/h, a positive voltage of 20 kV, a negative voltage of −2 kV, a humidity of
60%, a temperature of 25–30 ◦C, and a drum speed of 600 rpm. The spinning time was
approximately 2–3 h. The electrospun membranes were deposited on tin foil, which was
then carefully peeled from the spinning drum and vacuum dried to remove the residual
HFIP to obtain the electrospun membranes.

4.4. Characterizations of BP@SF

The morphologies of the BP@SF were observed by a Scanning Electron Microscope
(SEM, JSM-6610, Eindhoven, Netherlands) in a high vacuum with an acceleration voltage
of 5–20 kV. The samples were previously coated with gold-palladium. In addition, the
BP nanosheets’ morphology (high resolution) was photographed, using a transmission
electron microscope (TEM) (JEOL JEM-F200, Japan), accelerating voltage 200 kV, and energy
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spectrum (JED-2300T) after drying. TEM procedure: A portion of the sample was dispersed
in an aqueous solution and sonicated for two minutes. After that, a few drops of the
dispersed liquid were added drop by drop to the copper mesh ltra-thin carbon Software
programs ImageJ (1.51j8) and Digital Micrograph (3.7.4) were used to calculate the BP’s
diameter and lattice spacing, respectively.

The particle size distribution of the BP@SF was tested with a nanoparticle size analyzer
(Zetasizer NanoS90. Malvern City, UK). A total of 1 mg of BP@SF was dispersed uniformly
in 1 mL of PBS. The solution was scanned 10 times.

FTIR spectroscopy (Bruker, Beijing, China) was performed to record the composition
of the material and analyze the structure of the substance composition of the BP@SF. The
scanning range was 4000–400 cm−1. A total of 1 mg of dried sample and 100 mg of KBr
were ground well and pressed under a compressor to form transparent and homogeneous
flakes, which were scanned by FTIR spectroscopy.

The X-ray diffraction spectra were recorded by the X-ray diffraction test system of
Dandong Tongda Technology Co., Ltd. (Liaoning, China), using monochromatic Cu Kα1
ray radiation (λ = 1.54 nm). The angles ranged from 5◦ to 50◦ in steps of 0.02◦.

Aqueous solutions of BP@SF at 0.1 mg/mL, 0.2 mg/mL and 0.4 mg/mL were prepared
separately, with PBS as the control group. A total of 2 mL of the solutions were placed
in a cuvette and the samples were detected by UV spectrophotometer (TU-1901. Beijing
Pu-Analysis General Instrument Co. (Beijing, China)) in the 400–900 nm spectrum.

The aqueous BP@SF were irradiated with a near infrared laser (808 nm, 0.5 W/cm2)
for 10 min in a 1 cm square cuvette. The temperature of the aqueous BP nanosheets solution
was recorded by a digital thermometer (data represent means ± SD (n = 3)).

4.5. Characterizations of SF/PLGA/BP@SF Electrospun Composite Membranes

The morphologies of the BP@SF and electrospun membranes were observed by scan-
ning electron microscopy (SEM, Phenom, JSM-6610, Eindhoven, The Netherlands)) in high
vacuum at accelerating voltages of 5–20 kV. The samples were previously coated with gold-
palladium by magnetron sputtering. Nano Measure 1.2.5 software was used to determine
the average diameter and diameter distribution of the fibers. The EDS elemental analysis
test is based on SEM-scanned images for elemental content and distribution analysis.

The surface hydrophobicity of the electrospun membranes was tested repeatedly, with
the SDC-300 optical contact angle tester. Briefly, the membranes were made 1 cm × 1 cm
and glued to a glass sheet. Drops of water were placed on the membrane for 30 s before
imaging at 25 ◦C (the test was repeated three times for each set of samples). The con-
tact angle of the samples at 25 ◦C was assessed using a contact angle meter (OCA15EC,
Datephysics, Fildestadt, Germany). Each sample was tested for tensile strength, using
a universal material testing machine at room temperature with a humidity of 65%. The
sample size was 30 mm × 10 mm and the thickness was approximately 0.006–0.15 mm.
The effective tensile length of the electrospun membrane was 10 mm, using a 1 KN sensor
and the tensile speed was 2 mm/min. The Young’s elasticity, fracture strength, and fracture
elongation were averaged over five tests.

4.6. Photothermal Effect Measurement

To test its photothermal conversion performance, the samples were irradiated directly
with 0, 0.5, 1, 1.5, 2 and 2.5 W. While the temperature rose to its maximum, photographs
were taken and the elevated temperature was recorded. To test the stability of its photother-
mal conversion, a 50 mg sample of SF/PLGA/BP@SF-4 was placed in 50 µL of PBS and
irradiated with 2.5 W of NIR for 10 min and then stopped. The temperature at which the
solution rose and the time it took to cool naturally to room temperature was recorded. The
above operation is repeated five times for cyclic testing.
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4.7. Cell Culture

Mouse fibroblasts L929 and human hepatocellular carcinomas HeGp2 were acquired
from the State Key Laboratory of Silkworm Genome, Southwest University. The cells were
all cultured in DMEM high sugar medium, containing 10% fetal bovine serum, 100 µ/mL
penicillin, and 100 µg/mL streptomycin, and placed in a 37 ◦C, 5% CO2 incubator.

4.8. Biocompatibility Test

The biocompatibility of the electrospun membranes on the L929 mouse fibroblasts was
tested by a direct contact test. Staining was observed using a CCK-8 assay and LIVE/DEAD
double fluorescent staining assay. The membranes of 6 mm diameter were previously
irradiated in UV radiation for 1 h and subsequently placed in the bottom of each well of a
96-well plate pre-cultured with complete medium for 30 min. A total of 8 × 103 cells/mL
of the L929 cell suspension was subsequently added to each well and seeded at 37 ◦C
and 5% CO2 for 3 days. The cells cultured in the wells without membranes were used
as controls, and the SF/PLGA/BP@SF-1, SF/PLGA/BP@SF-2, and SF/PLGA/BP@SF-4
membranes were the experimental groups, with five replicate wells in each group. On
days 1, 2, and 3 after the cell seeding, 250 µL DMEM medium and 25 µL CCK-8 assay were
added to each well and incubated at 37 ◦C with 5% CO2 for 1 h. The absorbance at 450 nm
was then measured with a microplate reader (Synergy H1, BioTek, Beijing Representative
Office; USA). Three days later, 0.1 µL Calcein AM, 0.1 µL Propidium Iodide (PI), and 0.1 mL
Test buffers were added to the plates, incubated for 30 min and the cells were observed by
fluorescence microscopy (BX53, Olympus, Shanghai, China).

4.9. In Vitro Anti-Tumor Performance Testing

In this experiment, the inhibitory properties of the cancer cells were evaluated by
co-culture of HeGp2 cells on nanofiber membranes, stained with CCK-8 assay, and the
LIVE/DEAD double fluorescent staining assay. After two passages, 96-well plates with
1 × 104 cells per well were plated and incubated in a cell culture incubator (37 ◦C, 5% CO2)
for 24 h. The nanofiber membranes were sterilized by light treatment for 30 min and then
added to the 96-well plates for 4 h, followed by 808 nm NIR light irradiation at 2.5 W/cm2

for 10 min. The OD values were measured by CCK-8 staining at 24 h and 48 h after the
light treatment. The LIVE/DEAD double fluorescent staining assay was stained at the 48th
hour and the staining status was observed by fluorescence microscope. Statistical plotting
was completed using OriginPro software.

4.10. Statistical Analysis

All of the quantitative data were expressed as Mean ± Standard Deviation. All of
the analyses of variance (ANOVA one-way, OriginPro 2021b (64-bit, 9.8.5.201, OriginLab
Corporation) were performed through post-hoc Tukey tests, to test the significance of the
results. A p-value < 0.05 indicated statistical significance: * is p < 0.05, ** is p < 0.01, and
*** is p < 0.001.

5. Conclusions

In conclusion, the BP@SF with good water dispersion stability was prepared by
ultrasound-assisted liquid exfoliation, using SF as an effective exfoliator. Based on the excel-
lent solution processability of the BP@SF, SF/PLGA/BP@SF electrospun membranes were
prepared, together with SF and PLGA, by electrospinning. The fabricated SF/PLGA/BP@SF
electrospun membranes exhibited excellent mechanical properties, good biocompatibility,
and controllable photothermal conversion properties under NIR for effectively killing
cancer cells, which gives them great potential in the treatment of cancer. However, there
were also some challenges in this study. For example, only in vitro cellular experiments
and cancer cell ablation experiments were performed. In vivo animal studies are required
for further evaluation.
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