
materials

Article

Tunable Luminescent A-SiNxOy Films with High
Internal Quantum Efficiency and Fast Radiative
Recombination Rates

Pengzhan Zhang 1,2,* , Leng Zhang 1, Xuefeng Ge 3 and Sake Wang 4

1 College of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China;
zhanglengxixi@163.com

2 Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State
Microstructures, Nanjing University, Nanjing 210093, China

3 Center for Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; gexuefeng@njnu.edu.cn
4 College of Science, Jinling Institute of Technology, Nanjing 211169, China; IsaacWang@jit.edu.cn
* Correspondence: pzzhang@nju.edu.cn; Tel.: +86-181-6809-2706

Received: 18 November 2018; Accepted: 6 December 2018; Published: 8 December 2018
����������
�������

Abstract: In this work, we systematically investigated the Nx bonding defects that induced high
photoluminescence internal quantum efficiencies (PL IQEs) and very fast radiative recombination
processes in amorphous silicon oxynitride (a-SiNxOy) systems. The luminescent N-Si-O
bonding-related defect states were checked for the XPS, EPR, and temperature-dependent steady-state
PL (TD-SSPL) properties. The PL IQEs were calculated from PL quantum yields through the
principle of planar geometry optics, and then confirmed by the TD-SSPL properties. The radiative
recombination rates [kr(R)] were determined by combining the PL IQE values and ns-PL lifetimes
obtained from time-resolved PL measurements. Both the PL IQE, exceeding 72%, and the fast kr(R)
(~108 s−1) are proportional to the concentration of Nx defects, which can be explained by N-Si-O
bonding states related to the quasi-three-level model, suggesting the possible realization of stimulated
light emission in a-SiNxOy systems.

Keywords: a-SiNxOy; N-Si-O defect states; photoluminescence internal quantum efficiency; radiative
recombination rates; quasi-three-level systems

1. Introduction

As one of the traditional semiconductors, silicon (Si) is widely used in today’s microelectronic,
photovoltaic, and optoelectronic technologies [1–3]. In Si-based monolithic optoelectronic integrated
circuits, the most difficult work is to realize an efficient Si-based lighting source. However, silicon
is not a suitable luminescent material, and its indirect band gap limits light emission efficiency.
Therefore, Si-based luminescent materials (including Si alloys and nanostructured Si) have been
actively investigated over the last two decades, with an interest in improving the PL external quantum
efficiency (PL EQE, or called PL quantum yield, PL QY) and internal quantum efficiency (PL IQE),
and understanding the radiative recombination mechanisms of the light emission [4–22].

Abundant previous works have reported on the improved light emission efficiency from colloidal
Si QDs, and the results obtained from colloidal Si QDs were rather high (PL QY, 43–90%) [6–8].
However, only a few works have focused on the light emission efficiency in nanocrystal-Si embedded
Si alloys. The PL EQE from thermal annealed nc-Si embedded Si nitride films, and PL IQE from
nc-Si embedded Si dioxide films have been achieved at ~7% [10] and 59% ± 9% [11], respectively.
On the other hand, although much attention has been paid to Si alloys [13–17], promising results are
still lacking. Our group has found that O atoms’ impurity induced a significant enhancement of PL
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intensities in a-SiNx films, and confirmed the new luminescent Nx defect centers [18–20]. Visible light
emission devices with phosphorus-doped n-a-SiNxOy/p-Si heterojunction structure have also been
realized [21]. Recently, PL EQE values of 8.38% have been achieved from tunable luminescent a-SiNxOy

films [22].
In this work, we systematically analyzed the PL internal quantum efficiencies and fast radiative

recombination processes of a-SiNxOy films. We checked the N-Si-O bonding defects using XPS,
EPR, and temperature-dependent steady-state PL (TD-SSPL) measurements. The PL IQEs were
calculated from the measured PL QY values using the principle of planar geometry optics, and then
confirmed by the TD-SSPL properties. At the PL peak energy (EPL) of 2.55 eV, we achieved a high
PL IQE of 72% in a-SiNxOy systems. Combing with the obtained PL IQEs and ns-PL lifetimes,
the fast radiative recombination rates (~108 s−1) from a-SiNxOy films have also been determined.
Both the PL IQE values and the fast radiative recombination rates from a-SiNxOy films for various
stoichiometries are proportional to the related concentration of Nx defect states, which can be explained
by a quasi-three-level model, suggesting the possible realization of stimulated light emission in
a-SiNxOy films.

2. Materials and Methods

2.1. Material Fabrication

A-SiNxOy films with various thicknesses (10 nm–4 µm) and the controlled a-SiNx were deposited
on roughened quartz and p-Si substrates by using PECVD, by processes described in detail
elsewhere [22]. N/Si ratios were effectively controlled through controlling the gas flow rate R
(R = NH3/SiH4) by changing the ammonia flow. As the PL intensities increased rapidly when the film
thickness increased, we chose ensemble samples with the same thickness of ~500 nm as the research
objects in this article.

2.2. Characterization of A-SiNxOy Thin Films

The chemical compositions and atomic scale defect states were confirmed by the XPS (Thermo
ESCALAB 250, ThermoFisher Scientific, Waltham, MA, USA) and the EPR (Bruker EMXplus, X-band,
Bruker, Billerica, MA, USA) measurements. The TD-SSPL and PL excited (PLE) properties were
measured by a Fluorolo-3 system (HORIBA Jobin Yvon, Paris, France) in a computer-controlled
Delta 9023 oven (State College, PA, USA) under various temperatures, using a 75W Xe lamp
(λexc = 250-800 nm) and a He-Cd laser (λexc = 325 nm) as light sources. The optical band gaps (Eopt)
were obtained from transmittance measurements (Shimadzu UV-3600, Shimadzu Corp., Hadano,
Kanagawa, Japan). The refractive indexes (n) were measured using a spectroscopic ellipsometer (Jobin
Yvon UVISEL, HORIBA Jobin Yvon, Paris, France). Both the Eopt and n of a-SiNxOy samples are listed
in Table 1. A FLS980 (Edinburgh Instrument Ltd., Edinburgh, UK) equipped with an EPL375 pulse
diode laser (λexc = 375 nm, pulse width ~53 ps, repetition rate ~20 MHz), and a TCSPC (resolution
time ~100 ps), were used to record the time-resolved PL.

Table 1. The optical parameters, EPL (Eexc > Eopt), PL QEs, and ns-PL lifetimes of a-SiNxOy films.

R Eopt (eV) EU Edge (eV) EPL (eV) ∆Estokes (eV) n N* (%) η (%) ε (%) τmeas(ns)

0.3 2.93 2.86 2.12 0.74 2.265 7.64 1.57 20.5 5.18
0.5 3.15 3.02 2.23 0.79 1.966 10.77 4.33 40.2 6.07
0.8 3.47 3.14 2.36 0.78 1.904 11.63 7.76 65.5 7.12
1.5 3.98 3.38 2.55 0.83 1.889 11.85 8.38 72.1 7.79
2.5 4.50 3.66 2.81 0.85 1.837 12.67 5.61 44.3 6.31
5 4.62 3.75 2.91 0.84 1.803 13.25 4.84 36.5 4.91
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3. Results and Discussion

3.1. Identification of the N-Si-O Defect States

The existence of N-Si-O bonding configurations in a-SiNxOy samples was confirmed by the
XPS measurements [19,20,22]. The concentrations of N and O are 35–49% and 2.2–5.5%, respectively,
for a-SiNxOy films with various R. To further identify the related atom-scale defect states, we performed
EPR measurements. Figure 1a displays the measured EPR absorption spectrum of the a-SiNxOy films
(R = 1.5), which has a value of g = 2.0030. We considered all possible typical trivalent Si dangling bonds
(Si DBs) [23], and the nitroxide-like Nx center [24], which is the herald of a true a-SiNxOy phase [25].
Then we decomposed the measured EPR signals and obtained the related g values and Gauss line
width (∆Hpp), as shown in the Figure 1a inset. The densities of the coexisting Si DBs and Nx defects of
a-SiNxOy films with various R can be calculated by doubly integrating all the measured and fitted first
derivative EPR signals, which are plotted in Figure 1b.
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Figure 1. (a) The measured EPR spectra of a-SiNxOy samples (R = 1.5) and the related simulations.
(b) The total defects, Si DBs, and Nx defects spin densities vs. R.

3.2. PL Properties of the A-SiNxOy Thin Films

For SSPL properties, with a rise in R, the PL peak positions exhibit a blue shift, and are tunable
in the visible range (2.12–2.91 eV) under the excitation wavelength λexc = 325 nm (He-Cd laser),
as shown in Figure 2a. Generally, the relationship between PL IQE (ε) and PL EQE (η) can be described
as ε = η/N∗. Here N∗ denotes the light extraction factor. We directly measured the absorption
photon numbers and the emitted photon numbers in a calibrated integrating sphere, thus obtaining PL
EQEs (PL QYs) exceeding 1.5% for tunable luminescent a-SiNxOy films [22]. From the principles of
planar geometry optics, we know that the emitted photons generated inside the samples are partially
influenced by total internal reflection, and most of the generated photons are trapped inside the
samples, since the refractive index of a-SiNxOy samples (n) is much higher than the air index (nair).
Thus, the first part of light extraction factor N∗

1 can be calculated as [26,27]:
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N∗
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The remaining photons inside the sample should directly stroke or be internally reflected onto
the rough substrate surface, which can also be scattered in all directions, and then emit out from
the top surface [26,27], thus contributing the second and third parts of the light extraction factor
N∗

2 and N∗
3 , respectively. The rest of the contributions were too weak to separate out, and should

be ignored. Therefore, the light extraction factor was defined as N∗ ≈
3
∑

x=1
N∗

x , and the calculated

PL IQEs exceeding 20% should be obtained in the visible range, as shown in Figure 2b and Table 1.
For various R, the variation tendency of ε was consistent with the variation tendency of Nx defect
densities, indicating that luminescent Nx defects are responsible for the high PL internal quantum
efficiencies in our a-SiNxOy systems.

TD-SSPL measurements are always used to identify the PL mechanisms, and we check the related
PL IQE values, as the radiative recombination makes a dominant contribution to the recombination
processes at low temperatures, which means PL IQE is nearly equal to 100% [5,6,12]. Figure 3 shows
the TD-SSPL properties for the R = 1.5 samples from 8 K to 300 K. One can see that the EPL keeps
nearly stable and is independent on the measurement temperatures. The PL profiles were observed
no appreciable change under various measurement temperatures. Such phenomenon indicates that
the carrier recombination through defect states, which is different from those through band tail
levels. It will be discussed in detail later. As shown in Figure 3 insert, the integrated PL intensity
[IPL(T)] keeps nearly stable at low measurement temperature range [T< 80 K, here we called IPL(T0)],
and then decreased rapidly as the measurement temperature rises up from 80 K to 300 K, indicating
the increasing domination of nonradiative recombination in this temperature range. We estimated the
TD-PL IQE by using the thermal ionization model [10,13]:
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IPL(T) =
IPL(T0)

1 + B exp(−Ea/KT)
, (2)

where B is inversely proportional to the radiative recombination rates and Ea denotes the activation
barrier energy. From the thermal ionization model, IPL(T) was well fitted with B = 10 and Ea = 57 meV,
which was similar to the reported results [10]. The PL IQE for a-SiNxOy films with R = 1.5 estimated
from TD-SSPL measurements is 74.8%, which is consistent with the calculated values (ε ~72.1%) from
directly measured PL QYs, and is much higher than those from nc-Si-embedded a-SiOx samples [11].
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3.3. Recombination Rates of A-SiNxOy Thin Films

To further analyze the obtained high light emission efficiencies, we intensively investigated the
ns-PL decay properties and the recombination rates [k(R)]. Figure 4a shows the ns-TRPL decay spectra
of a-SiNxOy samples at room temperature. We fitted the PL decay curves and obtained the ns-PL
lifetimes (τmeas) by [28].

I(t) =
n

∑
i=1

An exp(−t/τn) with τmeas =
A1τ2

1 + A2τ2
2 + A3τ2

3
A1τ1 + A2τ2 + A3τ3

. (3)

The a-SiNxOy samples for different R have an average value of about 6.23 ns at RT. Generally,
k(R) can be expressed as k(R) = kr(R) + knr(R), where kr(R) and knr(R) denote the radiative
recombination rates and nonradiative recombination rates of a-SiNxOy samples with various R,
respectively. The radiative rates and nonradiative rates can be described as

kr(R) =
1

τr(R)
=

ε(R)
τmeas(R)

with knr(R) =
1

τnr(R)
=

1 − ε(R)
τmeas(R)

, (4)

where ε(R) denotes the PL IQEs, and τr(R) and τnr(R) denote the radiative and nonradiative
lifetimes, respectively. Combining the obtained ε(R) with the measured ns-PL lifetimes, kr(R)
and knr(R) were calculated from Equation (4), as shown in Figure 4b. The kr(R) have an average
value of about 0.8 × 108 s−1 under RT, which can be compared with that of direct band gap
materials (such as CdSe NCs, kr ~108 s−1 [29]). We found that the variation tendency of the
radiative recombination rates was also consistent with the variation tendency of Nx defect densities,
thus contributing to our understanding of the domination of N-Si-O bonding defect states in fast
radiative recombination processes.
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3.4. A-SiNxOy Quasi-Three-Level Systems

We further intensively studied the Nx defect features of luminescent a-SiNxOy films by analyzing
the variation tendency of PL peak positions (EPL) for change of excitation photon energies (Eexc),
comparing with those of the controlled a-SiNx films.

Different PL spectra of a-SiNxOy films with R = 0.8 under different Eexc are given in Figure 5a.
We found that the EPL of a-SiNxOy films hardly varied (~0.04 eV) for change of excitation photon
energies, whether Eexc > Eopt or Eexc < Eopt. We also see that band shape profiles are not changed for
different Eexc; this is a typical feature of luminescence related to defect states. For the PL spectra of the
controlled a-SiNx films in Figure 5b, in the case of Eexc < Eopt, the EPL of a-SiNx films has a blue shift
(~0.31 eV); when Eexc rises, in the case of Eexc > Eopt, EPL stays nearly constant, exerting the typical PL
characteristics of the radiative recombination from band tail states carrier transition.

Then we calculated the Stokes shifts from conduction band tails (EU Edge) to PL peak positions
(∆Estokes = EU Edge − EPL). It is generally known that PLE spectra represent the state density
distribution of luminescence excitation states (conduction band EC); thus we can analyze the
excitation processes and PL excitation mechanisms from PLE spectra. Excitation states of amorphous
semiconductors involve band tail states of EC extended in the band gap; this represented the EU Edge of
the EC tail, which is defined as the boundary threshold value energy of PLE. EC tail width EU can also
be estimated by subtracting the EU Edge from the EC (Eopt) of samples, i.e., EU = Eopt − EUEdge. The EPL

continues to have a blue shift with a sustained rise in R for tunable luminescent a-SiNxOy films in
the visible range. Firstly, we noticed that a blue shift occurred to the EPL and Eopt was broadened
with the increase of R, while EU Edge would shrink in the direction of EC (Eopt) energy level with the
increase in N content, and the position of N-Si-O defect states energy level in a-SiNxOy films was
fixed under EU Edge. For a-SiNxOy films with different R, Stokes shift has no variation with changes
in Eopt, and converges to a stable value (∆Estokes~0.8 eV), as shown in Table 1. On the other hand,
Robertson et al. reported that the Si-N bond would form a bonding state (σ) and an anti-bonding
state (σ*), and Eopt was calculated from the differences between these two energy levels in the a-SiNx

band gap [30]. For a-SiNx with x < 1.2, the position of EC bottom would basically not change with the
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content of N, while the movement of the valence band (EV) in the top Si-N bond caused a change of
Eopt. With the increase in N content (x > 1.25), the EC bottom of a-SiNx films was gradually replaced
by Si-N anti-bonding states with a higher energy position, and the EV top was gradually replaced by a
lone-pairs state of N 2p; at this point, the increase in Eopt was mainly decided by the movement of the
EC bottom to a higher energy level. For our a-SiNxOy films, from the XPS measurements, the x of N
have a range of about 0.54–0.96 with various R. Therefore, combining the factors of the aforementioned
aspects, we assumed that the EPL of N-Si-O-related defect states would shift through control of N
content (varying with changes in Eopt), which is caused by the movement of the EV top in the band
gap in a-SiNxOy films.
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Therefore, based on the research into luminescent Nx defects and related ns-TRPL decay above, we
put forward a quasi-three-level systems model to explain the obtained high PL IQEs (ε ~72%) and fast
radiative recombination rates (kr ~108 s−1) in a-SiNxOy systems, which is distinctly different from those
of band tail related a-SiNx systems [13]. The typical PL mechanisms of band tail state carrier transitions
are shown in Figure 6a. When Eexc is less than Eopt (Eexc < Eopt), excitation state carriers (E1) relax to a
deeper energy level, and achieve recombination luminescence among bands after thermalization. With
the rise in Eexc, excitation state carriers will occupy a higher energy level of conduction band tail (from
E1 to E2), so that EPL should move to the location of the high energy level by degrees, i.e., EPL blue
shift. In case Eexc > Eopt, EPL tends to stay stable and is independent of Eexc. However, for a-SiNxOy

systems, as shown in Figure 6b, the radiative recombination processes should be divided into two
steps: firstly, excitation state electrons relax to the band tail of conduction band in the process of
nonradiative recombination, and are caught by N-Si-O relevant defect center after thermalization; then
electrons transit from N-Si-O defect states to the valence band to conduct radiative recombination
transition, resulting in highly efficient light emission and fast radiative recombination rates.
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4. Conclusions

In conclusion, the PL internal quantum efficiencies and radiative recombination mechanisms
have been investigated in tunable luminescent a-SiNxOy systems. PL IQEs of 72% have been
achieved, which is much higher than those of nanocrystal Si-embedded Si oxide films. Fast radiative
recombination rates (~108 s−1) have also been achieved. We discussed and put forward the PL
mechanisms of luminescent N-Si-O defect-related quasi-three-level systems, which suggested the
possibility of stimulated light emission in a-SiNxOy films.
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